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Abstract 

Background:  Canine heartworm is a widespread and potentially fatal mosquito-borne disease caused by infections 
with the parasitic nematode, Dirofilaria immitis. We have previously shown that systemic activation of the Toll immune 
pathway via silencing of the negative regulator Cactus in Aedes aegypti blocks parasite development in the Malpighian 
tubules (MT), the mosquito renal organ. However, it was not established whether the MT were directly responding to 
Toll activation or were alternatively responding to upregulated proteins or other changes to the hemolymph driven 
by other tissues. Distinguishing these possibilities is crucial for developing more precise strategies to block D. immitis 
while potentially avoiding the fitness cost to the mosquito associated with Cactus silencing.

Methods:  This study defines the transcriptional response of the MT and changes to the hemolymph proteome of Ae. 
aegypti after systemic Toll activation via intra-thoracic injection of double-stranded Cactus (dsCactus) RNA.

Results:  Malpighian tubules significantly increased expression of the Toll pathway target genes that significantly 
overlapped expression changes occurring in whole mosquitoes. A significant overlap between the transcriptional 
response of the MT and proteins upregulated in the hemolymph was also observed.

Conclusions:  Our data show that MT are capable of RNA interference-mediated gene silencing and directly respond 
to dsCactus treatment by upregulating targets of the canonical Toll pathway. Although not definitive, the strong cor-
respondence between the MT transcriptional response and the hemolymph proteomic responses provides evidence 
that the MT may contribute to mosquito humoral immunity.
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Background
Vector-borne pathogens constitute a significant por-
tion of the global infectious disease burden for both 
humans and animals [1]. Filarial nematodes transmit-
ted by Aedes, Culex and Anopheles mosquitoes are 
responsible for a significant proportion of this bur-
den. There are currently 863 million people at risk for 

lymphatic filariasis, which is caused by infection with 
Wuchereria bancrofti, Brugia malayi or Brugia timori 
[2, 3]. There are also millions of dogs, cats and other 
small mammals at risk for infection with Dirofilaria 
immitis, the causative agent of heartworm, for which 
canines are the definitive host [4–6]. The mosquito 
innate immune system is an important determinant 
of vector competency. Therefore, understanding how 
the mosquito responds to filarial infection and which 
tissues are possible sites of immune activation and 
pathogen restriction is essential. Identification of these 
mechanisms will ultimately lead to potential targets 
for novel transmission-blocking strategies. Modifying 
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the immune system to block an invading pathogen 
without imposing a direct fitness cost on the mosquito 
is the foundation of many translational strategies seek-
ing to reduce vector-borne disease.

Principal cells of the Malpighian tubules (MT), 
the mosquito renal organ, are invaded by D. immitis 
microfilariae that are acquired in the blood meal of 
a female mosquito. In the principal cells of suscepti-
ble mosquitoes (such as Ae. aegypti “Blackeye” strain 
[Ae. aegyptiBE]), microfilariae develop into first instar/
stage larvae (L1) and then molt twice forming infec-
tive third-instar larvae (L3) that migrate through the 
body cavity, reside in the head and labial sheath of the 
proboscis and are ultimately deposited in a drop of 
hemolymph on the skin of a host during blood-feed-
ing. In the refractory strain Ae. aegypti “Liverpool,” 
microfilariae invade principal cells but fail to develop 
to L1 [7–11], demonstrating that the MT are a criti-
cal tissue that can restrict parasite development. In a 
previous study in which we compared the transcrip-
tional response of the MT during D. immitis infec-
tion, we found that both susceptible and refractory 
strains upregulate immune genes, but the magnitude 
of the response was significantly greater in the refrac-
tory strain [7]. Provoking strong immune activation 
by RNA interference (RNAi)-mediated gene silencing 
of the Toll pathway negative regulator Cactus greatly 
reduced the number of D. immitis and B. malayi L3 
capable of emerging from susceptible mosquitoes [7, 
12]. In the case of D. immitis, the reduction in emerg-
ing L3 could be accounted for by an increase in the 
number of immature larvae arrested in the MT [7].

Despite our previous work showing that Cactus 
RNAi-mediated Toll activation was sufficient to pre-
vent the development of D. immitis, it was unclear 
whether this was the result of a MT-specific response 
or signals from other tissues. In the study presented 
here, we begin to address this question by perform-
ing messenger RNA (mRNA) sequencing of dissected 
MT from the susceptible Ae. aegyptiBE strain treated 
with double-stranded Cactus (dsCactus) RNA and 
compared the response to that of whole mosquitoes, 
which have previously been shown to upregulate Toll 
pathway targets. We also performed proteomic analy-
sis of the hemolymph to determine what proteins are 
upregulated following dsCactus treatment. Our results 
suggest that in both the MT and the hemolymph, there 
is a robust upregulation of Toll-pathway effectors, 
including antimicrobial peptides (AMPs), C-type lec-
tins (CTLs) and CLIP-serine proteases (CLIPs). We 
hypothesize that the MT may contribute to the sys-
temic immune response in the mosquito by secreting 
factors into the hemolymph.

Methods
Mosquito rearing and maintenance
The susceptible Ae. aegyptiBE strain was provided by 
the National Institutes of Health/National Institute of 
Allergy and Infectious Diseases (NIH/NIAID) Filariasis 
Research Reagent Resource Center for distribution by 
BEI Resources, NIAID, NIH (Aedes aegypti, Strain Black 
Eye Liverpool, Eggs, NR-48921; https://​www.​beire​sourc​
es.​org/​Catal​og/​BEIVe​ctors/​NR-​48921.​aspx). Mosquitoes 
were reared at 28  °C and a relative humidity of 75% on 
a 12/12-h light/dark photoperiod. Larvae were fed a 1% 
suspension of liver powder (MP Biomedicals, Santa Ana, 
CA, USA) in water and fish food (Tetra variety pellets; 
Tetra Werke, Melle Germany), while adults were fed 10% 
sucrose. Mosquitoes were housed in 20-cm3 cages (Bug-
dorm) at density of ≤ 1000 adults per cage. Using an arti-
ficial membrane feeder, mosquitoes were fed heparinized 
sheep blood (HemoStat Laboratories, Dixon, CA, USA) 
warmed to 37  °C. All experiments were performed with 
adult female mosquitoes 3–7 days after eclosion.

Gene knockdown
Aedes aegypti Cactus dsRNA was silenced by RNAi 
using standard protocols and as previously published 
[7]. dsRNA made from a region of Escherichia coli 
β-galactosidase (LacZ) was used as a control. Fragments 
of Cactus (329 bp) and LacZ (541 bp) were amplified by 
PCR using 5’ and 3’ primers with overhangs containing 
T7 binding sites, using iProof High-Fidelity Taq (Bio-Rad 
Laboratories, Inc.). PCR reaction products were run on 
an agarose gel to check for the correct amplicon, purified 
using the GeneJet PCR purification kit (Thermo Fisher 
Scientific, Waltham, MA, USA), and 1  µg was used to 
generate dsRNA using a HiScribe T7 RNA synthesis kit 
(New England Biolabs [NEB] Ipswich, MA, USA). Reac-
tion products were purified with the GeneJET RNA 
Purification Kit (Thermo Fisher Scientific), eluted using 
nuclease-free water and concentrated, with a SpeedVac 
to a final concentration of 3 µg/µl. Primers used for the 
PCR in 5’ to 3’ orientation, respectively, were Cactus For-
ward (CGA​GTC​AAC​AGA​ACC​CGA​GCAG) and Cactus 
Reverse (TGG​CCC​GTC​AGC​ACC​GAA​AG), and LacZ 
Forward (AGA​ATC​CGA​CGG​GTT​GTT​ACT) and LacZ 
Reverse (CAC​CAC​GCT​CAT​CGA​TAA​TTT). All prim-
ers listed have a T7 binding site (TAA​TAC​GAC​TCA​CTA​
TAG​GG) to the 5’ end. Three biological replicates were 
performed on separate mosquito generations. For each 
experiment, groups of 150 mosquitoes were anaesthe-
tized using CO2 and injected intra-thoracically with 69 nl 
of dsRNA (207 ng) using a Nanoject III injector (Drum-
mond Scientific Company, Broomall, PA, USA). Mosqui-
toes were recovered for 5  days under standard culture 
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conditions and then processed. The number of dead mos-
quitoes was recorded, and approximately 50 mosquitoes 
were used to prepare hemolymph samples for proteom-
ics, and groups of 50 and 10 mosquitoes were used to 
prepare RNA samples for transcriptomics from dissected 
MT and intact whole mosquitoes, respectively.

RNA‑sequencing and processing
Groups of 10 whole mosquitoes and 50 MT were dis-
sected in phosphate-buffered saline, 10 at a time, and 
then transferred in TRIzol (Invitrogen™, Thermo Fisher 
Scientific) into a 1.5-ml rubber-gasketed screw-cap 
tube and frozen at −  80  °C. Once all samples were col-
lected from three independent mosquito generations, 
total RNA was isolated following the manufacturer’s 
protocol, resuspended in ultrapure water and frozen 
at - 80 ºC. RNA samples were sent to Novogene (Davis, 
CA, USA) for RNA-sequencing (RNA-seq). Briefly, 
mRNA was isolated using oligo d(T) magnetic beads, 
and complementary DNA (cDNA) libraries were gener-
ated using random hexamers. Unstranded libraries of 
150-bp paired-end reads were then sequenced using the 
NovaSeq 6000 platform (Illumina, Inc., San Diego, CA, 
USA) which generated FastQ files that were used for 
downstream analysis. The FastQ files were first filtered 
for quality using the “fastP” (version 0.20.1) program 
with the “–detect_adapter_for_pe” argument and imple-
menting a minimum read length of 20 bp [13]. Trimmed 
reads were then mapped to the Ae. aegypti LVP_AGWG 
reference genome version 53 obtained from VectorBase/
VEuPathDB [14, 15], using the HiSAT2 read mapper 
(version 2.2.0) [16]. Aligned reads were quantified using 
the featureCounts program [17], with the Ae. aegypti 
Gene Transfer Format file corresponding to genome ver-
sion 53 (VectorBase). Differential expression analysis 
was then performed using the edgeR package (version 
3.38.2) [18], using a false discovery rate (FDR) threshold 
of q < 0.05 and a fold-change threshold of log2 fold change 
(log2FC) > 2. Raw counts were subsequently normalized 
by conversion into transcripts per million (TPM). Gene 
Set Enrichment Analysis (GSEA) was performed using 
the Fast Gene Set Enrichment Analysis (FGSEA) tool in R 
(version 1.22.0) [19] and using various gene sets derived 
from other studies as inputs (Additional file 1: Table S1) 
[20–23].

Hemolymph sample preparation for western blot 
and proteomic analyses
Samples of hemolymph were prepared according to our 
standard proboscis-clipping method [24]. Briefly, groups 
of approximately 50 mosquitoes were initially anesthe-
tized with CO2 and then transferred to ice. They were 
then aligned into rows, ventral side up, and the proboscis 

cut with fine scissors at the midpoint. Gentle, even pres-
sure was applied to the thorax to extract a drop of hemo-
lymph, which was collected into 5-µl of non-reducing 
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE) sample buffer (Pierce Biotechnology 
Inc., Thermo Fischer Scientific); approximately 15 mos-
quitoes were collected at a time and the sample was then 
transferred to a 1.5-ml protein LoBind tube (Eppendorf, 
Hamburg, Germany). The sample was supplemented 
with additional 2× sample buffer to a concentration of 1 
mosquito/µl and stored at − 80 °C.

Liquid chromatography–tandom mass spectrometry 
analyses and data processing
Hemolymph samples were processed for liquid chro-
matography–tandem mass spectrometry (LC–MS/MS) 
as a single broad band of an SDS-PAGE gel. Each sam-
ple band was excised, de-stained using acetonitrile and 
then incubated with 10  mM dithiothreitol (GE Health-
Care, Chicago, IL, USA) at 30  °C for 1  h. Subsequently, 
iodoacetamide solution (GE HealthCare) was added to 
a final concentration of 40  mM, and the reaction was 
allowed to proceed at room temperature in the dark for 
30  min. The solution was incubated with trypsin (Pro-
mega, Madison, WI, USA) in a 1:50 (w/w, enzyme/pro-
tein) ratio at 37 °C for 18 h. The resulting peptides were 
desalted with a C-18 macro spin column (Harvard Appa-
ratus, Holliston, MA, USA) and then vacuum dried.

LC–MS/MS analysis was performed by the Proteom-
ics and Metabolomics Facility at the Wistar Institute 
using a Q Exactive Plus or Q Exactive HF mass spectrom-
eter (Thermo Fisher Scientific) coupled with a Nano-
ACQUITY UPLC system (Waters Corp., Milford, MA, 
USA). The peptide samples were injected onto a UPLC 
Symmetry trap column (180 μm i.d. × 2 cm, packed with 
5-μm C18 resin; Waters Corp.). Tryptic peptides were 
separated by reversed-phase high-performance liquid 
chromatography on a BEH C18 nanocapillary analytical 
column (75 μm i.d. × 25 cm, 1.7-μm particle size; Waters 
Corp.) using a gradient time of 95  min, with the gradi-
ent formed by solvent A (0.1% formic acid in water) and 
solvent B (0.1% formic acid in acetonitrile). Eluted pep-
tides were analyzed by the mass spectrometer set to 
repetitively scan m/z from 400 to 2000 in positive ion 
mode. The full MS scan was collected at 70,000 QE Plus 
or 60,000 QE HF resolution followed by data-dependent 
MS/MS scans at 17,500 QE Plus or 15,000 QE HF resolu-
tion on the 20 most abundant ions exceeding a minimum 
threshold of 10,000. Peptide match was set as preferred, 
exclude isotopes option and charge-state screening were 
enabled to reject unassigned and single charged ions.

Raw data were processed using MaxQuant (version 
1.6.17.0) and the peptide search engine Andromeda. 
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Using Ae. aegypti LVP  version 52 (14,979 sequences) as 
a reference sequence, contaminants were filtered out and 
peptide sequence assignments were identified using the 
following parameters: precursor ion mass tolerance of 20 
parts per million, and a fragment ion mass tolerance of 
10 Da. Peptides were searched using fully tryptic cleav-
age constraints, and up to two internal cleavage sites 
were allowed for tryptic digestion. Fixed modifications 
consisted of carbamidomethylation of cysteine. Variable 
modifications considered were oxidation of methionine, 
protein N-terminal acetylation and asparagine deami-
dation. All protein identifications reported were iden-
tified by MaxQuant with a false positive error rate of < 
1%. Results from MaxQuant were imported into Perseus 
software (version 1.6.8; Proteome Software, Portland, 
OR, USA) for curation, label-free quantification analysis 
and visualization. Data of all technical replicates were 
log2-transformed and normalized by subtracting the col-
umn median. FDRs were obtained using Target Decoy 
PSM selecting identifications with a P-value ≤ 0.05. For 
differential proteins analysis, the two-tailed t-test and 
Benjamini Hochberg validation (P < 0.05 and log2FC 
change > 1.5) were performed in Perseus. Protein set 
enrichment analysis of differentially expressed proteins 
was performed using R Bioconductor “fgsea” package 
(v1.22.0). Target proteins with enrichment scores > 70% 
and adjusted P-values < 0.05 were considered for further 
analysis.

Label‑free quantitation to determine differential protein 
expression
Label-free quantitation (LFQ) is an MS1 quantitation 
approach based on peptide mass, intensity and reten-
tion time. LFQ data were filtered according to the fol-
lowing criteria: (i) proteins were identified in at least two 
replicates per group; (ii) at least one unique peptide per 
protein was identified; and (iii) the peptide FDR did not 
exceed 1%. Significance levels were statistically analyzed 
using a two-tailed t-test. Proteins were considered differ-
entially expressed between control and dsCactus-treated 
mosquitoes if there were both a P-value < 0.05 and a fold 
change ≥ 1.5 (dsCactus/dsLacZ).

Data analysis and availability
Enrichment in overlapping gene sets was performed 
using an online tool to compare gene enrichment (http://​
www.​nemat​es.​org/​MA/​progs/​overl​ap_​stats.​html) based 
on Fisher’s exact test. Survival comparison of Cactus 
knockdown (KD) versus control (dsLacZ) was accom-
plished using Fisher’s test. All other comparisons were 
performed internally using the appropriate statisti-
cal packages (e.g. edgeR). Our data meet all the stand-
ards regarding the Minimum Information About a 

Proteomics Experiment (MIAPE) specification, and data 
have been deposited to the ProteomeXchange Consor-
tium (http://​www.​prote​omexc​hange.​org) via the PRIDE 
partner repository [25]. Gene identifiers described 
in this manuscript are: LRIM1, AAEL012086; APL1/
LRIM2, AAEL024406; TEP20, AAEL001794; Cactus, 
AAEL000709.

Results
Knockdown of Cactus triggers a Toll‑like immune response 
in MT
To characterize the MT transcriptional response of Toll-
pathway activation in Ae. aegyptiBE, we injected groups of 
mosquitoes with dsCactus and collected RNA from both 
whole insects and dissected MT after 5  days. We addi-
tionally collected protein samples from the hemolymph 
(Fig.  1a). Prior to dissection, we observed a significant 
decrease in mosquito survival to day 5 in the dsCactus-
treated group compared to the dsLacZ-treated control 
(Fig.  1b). This was not unexpected, as Cactus silencing 
has been previously reported to incur a fitness cost [7, 26, 
27].

We performed mRNA-seq comparing dissected MT 
from dsCactus- and dsLacZ-treated mosquitoes as well 
as whole mosquitoes (Fig. 1a). In total, 296,996,140 reads 
(average 24,749,678 per sample) were generated over 
a total of 12 samples (3 biological replicates each for 2 
tissue types with 2 KD conditions) (Additional file  2: 
Table  S2). In all samples > 90% of reads mapped to the 
genome and an average of 75% mapped onto annotated 
genes. Global variation among our samples was esti-
mated through principal component analysis (PCA), and 
clustering of samples from the same biological conditions 
suggested strong repeatability between replicates. Dif-
ferences between the MT and whole-body samples were 
largely based on the first principal component, which 
represented 67.8% of variation, while differences between 
Cactus KD and control samples encompassed an addi-
tional 15.5% of variation (Fig. 2a).

Differential expression analysis was performed 
between dsCactus and dsLacZ transcriptomic datasets 
for both the MT and the whole mosquito bodies, yield-
ing a total of 789 differentially expressed genes (DEG) 
across the two comparisons (Additional file 3: Table S3). 
A significant overlap existed between the DEG sets of 
the MT and whole bodies (Fig.  2b; representation fac-
tor: 24.2; P < 9.045e-89). Interestingly, the vast majority of 
DEG in the dsCactus MT were significantly upregulated 
(243 genes) while fewer were downregulated (31 genes). 
In contrast, the whole body had a comparatively larger 
number of downregulated (343) versus upregulated (153) 
genes (Additional file 3: Table S3; Fig. 2c). This result sug-
gests that treatment with dsCactus drives a physiological 
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program of increased transcriptional activity in the MT 
that is proportionally “more activating,” or polarizing, 
than the transcriptional programs activated in the whole 
body in which the numbers of upregulated and downreg-
ulated genes are more similar.

Preceding formal analysis, several interesting tran-
scripts stood out among those genes differentially 
expressed in the MT. The genes AAEL026300 and 
AAEL017380 showed extraordinarily high levels of abun-
dance (> 100 transcripts per million [TPM]) in dsCactus 
tubules while being almost completely absent in control 
tubules, showing fold changes of an order of magnitude 
higher than those of any other genes in this study. Both 
genes encode small (approx. 100 amino acids [aa]), gly-
cine-rich secreted proteins characteristic of glycine-rich 
antimicrobial peptides characterized in other arthropods 
[28–32]. Among the 31 genes downregulated in dsCac-
tus MT, three were leucine-rich immune protein fam-
ily members (LRIMs) and two were prophenoloxidases 
(PPOs) (Additional file  3: Table  S3). The Cactus gene 
itself was not differentially expressed in any sample, but 
this observation agrees with previous studies which have 
shown that genetic KD of Cactus occurs on short time 
scales, within the first 6–12 h post-injection, with pheno-
types persisting far longer [7, 33, 34].

To elucidate relevant relationships within the genetic 
response to Toll activation, we performed GSEA, which 

maps user-provided gene lists onto our MT transcrip-
tomic data ordered by fold change. Certain gene families 
with known essential roles in immunity, such as CLIPs, 
CTLs, AMPs and serpins (SRPNs) were significantly 
enriched in the genes upregulated in response to dsCac-
tus treatment (Fig.  3; Additional file  4: Table  S4). Inter-
estingly, PPOs, another immunity-associated gene family, 
showed the opposite association and were significantly 
enriched in the control (i.e. the genes were downregulated 
in response to dsCactus treatment). Subunits of the vac-
uolar-type ATPase (vATPase) pump were also checked 
given the key role of this protein in epithelial physiology 
[35]; these genes were also significantly downregulated 
in dsCactus-treated MT (Additional file 4: Table S4). We 
additionally considered published transcriptomic data-
sets reflecting genes upregulated during B. malayi [20], 
D. immitis [7], and Wolbachia [21] infection, observing 
that genes that were upregulated during infection were 
enriched in genes upregulated during dsCactus treat-
ment (Additional file  9: Figure S1). Lastly, we observed 
significant correlation between genes upregulated follow-
ing Toll activation via dsCactus treatment and activation 
of this pathway driven by transgenic overexpression of 
REL1 and REL2, two transcription factors which activate 
the Toll pathway [23] (Additional file 9: Figure S1). Col-
lectively, these data suggest that in response to dsCactus-
treatment, the MT activate canonical transcriptional 

Fig. 1  Experimental overview. a The workflow of our experimental setup is illustrated with some mosquito tissues labeled: midgut (mg), fat 
body (fb), hemocytes (hc) and Malpighian tubules (Mt). Double-stranded RNA (dsRNA) targeting the Cactus gene was injected into the hemocoel 
and 5 days later RNA sequencing was performed on whole mosquitoes and dissected Malpighian tubules and proteomics was performed on 
the hemolymph. b The fitness cost of dsCactus treatment was estimated by scoring survival after 5 days. Significantly more individuals from the 
dsCactus treatment (blue) died compared to the dsLacZ control (gray). Asterisks indicate a Fishers exact test P < 0.0001. Cactus, Negative regulator 
of the Toll immune pathway in Aedes aegypti; LacZ, Escherichia coli β-galactosidase gene
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signatures of immune activation that closely align with 
known transcriptional responses to infection.

Comparing the hemolymph proteome of control 
mosquitoes and dsCactus‑treated mosquitoes using 
high‑resolution LC–MS/MS
Mass spectrometry-based proteomic analysis of hemo-
lymph extracted from control and dsCactus-treated mos-
quitoes revealed a total of 1319 proteins corresponding to 
14,018 peptides. The complete list of peptides and their 

corresponding protein identification is provided in the 
Additional file 5: Table S5 and Additional file 6: Table S6. 
This is the first comprehensive hemolymph proteomic 
profiling of adult Ae. aegypti mosquitoes using nano-
LC coupled to high-resolution MS. We performed LFQ 
analysis to identify differentially expressed hemolymph 
proteins between control and dsCactus-treated mosqui-
toes. Among the hemolymph samples, approximately 
64% of the variability in the data is likely related to treat-
ment with dsCactus, as represented by PCA (Fig. 4a). The 
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Pearson correlation coefficients among the replicates fall 
within the range of 0.85–0.99, showing a close associa-
tion between the replicates and suggesting high repeat-
ability (Additional file 10: Figure S2).

To determine differentially expressed proteins between 
the hemolymph proteomes of control and dsCactus-
treated mosquitoes, the normalized LFQ intensities of the 

identified peptides between the two experimental groups 
were compared. The filtered analysis led to the identifica-
tion of 277 significantly upregulated and 226 significantly 
downregulated proteins (Additional file 7: Table S7). Pro-
tein set enrichment analysis (PSEA) using fold-change 
values from this analysis showed an enrichment of 
CLIPs, SRPNs, CTLs and other proteases, indicating the 
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possibility of downstream melanization effector mecha-
nisms in the hemolymph of dsCactus-treated mosquitoes 
(Additional file 11: Figure S3; Additional file 4: Table S4). 
Interestingly, the enrichment of CLIPs, which includes 
one of the most highly enriched proteins, AAEL022822, 
along with the increased abundance of thioester-contain-
ing protein 20 (TEP20) in the hemolymph suggests the 
possible accumulation of putative complement pathway 
components following dsCactus treatment. This path-
way has not yet been characterized in Ae. aegypti, but it 
plays a prominent role in anti-plasmodial, anti-bacterial 
and anti-fungal immunity in An. gambiae [24, 33, 36–40]. 
Taken together, our data suggest that dsCactus treatment 
increases expression of proteins involved in mosquito 
immunity with specific enrichment of proteins involved 
in the Toll and putative complement pathways.

Determining the potential for a MT‑specific contribution 
to systemic humoral immunity
Lastly, we tested the hypothesis of whether the hemo-
lymph proteins upregulated in the dsCactus treat-
ment might have an origin in the MT. Using GSEA, we 
observed that proteins significantly increased in the 
dsCactus hemolymph tended to be similarly enriched 
in the dsCactus MT RNA-seq dataset (Fig.  5a). We 
then identified 168 transcripts which were significantly 
upregulated by dsCactus treatment specifically in the 
MT but not in the whole body (Fig.  2b). When this list 
was intersected with hemolymph proteins upregulated 

by dsCactus treatment (Fig. 5b), we found a statistically 
significant overlap of 39 transcripts/proteins (represen-
tation factor: 10.0; P < 1.868e-28 for tubules). This group 
contained several putatively secreted Toll- and comple-
ment-related genes, such as several CLIPs, SRPN3 and 
TEP20 (Additional file 8: Table S8). While this does not 
definitively confirm that these proteins are secreted from 
the MT into the hemolymph following dsCactus treat-
ment, we suggest this as a hypothesis.

Discussion
Our study demonstrates the direct transcriptional 
response of MT to Cactus systemic silencing and their 
capacity to broadly upregulate Toll pathway target genes 
in Ae. aegypti. Extensive work in Drosophila and differ-
ent mosquito species has shown that hyperactivation 
of Toll signaling using a variety of approaches results 
in increased immune activation and refractoriness to 
immune challenge [7, 23, 26, 27, 33, 34, 41–43]. Stud-
ies in Ae. aegypti have shown that dsCactus treatment 
drives constitutive Toll signaling, immune activation 
and increased refractoriness to viral [44], fungal [41] and 
filarial nematode infections [7]. In Anopheles gambiae, 
activation of Toll signaling mediated by dsCactus treat-
ment resulted in increased basal expression of TEP1 and 
LRIM1, immune genes that inhibit development of Plas-
modium, resulting in a lower burden of parasite infec-
tion [33]. Similar studies using transgenic strains of Ae. 
aegypti overexpressing Rel1, the NF-κB transcription 
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factor activated downstream of Toll signaling, showed 
increased expression of immune genes in the absence 
of a pathogenic challenge [41]. The significant degree of 
correlation between other transcriptomes profiled dur-
ing Toll activation (e.g. REL1 overexpression; infection 
etc.) and our dataset (Additional file 4: Table S4) confirm 
earlier findings that silencing of the Cactus gene activates 
the Toll pathway.

This study extends our current understanding of Toll 
pathway signaling by demonstrating the ability of the 
MT to undergo a Toll-based immune response. Our 
previous transcriptomic studies comparing mosqui-
toes susceptible and refractory to the filarial nema-
tode D. immitis suggested that Toll pathway activation 
was sufficient to block the worm development within 
the tubule [7]. Correlation of the genes upregulated in 
the dsCactus-treatment samples between the MT and 
whole body (Fig.  2b) along with the specific upregula-
tion of canonical Toll targets such as CTLs, CLIPs, 
SRPNs and PPOs in the MT (Fig.  3) strongly suggests 
that the MT themselves generate immune factors for 
pathogen defense. Interestingly, subunits of the vAT-
Pase were also downregulated following dsCactus treat-
ment (Fig. 3). vATPase is a proton (H+) pump that has 
been shown in Ae. aegypti to be responsible for the 
bulk of MT transepithelial secretion of KCl and NaCl. 
In the MT, vATPase is located in the apical brush bor-
der membrane of principal cells, and it is responsible 
for mediating a substantial part of post-blood meal 
diuresis. It was previously shown that vATPases were 
globally downregulated in Aedes albopictus MT follow-
ing blood-feeding [45]. To date, there has been no evi-
dence in mosquitoes of a direct link between vATPase 

expression and immunity. However, work in Drosoph-
ila suggests there is an important connection between 
physiological desiccation stress (metabolism) and 
immunity [46–49], so it stands a similar pathway may 
be at work in mosquitoes although further studies are 
needed to confirm this relationship.

Even more intriguing is the possibility that the MT 
play a more systemic role in Toll-based immunity. The 
relative contribution of the MT to the immune pro-
tein milieu in the hemolymph of mosquitoes has not 
been defined and we only sought to begin to explore 
this hypothesis in this study. We found a subset of 
genes which were enriched during Toll activation spe-
cifically in the MT that encoded proteins that were 
also significantly increased in the hemolymph under 
the same conditions (Additional file  8: Table  S8). This 
suggests the possibility that such proteins are derived 
from the MT. There is precedent for a significant sys-
temic immune contribution from the MT in Drosophila 
as antibacterial immunity develops in larvae only after 
development of the MT [50]. The MT are also strictly 
controlled by neuroendocrine factors, and in adult flies 
suffering from desiccation stress, ecdysone is locally 
produced in MT to increase the expression of immune 
genes and increase host defense [46]. Although the 
numbers are small, sessile hemocytes are present 
attached to the MT [51]. Additionally, blocking the 
MT immune response immunocompromises flies even 
when the fat body is intact, indicating that the contri-
bution of the MT is systemically important [52, 53]. 
Future work and new genetic tools will be needed to 
establish the functional contribution of MT to systemic 
immunity in mosquitoes.
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Conclusions
This work has characterized the transcriptome of MT 
from mosquitoes treated with dsCactus RNA and shown 
for the first time that the MT of Ae. aegypti can activate 
Toll pathway immune genes locally in response. We have 
also profiled the hemolymph proteins of Toll-activated 
mosquitoes and identified a subset of proteins present 
whose transcripts are differentially upregulated in the 
MT, suggesting possibility that the MT can contribute 
substantially to humoral immunity. Collectively, this 
work contributes to the growing body of evidence that 
the MT are an essential immune tissue with similarly 
active pathways to other known immune tissues (e.g. fat 
body and hemocytes), but with possibly unique physi-
ological roles, in the mosquito immune response.
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