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RNA sequencing reveals dynamic expression 
of lncRNAs and mRNAs in caprine endometrial 
epithelial cells induced by Neospora caninum 
infection
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Abstract 

Background:  The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in 
ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal–fetal inter‑
face. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underly‑
ing epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs 
(lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are 
closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs dur‑
ing N. caninum infection has not been reported.

Methods:  RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs 
(mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 
48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets.

Results:  RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. 
caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-
C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, 
there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 
(252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that 
these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK 
signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor 
signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine 
receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 
29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) 
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Background
Neospora caninum, an obligate intracellular protozoan 
parasite similar to Toxoplasma gondii in morphological 
and biological features [1, 2], causes serious neurological 
disorders in canids (e.g. dogs, gray wolves and coyotes) 
and reproductive failure in cattle and small ruminants 
(e.g. goats) [3, 4]. Notably, seropositivity against N. cani-
num infection has also been reported in humans, espe-
cially in those with immunodeficiency and neurological 
disorders [5–7]. However, no effective drugs or vaccines 
against N. caninum infection are yet available.

In recent decades, transcriptomics has become an attrac-
tive tool for developing new diagnostic or therapeutic tar-
gets for the treatment of tumors and infectious diseases 
through identifying genes of interest or biological events 
under defined conditions or disease states [8–11]. Tran-
scriptome analysis of bovine trophoblast cells showed a clear 
effect on extracellular matrix re-organization, cholesterol 
biosynthesis and the transcription factor AP-1 network by 
both Nc-Spain1H and Nc-Spain7, two N. caninum isolates 
with significantly different virulences [12]. RNA-sequenc-
ing (RNA-seq) of bovine monocyte-derived macrophages 
(boMØs) showed that genes involved in inflammation, 
chemokine signaling, cell survival and inhibition of genes 
related to metabolism and phagolysosome formation were 
upregulated. Different expression patterns of some genes 
encoding inflammatory cytokines (e.g. IL12A, IL8 and 
IL23) were also found in boMØs infected with these two 
isolates [13]. Additionally, N. caninum infection induced 
significantly differentially expressed (DE) genes involved 
in immune response and lipid biosynthetic processes in rat 
brain microvascular endothelial cells (rBMVECs), human 
brain microvascular endothelial cells (hBMECs) [14] and 
mouse brain samples [15].

Long noncoding RNAs (lncRNAs), a class of RNA tran-
scripts that are larger than 200 nucleotides (nt), exert bio-
logical functions by interacting with proteins, DNA or other 
RNAs at epigenetic, transcriptional and post-transcrip-
tional levels [16, 17]. Studies have shown that dysregulation 
of the expression of lncRNAs occurs in a large number of 

diseases, including viral infections (e.g. Epstein-Barr virus, 
severe acute respiratory syndrome coronavirus 2 and 
hepatitis B virus) [18–20], bacterial infections (e.g. Pseu-
domonas aeruginosa, Helicobacter pylori and Mycobacteria 
tuberculosis) [21–23] and parasitic infections (e.g. T. gondii, 
Cryptosporidium parvum and Eimeria necatrix) [24–26]. 
These same studies and others have also shown that dif-
ferentially expressed (DE) lncRNAs (DElncRNAs) were 
involved in several key biological processes (e.g. apoptosis, 
pyroptosis, cell proliferation and metabolism) [17, 27] or 
implicated in host–pathogen interactions (e.g. promoting or 
inhibiting pathogenic microorganisms) [28, 29].

The uterus is indispensable for constitution of fetal-
maternal interface, embryo implantation and maintenance 
of pregnancy [30]. The endometrium is particularly suscep-
tible to microbial infections, increasing the risk of adverse 
pregnancy outcomes [31]. Neospora caninum tachyzoites 
have been detected in the uterus of naturally infected ani-
mals, and N. caninum tissue cysts have also been found in 
the endometrium and the maternal–fetal interface (crypt) 
[32–34]. The objectives of the present study were to inves-
tigate the expression profiles of lncRNAs and messenger 
RNAs (mRNAs) in caprine endometrial epithelial cells 
(EECs) during N. caninum infection.

Methods
Parasites, cell cultures and in vitro infection model
Neospora caninum Nc-1 wild-type strain was obtained 
from Prof. Qun Liu (China Agricultural University, Beijing, 
China) and maintained in African green monkey kidney 
epithelial cells (Vero cells) provided as a gift by Prof. Xue-
feng Qi (Northwest A&F University, Shaanxi, China). An 
in  vitro infection model for N. caninum tachyzoites was 
established as described previously [35] by using caprine 
EECs supplied by Prof. Yaping Jin (Northwest A&F Univer-
sity, Shaanxi, China).

Sample collection
Caprine EECs in the experimental groups were infected 
with 1.2 × 106 freshly egressed N. caninum tachyzoites 

DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respec‑
tively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK 
signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission 
(e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid 
biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling 
molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor 
interaction).

Conclusions:  This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. 
The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection.

Keywords:  Neospora caninum, Caprine endometrial epithelial cells, Expressed profiles, LncRNAs, mRNAs
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at a multiplicity of infection (MOI) of 3:1 (parasite:cell) 
for 24 h (experimental groups: TZ1_24h to TZ3_24h) or 
48  h (experimental groups: TZ1_48h to TZ3_48h). The 
caprine EECs without infection of tachyzoites were col-
lected as control groups at 24 h (controls groups: C1_24h 
to C3_24h) or 48 h (control groups: C1_48h to C3_48h) 
post-infection (hpi). Cells in all experimental and control 
groups were collected into TRIzol (Accurate Biotechnol-
ogy Co., Ltd., Hunan, China) and stored at — 80 °C until 
RNA extraction.

RNA extraction, library preparation and RNA‑seq
Total RNA samples were extracted from each sample by 
using a mirVana miRNA Isolation Kit (Ambion, Austin, 
TX, USA) following the manufacturer’s instructions. The 
concentration and RNA integrity of the total RNA sam-
ples were assessed using the NanoDrop spectrophotom-
eter (Thermo Fisher Scientific, Wilmington, MA, USA) 
and the Agilent 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, USA). RNA samples with a 28S:18S 
ratio ≥ 0.7 and RNA integrity number ≥ 7 were used for 
further analysis. The RNA-seq libraries were produced 
by using TruSeq Stranded Total RNA with Ribo-Zero 
Gold (Illumina Inc, San Diego, CA, USA) and sequenced 
using the Illumina sequencing platform (HiSeqTM 2500; 
Illumina Inc., San Diego, CA, USA). All of these experi-
ments were performed in the laboratory of Shanghai OE 
Biomedical Science and Technology Company (Shanghai, 
China).

Data processing and reference genome mapping
The raw reads obtained by RNA-seq were processed by 
using SortMeRNA software [36] to remove ribosomal 
RNA (rRNA) sequences, and reads with low-quality were 
filtered by using Trimmomatic software [37]. Fastp soft-
ware [38] was then used to assess the quality of filtered 
reads through setting a number of important param-
eters, such as length distribution, Q30 and GC contents. 
The validated reads (clean reads) were mapped against 
the reference genome database (ftp://​ftp.​ncbi.​nlm.​nih.​
gov/​genom​es/​all/​GCF/​001/​704/​415/​GCF_​00170​4415.1_​
ARS1/​GCF_​00170​4415.1_​ARS1_​genom​ic.​fna.​gz) using 
the Hisat2 (v2.2.1.0) algorithm [39].

Identification of lncRNAs
Clean reads aligned to the reference genome were assem-
bled by using Stringtie software (v1.3.3b) [40]. The new 
transcripts with known coding or known loci were fil-
tered out by comparing merged transcripts to reference 
transcripts. The transcripts with lengths > 200 nt and at 
least two exons were selected and then predicted for cod-
ing potential by using the softwares Pfam (v30) [41], cod-
ing-non-coding index (CNCI, 1.0) [42], coding potential 

calculator 2 (CPC2, beta) [43] and predictor of long 
non-coding RNAs and messenger RNAs based on an 
improved k-mer scheme (PLEK) [44] to obtain candidate 
lncRNAs. Known lncRNAs in these candidate lncRNAs 
were identified by alignment with available lncRNA data-
bases, and unaligned candidates were referred as novel 
lncRNAs.

Differential expression analysis of lncRNAs and mRNAs
Expression of lncRNAs and mRNAs were analyzed by 
using eXpress software [45] to obtain fragments per kilo-
base of exon per million fragments mapped (FPKM) and 
count values (the number of reads between specific tran-
script regions). The DESEQ package (v1.18.0) was used 
to normalize the counts and calculate the differences in 
expression by comparing the P values and the fold change 
(FC). The P values were then adjusted by using the Ben-
jamini and Hochberg method; genes with q-value or false 
discovery rate (FDR) < 0.05 and Log2|FC| > 1 were con-
sidered to be DE genes.

Target prediction of lncRNAs and functional analysis
The co-expression analysis between DElncRNAs 
(length < 6000 nt) and differentially expressed mRNAs 
(DEmRNAs) were conducted based on an absolute val-
ues of Pearson’s correlation coefficient ≥ 0.8 and P ≤ 0.05. 
Based on co-expression nets, targets for both cis and 
trans regulation were predicted for DElncRNAs. Cis tar-
gets were searched for all coding genes within 100  kb 
upstream or downstream of the DElncRNAs by using 
FEELnc software [46], while trans targets of DElncRNAs 
were screened with the number of direct complementary 
base pairs ≥ 10 and the base binding free energy ≤ - 100 
by using RIsearch-2.0 software [47].

Functions of DElncRNAs were predicted through 
annotation of targets for both cis and trans regulation by 
using Gene Ontology (GO) (http://​geneo​ntolo​gy.​org/) 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (http://​www.​genome.​jp/​kegg/) within the Swiss-
Prot database (http://​www.​gpmaw.​com/​html/​swiss-​prot.​
html) and KAAS database (http://​www.​genome.​jp/​tools/​
kaas/), respectively. The significance of GO terms and 
KEGG pathways enriched were evaluated by using the 
hypergeometric distribution test, with q < 0.05 consid-
ered to indicate significance.

Quantitative real‑time PCR analysis
A total of 12 caprine EEC samples with (experimental 
group) or without (control group) N. caninum tachy-
zoites infection for 24 h or 48 h were collected to verify 
the accuracy of RNA-seq data by quantitative real-time 
PCR (qRT-PCR). Total RNA samples were extracted 
using TRIzol reagent and reversely transcribed to 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_genomic.fna.gz
http://geneontology.org/
http://www.genome.jp/kegg/
http://www.gpmaw.com/html/swiss-prot.html
http://www.gpmaw.com/html/swiss-prot.html
http://www.genome.jp/tools/kaas/
http://www.genome.jp/tools/kaas/
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complementary DNA (cDNA) by using the EVO M-MLV 
RT Kit with gDNA Clean for qPCR II (Accurate Bio-
technology Co., Ltd,  Hunan, China) according to the 
manufacturer’s instructions. qRT-PCR reactions were 
performed by using 2 × Universal SYBR Green Fast qPCR 
Mix (ABclonal, Wuhan, China). The primer sequences 
designed using DNAMAN 7.0 software (Lynnon Biosoft, 
Quebec City, QC, Canada) are listed in Additional file 1: 
Data S1. The glyceraldehyde-3-phosphate dehydrogenase 
gene (GAPDH) was used as an internal reaction control, 
and three replicate assays were carried out for each gene. 
The relative expression of each gene was calculated by 
using the 2 −ΔΔCt method.

Statistical analysis
Relative expression levels of selected genes between the 
experimental and control groups were analyzed by using 
GraphPad PRISM 8.0.1 software (GraphPad Software 
Inc., San Diego, CA, USA), and a P value < 0.05 was con-
sidered to be statistically significant by using two-tailed 
t-test, with a parametric test.

Results
Identification of lncRNAs
In the present study, we generated a total of 1,306.87 M 
raw reads from 12 samples by using RNA-seq, of which 
1280.15  M clean reads were obtained after remov-
ing the low-quality reads. The valid bases, quality score 
(Q30) and average GC contents of these clean reads were 
95.43–96.43%, 90.40–92.82% and 48.30%, respectively 
(Additional file  2: Data S2). Screening using the Pfam, 
CNCI, CPC2 and PLEK software programs resulted in 
the identification of 3690 lncRNAs, including 491 novel 
and 3199 known lncRNAs. The total length of these lncR-
NAs was 6,253,838 nt and the average length was 1694.81 
nt. The number of exons in most of these lncRNAs 
ranged from 2 to 5 (Fig. 1a, b; Additional file 3: Data S3). 
Four classifications were identified for these lncRNAs by 
both antisense and sense types: (i) genic exonic (334 anti-
sense and 291 sense); (ii) genic intronic (395 antisense 
and 261 sense); (iii) intergenic downstream (291 anti-
sense and 441 sense); and (iv) intergenic upstream (736 
antisense and 331 sense) (Fig. 1c; Additional file 3: Data 
S3).

Fig. 1  Venn diagrams, exon numbers and classification of candidate long noncoding RNAs (lncRNAs) in caprine endometrial epithelial cells (EECs) 
following Neospora caninum infection. a Venn diagrams of coding potential analysis by using Pfam, coding-non-coding index (CNCI), coding 
potential calculator 2 (CPC2) and predictor of long noncoding RNAs and messenger RNAs based on an improved k-mer scheme (PLEK) software 
programs. b Exon numbers of lncRNAs. c Classification of lncRNAs by sense and antisense types
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DE profiles of lncRNAs and mRNAs
To analyze DE profiles of lncRNAs and mRNAs, 12 sam-
ples were divided into three categories: (i) TZ_24 h ver-
sus C_24 h (TZ_24h-vs-C_24h); (ii) TZ_48 h versus C_48 
h (TZ_48h-vs-C_48h); and (iii) TZ_48 h versus TZ_24 
h (TZ_48h-vs-TZ_24h). The number of DElncRNAs in 
the TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-
vs-TZ_24h categories was 88 (59 upregulated and 29 
downregulated), 129 (80 upregulated and 49 downregu-
lated) and 32 (20 upregulated and 12 downregulated), 
respectively (Fig. 2a; Additional file 4: Data S4). The num-
ber of DEmRNAs in the categories TZ_24h-vs-C_24h, 
TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h was 934 (665 

upregulated and 269 downregulated), 1238 (785 upregu-
lated and 453 downregulated) and 489 (252 upregulated 
and 237 downregulated), respectively (Fig. 3a; Additional 
file 5: Data S5). In addition, hierarchical clustering heat-
maps of the DElncRNAs (length < 6000 nt) (Fig.  2b–d) 
and DEmRNAs (Fig.  3b–d) showed clear separation of 
the groups compared in each category, for all categories.

To verify the reliability of RNA-seq data, six (3 upregulated 
and 3 downregulated) mRNAs and nine (3 upregulated, 6 
downregulated) lncRNAs were randomly selected for qRT-
PCR analysis. The expression levels of cluster of differen-
tiation 14 (CD14), mitogen-activated protein kinase kinase 
kinase 8 (MAP3K8) and nuclear factor κB subunit 1 (NFKB1), 

Fig. 2  Differentially expressed lncRNAs (DElncRNAs) and hierarchical clustering heatmaps of the DElncRNAs in caprine endometrial epithelial 
cells (EECs) following Neospora caninum infection. a The number of DElncRNAs. b–d Hierarchical clustering heatmaps of the DElncRNAs within 
the categories TZ_24 h versus C_24 h (TZ_24h-vs-C_24h) (b), TZ_48 h versus C_48 h (TZ_48h-vs-C_48h) (c) and TZ_48 h versus TZ_24 h 
(TZ_48h-vs-TZ_24h) (d), respectively. P values were adjusted by using the Benjamini and Hochberg method, with q-value < 0.05 and Log2|FC|> 1 
considered to be significant
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and lncRNAs ENSCHIT00000011442, XR_311142.3 and 
XR_001918087.1 were increased, while the expression levels 
of Jun proto-oncogene (JUN), proto-oncogene c-Fos-like pro-
tein (FOS) and transforming growth factor beta 2 (TGFB2) 
and lncRNAs ENSCHIT00000009566, XR_309885.2, 
XR_001295792.2, ENSCHIT00000002354, XR_001919077.1 
and ENSCHIT00000002691 were decreased in the experi-
mental groups (Fig.  4), consistent with the transcriptome 
data, indicating high reproducibility and correctness of the 
transcriptome data by RNA-seq.

Functional prediction of the DEmRNAs
The GO enrichment analysis of DEmRNAs showed that 
2590, 2971 and 1740 terms were significantly enriched 
within the categories TZ_24h-vs-C_24h, TZ_48h-vs-
C_48h and TZ_48h-vs-TZ_24h, respectively (Additional 
file  6: Data S6). The top 30 most significantly enriched 
GO terms in cellular component (CC), biological process 
(BP) and molecular function (MF) are listed in Fig. 5. Of 
these, inflammatory response (GO: 0006954), extracellu-
lar space (GO: 0005615) and growth factor activity (GO: 

Fig. 3  Differentially expressed messenger RNAs (DEmRNAs) and hierarchical clustering heatmaps of the DEmRNAs in caprine endometrial epithelial 
cells (EECs) following Neospora caninum infection. a The number of DEmRNAs. b–d Hierarchical clustering heatmaps of the DEmRNAs within 
the categories TZ_24h-vs-C_24h (b), TZ_48h-vs-C_48h (c) and TZ_48h-vs-TZ_24h (d), respectively. P values were adjusted by using Benjamini & 
Hochberg method, with q-value < 0.05 and Log2|FC|> 1 considered to be significant
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were main pathways involved (Fig.  6). Interestingly, N. 
caninum infection induced significantly upregulated 
expressions of several TLR family members (e.g. TLR2, 
TLR3 and TLR9), NLR family members (e.g. NOD1 and 
NLRP3), pro-inflammatory cytokines (e.g. IL1A, IL1B, 
IL6, IL33 and IL34), chemokines (e.g. CCL20, CCL5, 
CXCL16, CXCL8 and CX3CL1), colony-stimulating 
factor (CSF) (e.g. CSF2 and CSF3) and TNF receptor 
superfamily members (e.g. TNFRSF21, TNFSF13B and 
TNFSF15) in caprine EECs (Additional file 5: Data S5).

Co‑expression analysis and prediction of DElncRNA targets
The co-expression analysis identified 61,001, 99,774 and 
9306 DElncRNA-DEmRNA relationships within the 
categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and 
TZ_48h-vs-TZ_24h, respectively (Additional file 8: Data 
S8). The gene co-expression networks for cis- and trans-
targets of DElncRNAs are shown in Additional file  9: 
Fig. S1; Additional file  10: Fig. S2, respectively. Further, 
30, 26 and one cis-targets of DElncRNAs were respec-
tively co-expressed with 35, 29 and one DElncRNAs, 
comprising 35, 29 and one relationship within categories 

0008083) in the category TZ_24h-vs-C_24h, inflamma-
tory response (GO: 0006954), nucleosome (GO: 0000786) 
and protein heterodimerization activity (GO: 0046982) in 
the category TZ_48h-vs-C_48h and nucleosome assem-
bly (GO: 0006334), nucleosome (GO: 0000786) and pro-
tein heterodimerization activity (GO: 0046982) in the 
category TZ_48h-vs-TZ_24h were most significantly 
enriched in BP, CC and MF, respectively (Fig. 5).

KEGG pathway enrichment analysis showed that 201, 
211 and 161 pathways were significantly enriched within 
the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and 
TZ_48h-vs-TZ_24h, respectively (Additional file 7: Data 
S7); the top 20 most significantly enriched pathways are 
listed in Fig.  6. Of these, signaling molecules and inter-
action (e.g. cytokine-cytokine receptor interaction, cell 
adhesion molecules [CAMs] and extracellular matrix 
[ECM]-receptor interaction), regulation of host immune 
response (e.g. tumor necrosis factor [TNF] signaling 
pathway, MAPK signaling pathway, transforming growth 
factor beta [TGF-beta] signaling pathway, AMPK sign-
aling pathway, Toll-like receptor [TLR] signaling path-
way and NOD-like receptor [NLR]) signaling pathway) 

Fig. 4  Validation of the differentially expressed lncRNAs (DElncRNAs) and differentially expressed messenger RNAs (DEmRNAs) using quantitative 
real-time PCR (qRT-PCR). a, b The validation result for mRNAs in the categories TZ_24h-vs-C_24h (a) and TZ_48h-vs-C_48h (b). c, d The validation 
result for lncRNAs in the categories TZ_24h-vs-C_24h (c) and TZ_48h-vs-C_48h (d). *P < 0.05, **P < 0.01, ***P < 0.001
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TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-
TZ_24h, respectively (Additional file  11: Data S9). 83, 
130 and 30 trans-targets of DElncRNAs were respectively 
predicted for 28, 41 and 10 DElncRNAs, comprising 460, 
957 and 110 relationships within categories TZ_24h-
vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, 
respectively (Additional file 12: Data S10).

Functional analysis of the targets for DElncRNAs
The GO enrichment analyses of potential cis-targets of 
DElncRNAs showed that 254, 232 and 44 terms were sig-
nificantly enriched in the categories TZ_24h-vs-C_24h, 
TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respec-
tively (Additional file  13: Data S11). Further, 534, 701 
and 1694 terms of potential trans-targets of DElncRNAs 
were found to be significantly enriched in the categories 
TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-
TZ_24h, respectively (Additional file 14: Data S12). The 
top 30 most significantly enriched GO terms of potential 
cis-targets and trans-targets of DElncRNAs in BP, CC 
and MF are listed in Fig. 7 and Additional file 15: Fig. S3.

KEGG pathway enrichment analysis of potential 
cis-targets of DElncRNAs showed that 55, 47 and 20 

pathways were significantly enriched within the catego-
ries TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-
vs-TZ_24h, respectively (Additional file  16: Data S13) 
and that 62, 80 and 158 pathways of potential trans-tar-
gets of DElncRNAs were significantly enriched within 
the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h 
and TZ_48h-vs-TZ_24h, respectively (Additional file 17: 
Data S14). The top 20 most significantly enriched path-
ways are listed in Fig. 8 and Additional file 18: Fig. S4. Of 
these, signal transduction (e.g. MAPK signaling pathway, 
PPAR signaling pathway, ErbB signaling pathway, calcium 
signaling pathway, TNF signaling pathway and AMPK 
signaling pathway), neural transmission (e.g. GABAergic 
synapse, serotonergic synapse, cholinergic synapse, glu-
tamatergic synapse, dopaminergic synapse, retrograde 
endocannabinoid signaling), signaling molecules and 
interaction (e.g. cytokine-cytokine receptor interaction, 
ECM-receptor interaction and CAMs), and metabolism 
(e.g. glycosphingolipid biosynthesis-lacto and neolacto 
series, glycosaminoglycan biosynthesis-heparan sulfate/
heparin, 2-Oxocarboxylic acid, propanoate, beta-alanine, 
tryptophan, vitamin B6, primary bile acid biosynthesis) 
were main pathways involved in.

Fig. 5  Gene Ontology (GO) enrichment analysis of the differentially expressed messenger RNAs (DEmRNAs) in caprine endometrial epithelial 
cells (EECs) following Neospora caninum infection. a-c The top 30 GO terms enriched with DEmRNAs within the categories TZ_24h-vs-C_24h (a), 
TZ_48h-vs-C_48h (b) and TZ_48h-vs-TZ_24h (c), respectively. A q-value < 0.05 and Log2|FC|> 1 were considered to be significant
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Discussion
The uterus, one of the main reproductive organs needed 
to maintain normal pregnancy, can be naturally infected 
by N. caninum [32–34]. Previous studies mainly focused 
on bio-functions of host protein-coding genes [48, 49] 
or on organelles of N. caninum tachyzoites (e.g. micro-
neme, rhoptry and dense granule) [50–52] during N. 
caninum infection, but the role of host lncRNAs during 
N. caninum infection has not been investigated prior to 
the present study. Recent studies have shown that host 
lncRNAs play important roles in cellular molecular reg-
ulatory networks, and these have been reported to be 
closely related to the pathogenesis of apicomplexan para-
sites [53]. For example, genome-wide RNA transcriptome 
analysis identified 3942 DEmRNAs and 1839 DElncRNAs 
in murine intestinal epithelial cells following Crypto-
sporidium parvum infection. Of these, a lncRNA, named 
NR_045064, could reduce infection burden of parasites in 
murine intestinal epithelial cells in vitro and in the enter-
oids of neonatal mice by promoting expression of host 
defense genes (e.g. Csf2, Nos2, and Cxcl2) [54]. Similarly, 
a total of 109 DEmRNAs and 996 DElncRNAs were iden-
tified in human foreskin fibroblast (HFF) cells infected 
with Toxoplasma gondii by using microarray, and a novel 

lncRNA, named NONSHAT022487 was found to be able 
to decrease the expression of several host cytokines (e.g. 
IFN-γ, TNF-α, IL-1β and IL-12) by negatively regulating 
the immune-related molecule UNC93B1 [55]. In the pre-
sent study, we found that N. caninum infection signifi-
cantly altered the expression of mRNAs and lncRNAs in 
caprine EECs at 24 and 48 hpi.

Pattern recognition receptors (PRRs) are pivotal parts 
of host innate immunity that recognize specific patho-
gen-associated molecular patterns (PAMPs) to induce 
secretion of inflammatory cytokines and chemokines 
through initiating intracellular signaling cascades, ulti-
mately eliminating invading pathogens and infected cells 
[56]. These PRRs include TLRs, NLRs, RIG-I-like recep-
tors (RLRs) and C-type lectin receptors (CLRs). Among 
them, TLRs and NLRs play important roles in mediating 
host innate and adaptive immune responses against N. 
caninum infection [48, 57, 58]. The expression of TLR2 
was efficiently activated in immune cells (e.g. bovine/
mouse peritoneal macrophage cell) infected with N. 
caninum or treated with its derived antigens (e.g. glyco-
sylphosphatidylinositol [GPI], extracellular vesicles [EVs], 
soluble antigens, N. caninum cyclophilin [NcCyp]) and 
could remarkably enhance production of Th1 immune 

Fig. 6  Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed messenger RNAs (DEmRNAs) 
in caprine endometrial epithelial cells (EECs) following Neospora caninum infection. a–c The top 20 KEGG pathway terms enriched with DEmRNAs 
within the categories TZ_24h-vs-C_24h (a), TZ_48h-vs-C_48h (b) and TZ_48h-vs-TZ_24h (c), respectively. A q-value < 0.05 and Log2|FC|> 1 were 
considered to be significant
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responses, which is critical for controlling N. caninum 
infection. TLR2 knockout (TLR2−/−) mice displayed 
higher parasite loads than wild-type mice [58–62]. TLR3 
was also activated in murine macrophages infected with 
N. caninum, and it could enhance expression of the type 
I interferon (IFN-α and IFN-β) by initiating adaptor pro-
tein TRIF. TLR3 knockout (TLR3−/−) mice reduced the 
survival rates of infected mice [57]. Furthermore, in non-
professional immune cells, the expression of TLR2 was 
also induced in both bovine trophoblast cells and carun-
cular cells infected with N. caninum [63], and TLR3, 7, 8 
and 9 were upregulated in the maternal–fetal interface in 
cattle infected with N. caninum or immunized with solu-
ble whole antigens or recombinant N. caninum proteins 
[64, 65]. In our study, TLR2, TLR3 and TLR9 were signifi-
cantly upregulated in caprine EECs infected with N. cani-
num, consistent with gene expression profiling in boMØs 
infected with N. caninum [13]. In addition, NLRP3 
inflammasome and NOD1 were also activated in caprine 
EECs infected with N. caninum. Previous studies showed 
that N. caninum infection activated the NLRP3 inflam-
masome in murine bone marrow-derived macrophages 
or bovine peritoneal macrophage cells, accompanied by 

cleavage of caspase-1, release of IL-1β and IL-18, as well 
as cell death against N. caninum infection, and NLRP3 
knockout (NLRP3−/−) mice displayed a high susceptibil-
ity to N. caninum infection [66, 67]. Although the role 
of NOD1 in host cells infected with N. caninum remains 
unknown, NOD1 can mediate host defenses against bac-
terial, viral and other parasitic infections [68]. These find-
ings suggest that activation of TLRs and NLRs in caprine 
EECs during N. caninum would trigger protective innate 
defense mechanisms against N. caninum infection.

Cytokines are major messenger proteins of inflam-
matory process and immune responses with various 
biological effects (e.g. cell growth, differentiation, inflam-
matory response and immune defense) [69]. Previous 
studies have confirmed that pro-inflammatory cytokines 
(e.g. IFN-γ, TNF-α, IL-12, IL6 and IL1β) induced by N. 
caninum infection could exert protective immunity to 
inhibit the multiplication of N. caninum both in  vitro 
[70, 71] and in vivo [59, 72]. In our study, a large num-
ber of pro-inflammatory cytokines (e.g. IL1A, IL1B, 
IL6, IL33 and IL34) were up-regulated, and the anti-
inflammatory cytokines (e.g. TGFB2 and TGFB3) was 
down-regulated, suggesting that N. caninum infection 

Fig. 7  Gene Ontology (GO) enrichment analysis for the cis- and trans-targets of the differentially expressed lncRNAs (DElncRNAs) in caprine 
endometrial epithelial cells (EECs) following Neospora caninum infection. a–d The top 30 GO terms enriched for the cis- (a, b) and trans- (c, d) targets 
of DElncRNAs within the categories TZ_24h-vs-C_24h and TZ_48h-vs-C_48h, respectively. A q-value < 0.05 and Log2|FC|> 1 were considered to be 
significant
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promoted the secretion of pro-inflammatory cytokines 
in caprine EECs. In addition, chemokines (e.g. CCL20, 
CCL5, CXCL16, CXCL8 and CX3CL1), colony-stimu-
lating factor (e.g. CSF2 and CSF3) and tumor necrosis 
factor receptor superfamily member (e.g. TNFRSF21, 
TNFSF13B and TNFSF15) involved in immune modula-
tory properties were also upregulated in caprine EECs 
during N. caninum infection. These data suggest that 
cytokines induced by N. caninum infection in caprine 
EECs would be a strategy for eliciting immune responses 
at the maternal–fetal interface against N. caninum infec-
tion, but the disruption of the immune balance at the 
maternal–fetal interface was also reported to lead to mis-
carriage [73, 74].

To understand the potential regulatory functions of 
DElncRNAs in caprine EECs during N. caninum infec-
tion, we predicted the cis- and trans-targets of DElncR-
NAs by constructing lncRNA-mRNA co-expression 
networks. We found that numerous biological signal 
pathways were significantly enriched, including MAPK 
signaling pathway, PPAR signaling pathway, ErbB signal-
ing pathway, calcium signaling pathway, TNF signaling 
pathway and AMPK signaling pathway. These path-
ways have been reported to be involved in the regula-
tion of important biological processes, such as cell 

proliferation, apoptosis, autophagy, inflammatory and 
immune response [75–80]. For example, upregulated 
expressions of lncRNA XR_001296952.2 and lncRNA  
XR_001919803.1 were found to cis-regulate the expres-
sion of stanniocalcin‑2 (STC2), which could promote 
proliferation and inhibit apoptosis in caprine EECs 
through the RAS/RAF/MEK/ERK signaling pathways 
[81], and could also enhance autophagy through the 
PI3K/AKT/AMPK signaling pathways [82]. Previous 
studies have reported that activation of autophagy facili-
tated the proliferation of N. caninum both in vitro [35] 
and in vivo [83]. In bone marrow-derived macrophages, 
the activation of p38 MAPK was found to be associated 
with immune evasion of N. caninum [84]. However, in 
Madin-Darby bovine kidney (MDBK) cells, p38 MAPK 
inhibitor effectively inhibited N. caninum tachyzoite 
motility and micronemal protein secretion and reduced 
cell invasion of N. caninum [85]. In addition, neural 
transmission (e.g. GABAergic synapse, serotonergic 
synapse, cholinergic synapse, glutamatergic synapse, 
dopaminergic synapse and retrograde endocannabinoid 
signaling), metabolism processes (e.g. glycosphingolipid 
biosynthesis-lacto and neolacto series, glycosamino-
glycan biosynthesis-heparan sulfate/heparin, 2-oxo-
carboxylic acid, propanoate, beta-alanine, tryptophan, 

Fig. 8  Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the cis- and trans-targets of the differentially expressed 
lncRNAs (DElncRNAs) in caprine endometrial epithelial cells (EECs) following Neospora caninum infection. a–d The top 20 KEGG pathway terms 
enriched for the cis- (a, b) and trans- (c, d) targets of DElncRNAs within the categories TZ_24h-vs-C_24h and TZ_48h-vs-C_48h, respectively. 
q-value < 0.05 and Log2|FC|> 1 are considered to be significant



Page 12 of 15Zhao et al. Parasites & Vectors          (2022) 15:297 

vitamin B6 and primary bile acid biosynthesis) and sign-
aling molecules and interaction (e.g. cytokine-cytokine 
receptor interaction, ECM-receptor interaction  and 
CAMs) were also significantly enriched for DElncRNA 
targets, indicating that these DElncRNAs would play 
roles in regulating host neural transmission, metabo-
lism processes and interactions between signaling mol-
ecules during N. caninum infection. Both ECM-receptor 
interaction and CAMs are associated with endome-
trial receptivity, the key to successful implantation and 
development of mammalian embryos [86, 87], suggest-
ing that these lncRNA targets would influence the out-
come of pregnancy during N. caninum infection.

Conclusions
Neospora caninum infection significantly altered the 
expression profiles of mRNAs and lncRNAs in caprine 
EECs at 24 and 48  hpi. The identified DEmRNAs and 
DElncRNAs were involved in immune response, signal 
transduction, nervous and metabolic processes during 
N. caninum infection. To our knowledge, this is the first 
investigation of global profiles of host lncRNAs during 
N. caninum infection. The results provide novel insight 
into understanding the underlying pathogenesis of N. 
caninum in maternal–fetal interface. However, since func-
tions of most goat lncRNAs identified in our study are still 
unknown, computerized prediction of their function is 
very difficult if not completely impossible. Therefore, fur-
ther studies should be conducted to reveal the mysterious 
veil of these identified DElncRNAs in future studies.
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