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Abstract 

Background:  To ensure food security, sub-Saharan Africa has initiated massive water resource development projects, 
such as irrigated agriculture, in recent years. However, such environmental modifications affect the survivorship and 
development of mosquitoes, which are vectors of different diseases. This study aimed at determining the effects of 
irrigation practices on development and survivorship of Anopheles gambiae s.l. in Ethiopia.

Methods:  A life table experiment was conducted to examine the effect of environmental modification on survivor-
ship of both immature and adult An. gambiae  s.l. in irrigated and non-irrigated areas. The pupation rate and develop-
ment time of the immatures and adult longevity and fecundity were compared between the two settings.

Results:  The estimated mean survival time of female An. gambiae s.l. in the irrigated and non-irrigated areas was 37.9 
and 31.3 days, respectively. A survival analysis showed that adult females of An. gambiae s.l. placed in an irrigated area 
lived significantly longer than those in a non-irrigated area (χ2 = 18.3, df = 1, P <0.001), and An. gambiae s.l. females 
lived significantly longer than males in both areas (P < 0.001).

Conclusions:  Adult An. gambiae s.l. survivorship was found to be enhanced in the irrigated area compared to non-
irrigated area. Longer survival of adult mosquitoes in irrigated areas could have important implications for vectorial 
capacity and hence malaria transmission.
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Background
Mosquito survivorship is an important factor that deter-
mines vectorial capacity and malaria transmission poten-
tial [1]. For example, the Anopheles mosquito needs to 
survive beyond the extrinsic incubation period of the 
Plasmodium parasites to be able to transmit malaria; the 
longer a mosquito lives, the higher the number of bites 
it may inflict [2]. The malaria vector immature survi-
vorship and enhanced larval-to-pupal development rate 
increase adult population density, which in turn affects 

the vectorial capacity of mosquito populations in a par-
ticular setting [3, 4].

Mosquito survivorship and development may be 
affected by environmental factors. Temperature (both 
water and ambient), relative humidity, rainfall, and nutri-
ent availability are key environmental factors governing 
the dynamics of malaria vectors including development 
and survival [4–6]. These factors can be strongly influ-
enced by variation in land use and land cover change such 
as the vegetation cover, landscape, and distance to water 
bodies [7, 8]. Zhong et al. [9] and Wang et al. [10] reported 
enhanced survivorship and development of both adults 
and larvae of An. sinensis and An. minimus, major malaria 
vectors in China with higher ambient temperature due to 
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land use and land cover change. Fine-scale variation in the 
microclimate across different landscapes shapes variation 
in mosquito population dynamics [11].

In an effort to avert poverty, developing countries have 
been implementing water resource development projects 
such as hydropower dams and agricultural development 
irrigation schemes [7, 12, 13]. Previous studies indi-
cated that such changes in land use and land cover have 
increased malaria transmission by proliferating vector 
breeding sites and changing the microclimate that gov-
erns the dynamics of the vectors [7, 13–19].

Ethiopia, a country where > 75% of the total area is 
malarious [20], has been experiencing a massive change 
in land use and land cover through water resource devel-
opment projects including irrigation schemes and hydro-
electric power dam projects [21]. The Arjo-Dedessa 
sugar development project site is among the mega-irri-
gation schemes with an irrigated area covering approxi-
mately 4000 ha, with future expansion plans for 80,000 
ha, to supply a state-owned sugar factory [22]. The area 
has historically been a wildlife sanctuary. Long ago, the 
government settled residents evacuating from other 
drought-prone areas of the country to establish their 
lives through subsistence farming. The area is endemic 
to malaria [22]. A recent entomological study in the same 
study site demonstrated higher malaria vector breeding 
habitat diversity, larval occurrence, and abundance in the 
irrigated area than in the non-irrigated area [23]. How-
ever, how this massive environmental modification has 
been influencing the survivorship and development of 
major malaria vectors in the area is not yet understood. 
Understanding malaria vector bionomics in relation 
to environmental modification helps to model malaria 
transmission for better evidence-based interventions, 
which will have a profound effect on realizing the coun-
try’s malaria elimination goal by 2030 [24]. We hypoth-
esized that land use and land cover changes, especially 
massive irrigated agricultural areas, alter the survivorship 
and development of malaria vectors in the areas.

Therefore, the objective of this study was to determine 
the effects of an irrigated sugarcane plantation scheme 
on the development and survivorship of An. gambiae 
s.l. Knowledge of the vector response to environmental 
modification will give a better understanding of malaria 
transmission dynamics, which is useful for predicting the 
impact of environmental modification on malaria trans-
mission intensity and will help establish tailored vector 
control interventions.

Methods
Study setting and period
The study was conducted at the Arjo-Dedessa irrigation 
development site (8°41’60’’N, 36°23’60’’E), Southwest 

Ethiopia, from August to October 2019. Extensive irri-
gated agriculture represents the most important environ-
mental change in the area. The irrigation development 
areas were covered with massive irrigated sugarcane 
plantation (hereafter irrigated area), whereas the sur-
rounding areas were covered with other non-irrigated 
field crops commonly cultivated in the area (hereaf-
ter non-irrigated area). Local communities in the area 
depend on subsistence farming with practicing small-
holder non-irrigated cultivation of mixed crops and cere-
als. The common crops and fruit trees grown in the area 
include corn, maize, peanut, sorghum, rice, wheat, coffee, 
and mango.

Site selection
For the study, we selected two land use and land cover 
types: areas covered with irrigated sugarcane plantation 
and areas covered with other field crops common in the 
area.

Anopheles gambiae s.l. immature survivorship
Adult mosquito collection and larva hatching
Blood-engorged An. gambiae s.l. were collected from 
inside houses and animal shelters in the study area using 
a mouth aspirator. All collected mosquitoes were kept in 
paper cages at a field insectary. An oviposition substrate 
of Petri dishes lined with filter paper disks on moistened 
cotton wool was kept inside each cage for egg laying. Col-
lected eggs were allowed to hatch, and newly hatched 
first instar larvae were used for the experiment.

Experiment
Plastic washbasins (34 cm × 14 cm) were used to imitate 
natural larval breeding habitats. The washbasins were 
exposed to an outdoor environment for a week prior to 
the initiation of the experiment for acclimatization. Then, 
2 l of rainwater and 1 kg of soil from the same area were 
added to each washbasin and left for a day. The wash-
basins were kept at each selected site in the two differ-
ent areas (irrigated and non-irrigated areas). Fifty newly 
emerged first instar An. gambiae s.l. larvae were trans-
ferred into each washbasin with eight replicates for each 
site. The water level in the washbasins was checked daily 
and maintained by adding water if needed. To prevent 
other insects from invading the washbasins or other 
mosquitoes from laying eggs, the washbasins were placed 
inside an insect-proof 61 × 61 × 61 cm3 BugDorm tent 
[BioQuip, Rancho Dominguez, (BD2120), CA, USA] 
(Fig.  1). All sides of the BugDorm tent were made of 
clear polyester netting materials so that sunlight was not 
blocked. The homogeneity of washbasins had an advan-
tage over the natural habitats, which were highly vari-
able in habitat size, larval food conditions (e.g. organic 
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matter), vegetation coverage, light shade, competitors, 
and predators. Each day the number of surviving larvae, 
their developmental stage, and mortality were recorded. 
Pupae were counted and removed daily. Removed pupae 
were collected in a waterproof paper cup for adult 
emergence.

Anopheles gambiae s.l. adult survivorship experiment
In this experiment, An. gambiae s.l. adults that emerged 
from the larval survivorship experiments were used. 
Within 24 h post-emergence, 25 female and 25 male adult 
mosquitoes were transferred into a paper cage (21.5 cm 
× 9 cm). The cages were covered with nylon mesh to 
prevent mosquito escape. Then, the cages were placed in 
the irrigated and non-irrigated areas in five replicates for 
each site. Mosquito cages were hung from the roof struc-
tures of small temporary shelters (2 m high) constructed 
for the purpose of the experiment for rain protection 
(Fig.  2). To prevent ants from reaching and scavenging 
the mosquitoes, grease was applied to the suspension 
twines. Mosquitoes were provided with 10% sucrose 
solution and a bloodmeal from a human arm (DH) every 
other day for 20 min. An oviposition substrate consisting 
of a Petri dish lined with a filter paper disk on moistened 

cotton wool was placed for egg-laying. The oviposition 
substrate in each cage was examined daily for the pres-
ence of eggs, and the number of eggs laid was examined 
under a dissecting microscope, counted, and recorded. 
The cages were examined daily for the numbers of sur-
viving and dead mosquitoes. The dead mosquitoes were 
recorded and removed from the cage daily.

Microclimate data collection
For the larval survivorship experiment, a HOBO data log-
ger (Onset Computer Corp., MX2202, Bourne, MA) was 
placed in each washbasin, 1 cm below the water surface, 
and then hourly water temperature and light intensity 
were recorded for the entire duration of the experiment. 
For the adult survivorship experiment, HOBO data log-
gers (Onset Computer Corp., MX2301) were kept close 
to the experiment set-up 2 m above ground, and then the 
hourly ambient temperature and relative humidity were 
recorded for the entire duration of the experiment.

Data analysis
The pupation rate of An. gambiae s.l. larvae was calcu-
lated as the proportion of first instar larvae that devel-
oped into pupae. Mean larval-to-pupal development 
time was calculated. Stage-specific larval development 
time and mortality rate were calculated. Kaplan-Meier 
survival analysis was performed to determine the varia-
tion in mean daily survivorship of mosquitoes placed in 
two different land use and land cover areas. A log-rank 
test was used to determine the difference between two 
survival curves. Daily average, minimum, and maximum 
temperatures, relative humidity, and light intensity were 
calculated from the hourly record data to determine the 
effect of different land uses and land covers on the micro-
climate of local niches where mosquitoes were tested for 
survivorship. Independent sample t-test was performed 
to compare mean pupation rate, development time, and 
microclimate differences across irrigated and other non-
irrigated crop areas. The analysis was performed using 
IMB SPSS Statistics 25, R 3.5.2, and Microsoft Excel 2016.

Results
Around 300 blood-engorged An. gambiae s.l. were col-
lected from indoors and outdoors (cow shelter) using 
mechanical mouth aspirators. Eight hundred first instar 
larvae hatched from the field-collected mosquitoes were 
used for the experiments in irrigated and non-irrigated 
areas, 400 each.

Developmental time and survivorship of An. gambiae s.l. 
larvae
The proportion of larvae that completed development 
from first instar larvae to pupae in the irrigated area and 

Fig. 1  Insect-proof BugDorm tent with washbasins inside

Fig. 2  Roof structure from which cages with adult An. gambiae s.l. 
mosquitoes were suspended
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non-irrigated area was 79.4% (95% CI 0.66–0.93) and 
84.5% (95% CI 0.77–0.92), respectively. Statistical analysis 
showed that the difference in pupation rate was not sig-
nificant between the irrigated and non-irrigated area (t = 
2.22, P = 0.208) (Fig. 3). The mean larval-to-adult devel-
opment time of An. gambiae s.l. larvae in the irrigated 
and non-irrigated areas was 12.5 and 12, respectively. 
Similarly, the median larvae-to-pupae development time 
in the irrigated area was 12.5 (95% CI 10.2–14.8) days 
and in the non-irrigated area 12 (95% CI 9.7–14.2) days 
(Table 1). Kaplan-Meier survival analysis showed no sig-
nificant difference in larval survivorship between the two 
areas (χ2 = 2.62, P = 0.106) (Fig. 4).  

Stage-specific survival and mortality analysis showed 
a slight increment in the mortality rate as the larvae 
developed to proceeding larval instars in both settings 
(Table 2).

Adult An. gambiae s.l. survivorship and fecundity
Survival analysis showed that female An. gambiae s.l. 
placed in the irrigated area survived significantly longer 
than those in the non-irrigated area (χ2 = 18.3, df = 1, P 
< 0.001) (Fig. 5).

The estimated mean survival time of female An. gam-
biae s.l. in irrigated and non-irrigated areas was 37.9 and 
31.3 days, respectively (Table  3). Again, female mosqui-
toes showed the higher median survival period (41.0 
days) in irrigated than non-irrigated area (31.0 days). A 
similar result was found in that male An. gambiae s.l. sur-
vived a longer period in the irrigated than non-irrigated 
area (χ2 = 23.1, df = 1, P <0.001) with mean survival time 
of 31.8 and 24.2 days, respectively (Table 3). The median 
survival period for male mosquitoes was 33.0 days in 

the irrigated area and 24.0 days in the non-irrigated area 
(Table  1). Male An. gambiae s.l. survival was decreased 
compared to that of females in both the irrigated (χ2 = 
14.9, P < 0.001) and non-irrigated areas (χ2 = 20.9, P < 
0.001) (Additional file 1).

Of 7737 eggs laid by the female mosquitoes through-
out the experiment period, 5125 (66.2%) were from the 
mosquitoes placed in the irrigated area and 2612 (33.8%) 
were from mosquitoes in the non-irrigated area. The 
study showed that fecundity of mosquitoes was 96.2% 
higher in the irrigated area (80 eggs/day) than in the non-
irrigated area (average 33 eggs/day). The mean number 
of eggs laid was (41 ± SE 11.63 eggs/mosquito) and (21 
± 5.61 eggs/mosquito) in the irrigated and non-irrigated 
area, respectively. Statistical analysis showed that the dif-
ference in fecundity was significant between the irrigated 
and non-irrigated area (t = 2.83, P = 0.002) (Additional 
file 2).
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Fig. 3  Pupation rate of An. gambiae s.l. larvae in irrigated and 
non-irrigated areas, Southwest Ethiopia, 2019

Table 1  Means and medians of survival time for immature 
An. gambiae s.l. in irrigated and non-irrigated areas, Southwest 
Ethiopia, 2019

Site Mean with 
95% CI

Median with 
95% CI

Overall 
comparisons

Irrigated area 12.5 (10.3–14.4) 12.5 (10.2–14.8) χ2 df P-value

Non-irrigated 
area

12.1 (11.6–13.9) 12.0 (9.7–14.2) 2.62 1 0.106

Fig. 4  Survivorship of An. gambiae s.l. immatures in irrigated and 
non-irrigated areas, Southwest Ethiopia, 2019
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Aquatic habitat microclimate during larval survivorship 
experiment
An independent sample t-test analysis on microclimate 
differences between the two study settings indicated 
that mean hourly water temperature (°C) in washba-
sins placed at the non-irrigated area was 1.1  °C higher 
than in washbasins in the irrigated area (t = − 2.85, P 
= 0.004). Similarly, mean light intensity (lum/ft2) in the 
non-irrigated area (mean = 497.4 ± 982.2) was signifi-
cantly higher than in the irrigated area (mean = 372.7 ± 
664.8), (t = − 2.47, P = 0.014) (Table 4 and Fig. 6). Mean 
maximum and minimum temperature and light intensity 
were also significantly higher in washbasins in the non-
irrigated area compared to the irrigated area (Table 4).

Ambient microclimate during adult survivorship 
experiment
There was no significant difference in ambient hourly 
average, maximum and minimum temperature and rela-
tive humidity between the irrigated area and non-irri-
gated area. However, mean light intensity between the 
two sites was different (P = 0.001) (Table 5 and Fig. 7).

Discussion
In this study, we investigated the effects of environmen-
tal modification on the development, survivorship, and 
fecundity of malaria vector mosquitoes. We hypothesized 
that irrigated sugarcane plantation areas enhance devel-
opment, survivorship, and fecundity compared to non-
irrigated field crop areas because of better microclimates 
and nutrients following environmental modification. 
However, the study showed no significant difference in 

Table 2  Stage-specific survivorship and mortality rate of immature An. gambiae s.l. in the irrigated area, Southwest Ethiopia, 2019

Stage Irrigated area Non-irrigated area

Development time 
(day)

Cumulative survival 
rate

Stage mortality 
rate

Development time 
(day)

Cumulative survival 
rate

Stage 
mortality 
rate

1st Instar 2.3 0.98 0.02 2.1 0.98 0.03

2nd Instar 2.5 0.96 0.03 2.4 0.95 0.03

3rd Instar 4.6 0.92 0.04 3.5 0.89 0.06

4th Instar 5.1 0.79 0.19 4.5 0.84 0.09

Fig. 5  Survivorship of adult An. gambiae s.l. in irrigated and 
non-irrigated areas, Southwest Ethiopia, 2019

Table 3  Means and medians of survival time for adult An. gambiae s.l. in irrigated and non-irrigated areas, Southwest Ethiopia, 2019

Site Female Anopheles gambiae Male Anopheles gambiae

Mean with 95% CI Median with 95% CI Mean with 95% CI Median with 95% CI

Irrigated area 37.9 (34.8–41.5) 41.0 (35.9–46.1) 31.8 (28.9–34.7) 33.0 (28.3–37.7)

Non-irrigated area 31.3 (28.5–34.1) 31.0 (27.9–34.1) 24.2 (21.8–26.6) 24.0 (20.3–27.6)
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Table 4  Mean hourly temperature and light intensity in washbasins in the irrigated and non-irrigated areas, Southwest Ethiopia, 2019

M ± SE: mean ± standard error

Microclimate Irrigated area (M ± SE) Non-irrigated area (M ± SE) t df P

Mean temperature (°C) 23.3 ± 5.7 24.4 ± 6.3 − 2.85 1068 0.004

Mean maximum temperature (°C) 24.4 ± 6.5 25.4 ± 7.2 − 2.53 1068 0.012

Mean minimum temperature (°C) 22.5 ± 5.1 23.4 ± 5.4 − 2.83 1068 0.005

Mean light intensity (lum/ft2) 372.7 ± 664.8 497.4 ± 982.2 − 2.47 1068 0.014

Mean maximum light intensity (lum/ft2) 713.0 ± 1311.7 931.0 ± 1698.0 − 2.28 1068 0.018

Mean minimum light intensity (lum/ft2) 174.4 ± 311.9 229.1 ± 495.5 − 2.21 1068 0.027
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Fig. 6  Mean hourly temperature and light intensity 24-h daily cycle in washbasins in irrigated and non-irrigated areas, Southwest Ethiopia, 2019

Table 5  Hourly microclimate condition of mosquito niches in irrigated and non-irrigated areas, Southwest Ethiopia, 2019

M ± SE: mean ± standard error

Microclimate Irrigated area (M ± SE) Non-irrigated area (M ± SE) t df P

Mean temperature (°C) 21.56 ± 4.80 21.60 ± 4.81 − 0.26 3176 0.790

Mean maximum temperature (°C) 22.22 ± 5.09 22.24 ± 5.10 − 0.09 3176 0.927

Mean minimum temperature (°C) 20.90 ± 4.56 20.92 ± 4.56 − 0.12 3176 0.904

Mean relative humidity (%) 82.65 ± 15.73 82.30 ± 14.58 − 0.63 3176 0.522

Mean maximum relative humidity (%) 86.11 ± 13.77 86.55 ± 11.80 − 0.92 3176 0.339

Mean minimum relative humidity (%) 78.95 ± 17.78 78.12 ± 17.23 1.31 3176 0.187

Mean light intensity (lum/ft2) 324.3 ± 517.5 709.0 ± 1242.3 − 11.7 2952 0.001

Mean maximum light intensity (lum/ft2) 571.7 ± 982.5 1106.8 ± 1834 − 10.3 2952 0.001

Mean minimum light intensity (lum/ft2) 180.1 ± 267.5 366.6 ± 663.4 − 10.7 2952 0.001
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development and survivorship of An. gambiae s.l. imma-
tures between the two areas.

Variation in vegetation cover may affect the radia-
tion flux and energy balance off the land surface and 
thus may modify the microclimate [25]. By the time the 
experiment was conducted, sugarcane plantation was at 
its maturity stage, which is dense and leafy, which could 
partly limit direct sunlight from reaching the washbasins, 
whereas in the surrounding crops the field areas were rel-
atively less dense. The mean hourly water temperature in 
the non-irrigated area increased by 1.1 °C compared to 
the irrigated area. This could partly explain the observed 
5.1% greater pupation rate in the non-irrigated area com-
pared to the irrigated area. Studies reported elsewhere 
indicated that increased temperature due to land use and 
land cover increased the larval survival rate [10, 26–30]. 
Tuno et  al. [29] reported that the survivorship of An. 
gambiae larvae was reduced from 56% in habitats fully 
exposed to sunlight to 1.5% in habitats with forest can-
opy in western Kenya. Wang et al. [10] also reported the 
pupation rate of An. minimus, a malaria vector in China, 
to be 52.5%, 12.5%, and 3.8% in the deforested, banana 
plantation, and forested areas, respectively, which is far 

lower than our findings of 79.4% and 84.5% at the irri-
gated and non-irrigated areas, respectively.

Nutrient availability may affect the survival, pupa-
tion rate, and development time. The potential food 
source of anopheline larvae may include but not be lim-
ited to bacteria, fungi, debris, and organic matter. The 
abundance and structure of microbes such as algae and 
photosynthetic cyanobacteria in aquatic habitats may 
have changed in response to land use and land cover 
[31, 32]. Organic matter and debris in the soil at differ-
ent settings may not be the same, which could possibly 
vary with changes in the surrounding land use and land 
cover. Kebede et al. [33] reported that maize pollen pro-
vides nutrition for larval anopheline mosquitoes showing 
that the incidence of malaria was about ten times higher 
in high maize cultivation areas. In our case, the debris of 
sugarcane plantation and other field crops might not be 
the same but the result showed both areas support mos-
quito development, which needs further investigation of 
soils’ biological and chemical composition in relation to 
immature mosquito development.

The higher pupation rate and longer survivorship of An. 
gambiae s.l. immatures generally could increase vectorial 
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capacity to enhance malaria transmission. Based on these 
findings alone, we cannot conclude that the irrigated 
area encounters less or equal malaria risk compared to 
the surrounding environs. Recently, in a study conducted 
from the same area, significantly more diverse breeding 
sites and larva abundance have been reported in irrigated 
sugarcane plantation areas than in their surroundings 
[23]. Thus, more diversified breeding sites with a 79.4% 
pupation rate could certainly outweigh the malaria bur-
den over surrounding environs with less habitat diversity 
and relatively the same pupation rate.

Adult An. gambiae s.l. placed in the irrigated area sur-
vived longer than those in a non-irrigated area. Adult 
female mosquitoes survived longer than males in both 
settings. Our findings of mosquito longevity were in line 
with previous studies elsewhere. For instance, Okech 
et al. [34], reported mean survival of 33 days for An. gam-
biae s.l. in western Kenya, which is 6 days shorter than 
our finding. Gary and Forster [35] found that An. gam-
biae s.l. mosquitoes had a median survival time of 29 days 
under insectary conditions, but in our study, the median 
survival time for female An. gambiae s.l. was 41 and 31 
days in the irrigated and non-irrigated area, respectively. 
The longer survival of mosquitoes in the irrigated area 
indicates that An. gambiae s.l. is well adapted to the envi-
ronmental conditions. Enhanced survival of malaria vec-
tors is among the determinants of increased mosquito 
vectorial capacity [36]. A long life of an adult female 
mosquito increases her opportunities to encounter an 
infected human host and the extrinsic incubation period 
of malaria parasites so that they can reach the salivary 
glands after an infective bloodmeal and be transmitted in 
later bloodmeals to uninfected hosts [1, 3, 37]. This has 
implications for malaria transmission at the locality.

The experimental set-up at both study settings were 
the same, and human blood and sugar were provided in 
a similar way. Thus, the only difference was the environ-
ment where the experiments were situated, being an irri-
gated and non-irrigated area. There was no significant 
difference in mean, maximum, and minimum hourly 
ambient temperature and relative humidity between the 
two environments. Previous studies indicated that An. 
arabiensis, a primary vector in Ethiopia, generally pre-
fers areas with low humidity and high temperature [38]. 
A similar study also demonstrated that reduced humidity 
and increased temperatures following deforestation cre-
ate a more suitable environment for adult An. arabiensis 
to survive longer [26]. Therefore, in our study setting the 
determinants involved in supporting better survival of 
adult An. gambiae s.l. at the irrigated area warrants fur-
ther investigation.

The average daily fecundity of An. gambiae s.l. mos-
quitoes in the irrigated area was 96.2% higher compared 

to the non-irrigated area. Increased survival together 
with enhanced fecundity of malaria vectors in the irri-
gated area suggests that the longevity and biotic poten-
tial of An. gambiae s.l. in the area are very high, favoring 
increased population density, and thus the species could 
contribute greatly to malaria transmission. Better sur-
vival and fecundity in the irrigated area in our study are 
in agreement with the study conducted in Ethiopia at the 
laboratory level demonstrating that gravid An. arabiensis 
females were attracted to sugarcane pollen volatiles [39].

This study had several limitations. The experiment was 
done at one time point of the maturity stage of the irri-
gated sugarcane area. The microclimate conditions in 
the irrigated area during the seedling/germinating stage, 
tillering stage, grand growth stage, and maturity stage 
[40] could not be the same, which in turn influenced the 
mosquito survivorship. Information on the chemical and 
nutrient composition of the soil used as a substrate was 
not included in the study. Moreover, the experiments 
were conducted under controlled conditions for all 
potential biological factors that may influence mosquito 
survival, such as predators and competitors, which might 
lead to an overestimation of the survival time compared 
to the actual time.

Conclusion
Irrigated sugarcane plantation significantly enhances the 
survivorship and fecundity of adult An. gambiae s.l., the 
major malaria vector in Ethiopia. The study results on 
survivorship parameters of malaria vector mosquitoes 
under a variety of environmental conditions are helpful 
to model the impact of environmental modification on 
vector population dynamics and help devise tailor-made 
vector control strategies. Moreover, longer survivor-
ship of adult mosquitoes in irrigated areas calls for larval 
management to reduce the vector population and subse-
quent malaria transmission.
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