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Abstract 

Background:  Despite the licensure of the world’s first dengue vaccine and the current development of additional 
vaccine candidates, successful Aedes control remains critical to the reduction of dengue virus transmission. To date, 
there is still limited literature that attempts to explain the spatio-temporal population dynamics of Aedes mosquitoes 
within a single city, which hinders the development of more effective citywide vector control strategies. Narrowing 
this knowledge gap requires consistent and longitudinal measurement of Aedes abundance across the city as well as 
examination of relationships between variables on a much finer scale.

Methods:  We utilized a high-resolution longitudinal dataset generated from Singapore’s islandwide Gravitrap surveil-
lance system over a 2-year period and built a Bayesian hierarchical model to explain the spatio-temporal dynamics of 
Aedes aegypti and Aedes albopictus in relation to a wide range of environmental and anthropogenic variables. We also 
created a baseline during our model assessment to serve as a benchmark to be compared with the model’s out-of-
sample prediction/forecast accuracy as measured by the mean absolute error.

Results:  For both Aedes species, building age and nearby managed vegetation cover were found to have a signifi-
cant positive association with the mean mosquito abundance, with the former being the strongest predictor. We also 
observed substantial evidence of a nonlinear effect of weekly maximum temperature on the Aedes abundance. Our 
models generally yielded modest but statistically significant reductions in the out-of-sample prediction/forecast error 
relative to the baseline.

Conclusions:  Our findings suggest that public residential estates with older buildings and more nearby managed 
vegetation should be prioritized for vector control inspections and community advocacy to reduce the abundance of 
Aedes mosquitoes and the risk of dengue transmission.
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Background
Dengue fever is a rapidly emerging vector-borne disease 
mainly transmitted by Aedes aegypti and Aedes albop-
ictus [1], causing an estimated number of 390 million 

infections per year worldwide [2]. Clinical manifestations 
of dengue infection range from mild fever to potentially 
lethal complications such as dengue shock syndrome [1]. 
Despite the licensure of the world’s first dengue vaccine 
and the current development of additional vaccine candi-
dates [3], successful vector control remains critical to the 
reduction of dengue virus transmission [4]. Moreover, 
the benefits of Aedes population control extend beyond 
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dengue infection prevention alone, given the multiple 
diseases that can be transmitted by these mosquito spe-
cies, such as Zika, chikungunya, and yellow fever.

Previous work has yielded important insights into 
the behaviors and ecology of the main dengue vectors. 
Both Aedes species can easily disperse throughout areas 
with ~ 300 m radius to seek oviposition sites [5]. The Ae. 
aegypti mosquitoes in particular have become a highly 
efficient vector for dengue transmission owing to their 
skip oviposition behavior (i.e. deposit eggs from the same 
batch in multiple sites), desiccation-resistant eggs, pref-
erence for human biting, multiple feeds per gonotrophic 
cycle, and adaptation to reside and breed in human habi-
tats, among other factors [6]. The Ae. albopictus mosqui-
toes were found to have a relatively lower contribution 
to the reported dengue cases overall despite their high 
competence for dengue transmission, which is primarily 
attributed to aspects of their ecology [7]. Both environ-
mental and anthropogenic factors can exert an important 
influence on the distribution of Aedes mosquitoes [8–12], 
and modeling studies have been carried out to map the 
suitability and distribution of the main dengue vectors at 
a global scale [10–12]. However, there is still very limited 
literature that attempts to explain the spatio-temporal 
population dynamics of Aedes mosquitoes within a sin-
gle city [13], which hinders the development of more 
effective citywide vector control strategies. To bridge 
this knowledge gap requires consistent and longitudinal 
measurement of Aedes abundance across the city [13] as 
well as examination of relationships between variables at 
a much finer scale.

As an island city-state lying 1° north of the equator, 
Singapore faces regular dengue outbreaks with the four 
dengue virus serotypes co-circulating all year round [14]. 
The low herd immunity [15], coupled with the tropical 
climate and highly urbanized environment, poses chal-
lenges to the nation’s dengue control program [16]. As 
part of Singapore’s vector control program, the National 
Environment Agency has conducted regular inspections 
of homes and surrounding areas all year round to remove 
mosquito-breeding habitats and mobilized the commu-
nity and stakeholders to minimize instances of stagnant 
water [17]. Vector control activities were also ramped up 
in dengue cluster areas, with space sprays used for adul-
ticiding. To monitor the spatio-temporal trend of the 
adult Aedes abundance in Singapore, the National Envi-
ronment Agency also established an islandwide Gravitrap 
surveillance system in 2017, with over 50,000 Gravitraps 
deployed in the public housing estates across the island 
[18, 19], which accommodate ~ 80% of the resident pop-
ulation [20]. The weekly mean catch per trap for each 
species provides an indication of the Aedes abundance 
around each specific residential location and each time 

point, which is presumed to be closely associated with 
an individual’s risk of exposure to mosquito bites inside 
or around homes and also much less susceptible to the 
measurement bias encountered in non-systematic breed-
ing sites inspection [21]. To facilitate resource planning 
for Singapore’s vector control, we used the longitudinal 
dataset generated from the islandwide Gravitrap surveil-
lance system during 2017–2018 as well as a wide range 
of environmental and anthropogenic variables acquired 
from various sources to (1) explain the spatio-temporal 
dynamics of the Ae. aegypti and Ae. albopictus population 
in Singapore’s high-rise residential zones and (2) assess 
our model’s ability to predict Aedes abundance across 
space and generate forecasts up to 3 weeks ahead.

Methods
Data
Aedes mosquito data were collected fortnightly for each 
of the 552 sites from 2017–2018 [19], with odd-numbered 
blocks inspected 1 week and even-numbered blocks the 
next. Fortnightly collections were then halved to obtain 
the weekly numbers of Ae. aegypti and Ae. albopictus 
caught at each site respectively, which contained roughly 
equal numbers of odd- and even-numbered blocks. We 
created a 300-m buffer around each block based on Liew 
et al. [5], and for each site, all buffers were merged into a 
single polygon to be used for deriving zonal statistics for 
the environmental and anthropogenic variables.

The Singapore land classification map was generated 
at a resolution of 10 m using seven separate images from 
the Sentinel-2 satellite of the European Space Agency 
[22]. The collected images were taken on different dates 
to ensure the existence of cloud-free pixels for the whole 
of mainland Singapore based on a cloud cover classi-
fication algorithm [22]. With 309 labeled data points 
obtained manually using Google Earth, a random forest 
algorithm was used to produce seven land cover maps, 
excluding cloudy areas for each of the collected images 
[22]. The final classified land cover for each pixel was set 
to be the majority vote out of all the predictions, with an 
out-of-bag classification accuracy of 81% [22]. For each 
site, we derived the percentage of the buffer area covered 
by water, grass, forest, and managed vegetation (i.e. trees 
and shrubs with structure dominated by human manage-
ment), respectively, setting “urban” as the reference level.

Data on waterbodies were extracted from OpenStreet-
Map [23]. We measured the distance to the nearest 
waterway from each block using ArcMap 10.6, which was 
then averaged within each site (similarly to the distance 
to the nearest water area). We also obtained Singapore’s 
drain line map from the Public Utilities Board. The total 
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drain line density for each site was defined to be the total 
length of the drain lines falling within the corresponding 
buffer divided by the buffer area. In addition, the average 
age of buildings for each site was computed using lease 
commencement year data collected from the Singapore 
Land Authority [24].

Weekly mean, maximum, and minimum temperature 
and mean relative humidity were obtained from a total 
of 21 weather stations installed by the National Environ-
ment Agency. For each climatic variable and each week, 
we fitted a thin plate spline surface to produce an inter-
polated value for each site. Weekly raster maps of total 
precipitation were obtained from the Meteorological 
Service Singapore at ~ 500 m × 500 m resolution, and for 
each site and each week, all the pixel values within the 
corresponding buffer were averaged. All the aforemen-
tioned explanatory variables were standardized to zero 
mean and unit variance, and a quadratic term for each 
of the standardized temperature variables was created to 
examine nonlinear effects [25].

Statistical analyses
To understand the direction and strength of associations 
between Aedes abundance and different environmen-
tal and anthropogenic variables, we first computed the 
pairwise Pearson correlation coefficients for the full set 
of covariates and removed redundant variables using a 
threshold of ± 0.6 to avoid collinearity. A Bayesian spatio-
temporal model was created, where we assumed that the 
number of Ae. aegypti or Ae. albopictus caught at site i 
during week t ( yit ) followed a negative binomial distribu-
tion with mean µit and dispersion parameter r , namely:

 

 where 

In the equation above, Eit denotes the number of Grav-
itraps present at site i during week t , b0 the intercept, 
xij the spatial variables of site i , and witk all the weekly 
weather measurements of site i between 1 and 3 weeks 
prior to week t . We included an unstructured spatial 
effect ui for each site and an extra term vPAi for the corre-
sponding planning area (each containing 20 sites on aver-
age, with an interquartile range of 8–26) to account for 
additional spatial dependence. The temporally structured 
effect φt was assumed to follow a random walk with a 
maximum order of two. Throughout this article, we used 
t = 1 to denote the first epidemiological week of 2017 

yit ∼ NB(µit , r),

log (µit) = log (Eit)+ b0 +
∑

j

βjxij +
∑

k

γkwitk + ui + vPAi + φt .

and t = 104 the last epidemiological week of 2018. All the 
model parameters were assigned a minimally informa-
tive prior (refer to Table 2 caption), and parameter esti-
mation was performed using Integrated Nested Laplace 
Approximation [26, 27], with 95% credible intervals (CrI) 
computed to summarize the uncertainty in each model 
parameter.

For each species, both the optimal order of the ran-
dom walk for the temporally structured effect and the 
time lag of the weather variables were selected based on 
the deviance information criterion. Further variable sub-
set selection was not implemented at this stage to avoid 
biased parameter estimates resulting from sequential 
comparisons, since the primary aim of our Bayesian spa-
tio-temporal model was to infer the associations between 
Aedes abundance and all the different environmental and 
anthropogenic variables considered in this study.

Next, we used cross-validation to assess how accurately 
one can predict Aedes abundance across space. Here we 
treated the total number of Ae. aegypti or Ae. albopictus 
caught at each site during 2017–2018 as the response 
variable, with the log transformation of the total number 
of trap-week units as an offset. Only spatial fixed effects 
and the planning area random effect were included in 
the model, and a backwards elimination procedure was 
implemented for fixed effects variable selection using 
the Akaike information criterion during model train-
ing. Two forms of cross-validations were performed, 
namely, leave-one-site-out and leave-one-planning-area-
out, where in each case a baseline prediction of the mean 
catch per trap per week was generated for each site, to 
be used as a benchmark to assess whether the model can 
indeed yield a higher prediction accuracy. In the former 
case, each time a site i was left out for testing, its base-
line prediction was defined as the observed mean catch 
per trap per week of the site that was geographically the 
closest to site i . In the latter case, the baseline prediction 

for each site i was defined as the observed mean catch 
per trap per week averaged across all the sites within the 
planning area that was geographically the closest to site i 
but did not contain site i.

Finally, we evaluated the contribution of weather vari-
ables to the improvement of the weekly Aedes abundance 
forecast accuracy up to 3 weeks ahead. Using tC to denote 
the current time point, we treated the mean catch per 
trap of each site at week (tC +�t)(�t = 1, 2, or 3) as the 
response variable, and each was regressed upon all the 
weather and/or entomological (i.e. Aedes abundance) 
covariates at weeks tC , (tC − 1) and (tC − 2) . Here, the 
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entomological covariates were always included as autore-
gressive terms, with the additional inclusion of weather 
covariates in an alternative model to assess the result-
ing change in the out-of-sample forecast errors. Due to 
the large number of lagged weather variables included in 
the alternative model, we used the least absolute shrink-
age and selection operator to perform variable selection 
during model training. For each site and each species, 
we derived the out-of-sample Aedes abundance fore-
cast accuracy at week (t∗ +�t) for all combinations of 
t∗ ∈ {55, 60, . . . , 95, 100} and �t ∈ {1, 2, 3} , respectively, 
with the model being trained on all the historical data 
points of that site with tC < t∗ . The corresponding base-
line forecast was defined as the observed Aedes abun-
dance of that site at week t∗ , and hence we will also refer 
to t∗ as the baseline time point.

Results
In total, 4,923,456 trap-week units of observation were 
obtained, with 495,638 Ae. aegypti and 132,533 Ae. 
albopictus caught during the entire study period. For 
both species, we observed a marked difference in the 
Aedes abundance across space, with the mean catch per 
trap per week at some sites exceeding fivefold that at 
some other sites (Fig.  1). For example, only an average 
of 0.05 Ae. aegypti mosquitoes were caught per trap per 
week at a site within the Clementi area during the study 
period, in contrast to 0.28 at a site in Tampines. Opera-
tionally, these data are updated on a weekly basis to pro-
vide policy makers with an indication of which areas may 
require more vector control to mitigate the risk of den-
gue transmission. The mean and standard deviation of 
the site-level mean catch per trap per week were 0.102 
and 0.074 for Ae. aegypti and 0.027 and 0.019 for Ae. 
albopictus (Table 1 contains the summary statistics of all 
the variables in this study, and visualizations of selected 

variables across space or time can be found in Additional 
file 1: Supporting information). 

Based on the spatio-temporal model estimates, both 
nearby managed vegetation cover and building age 
were found to have a direct association with the abun-
dance of both species (Table  2 and Fig.  2). On average, 
we estimated that a 1-SD (10 years) increase in the aver-
age age of buildings was associated with a 52.3% (95% 
CrI: 42.0%–63.2%) increase in the Ae. aegypti abundance 
and a 38.1% (95% CrI: 31.0%–45.6%) increase in the Ae. 
albopictus abundance at the site level, when all the other 
variables were held constant (Fig. 2). For forest cover and 
distance to water area, the signs of the point estimates 
were found to be opposite between the two mosquito 
species, although the 95% credible interval may contain 
the null effect in some cases (Table  2 and Fig.  2). Even 
after controlling for all the fixed effects, substantial het-
erogeneity of Aedes abundance remained both between 
sites and between planning areas, as shown by the stand-
ard deviation estimates of the spatial random effects 
(Table 2).

For both species, inclusion of weather measurements in 
all the past 3 weeks together with a random walk model 
of order 2 for the temporally structured effect yielded the 
lowest deviance information criterion. However, com-
pared with the spatial covariates, the weather covariates 
were estimated to have a relatively limited impact on the 
variation of adult Aedes abundance in the context of Sin-
gapore (Table  2 and Fig.  2). The 95% credible intervals 
of the quadratic term coefficients for the weekly maxi-
mum temperature were away from zero for both spe-
cies and all time lags (Table 2), and the Aedes abundance 
was estimated to first increase and then decrease as we 
varied the lagged weekly maximum temperature from 
28.0 °C to 36.6 °C while holding the other variables con-
stant (Fig.  3). Specifically, with all other covariates held 

Fig. 1  Observed Aedes abundance (mean catch per trap per week) of each site during 2017–2018: (a) Ae. aegypti and (b) Ae. albopictus. We first 
created a 300 m buffer around each block, and all buffers for each site were merged into a single polygon, which was then colored according to the 
observed Aedes abundance value
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constant, the median estimate of Ae. aegypti abundance 
peaked at 30.3 °C, 30.0 °C, and 31.3 °C for weekly maxi-
mum temperature measured at 1, 2, and 3  weeks’ lag, 
respectively. Similarly, the turning points were 31.9  °C, 
31.6  °C, and 31.9  °C for Ae. albopictus. Out of all the 
covariates collected in this study, only weekly mean and 
minimum temperatures were removed from the Bayesian 
spatio-temporal model during collinearity assessment.

In both leave-one-site-out and leave-one-plan-
ning-area-out cross validations, which were performed 
to assess predictive accuracy across space, there was an 
overall increasing trend in the observed site-level Aedes 
abundance as we moved from the lowest to the highest 
quintile based on the out-of-sample model predictions 
(Fig. 4). Except for the leave-one-site-out cross valida-
tion of the model for Ae. aegypti, there was a modest 
and statistically significant reduction in the mean abso-
lute prediction error of the model compared with the 
baseline prediction (Table  3). Likewise, a modest and 
statistically significant reduction in the out-of-sample 
forecast error was observed for models forecasting 
2- or 3-week ahead Aedes abundance, regardless of 
species or whether we included weather covariates as 
additional predictors (Table  4). Our model, however, 
did not outperform the 1-week ahead baseline forecast 
(Table 4), owing to the fortnightly mosquito collection 
and the subsequent conversion to weekly data (details 
described in Methods), which caused data points at 
adjacent weeks to share 50% of the information in com-
mon. Notably, we found that in all cases the additional 
inclusion of lagged weather covariates did not improve 
the out-of-sample forecast accuracy compared with a 

simple model that only included autoregressive terms 
as predictors (Table 4).

Discussion
This study examined the spatial and temporal varia-
tion of the main dengue vectors in Singapore’s high-
rise public residential zones in relation to a wide range 
of environmental and anthropogenic variables. The 
insights derived from this study further add to previ-
ous work that aimed to understand Aedes ecology in 
the local context and can facilitate the formulation of 
more effective vector control strategies in the future. 
Our model performance also suggests the potential use 
of spatio-temporal mapping as a tool to improve the 
understanding of the Aedes distribution in other cities 
or countries, where intensive entomological surveil-
lance may be harder to achieve.

We found that the majority of our spatial covari-
ates had an at least borderline significant association 
with the Aedes abundance (i.e. the 95% credible inter-
vals did not/barely overlap zero). In particular, build-
ing age was shown to be the strongest predictor. This 
might be due to a combination of factors, including 
infrastructural degradation and the water storing prac-
tices associated with the sociodemographic profile of 
residents that result in more instances of water stagna-
tion that can breed mosquitoes. For both species, we 
estimated that an increase in the managed vegetation 
cover within the buffer area was associated with a sub-
stantial rise in the mean vector abundance, likely owing 
to the increased availability of water in leaf axils, leaf 
litter, and discarded receptacles hidden in foliage and 
tree holes, which supports mosquito breeding. Unlike 

Table 1  Summary statistics of all the variables included in the study

Variables Mean (SD)

Mean number of mosquitoes caught per trap per week (Ae. aegypti) 0.102 (0.074)

Mean number of mosquitoes caught per trap per week (Ae. albopictus) 0.027 (0.019)

Forest cover (% of 300 m radius buffer) 5.6 (5.2)

Water cover (% of 300 m radius buffer) 2.0 (3.2)

Grass cover (% of 300 m radius buffer) 8.6 (4.8)

Managed vegetation cover (% of 300 m radius buffer) 25.4 (7.8)

Drain line density (km−1) 9.7 (6.9)

Distance to waterway (m) 685 (490)

Distance to water area (m) 613 (390)

Building age (years as of 2018) 28 (10)

Weekly mean temperature (°C) 27.9 (0.9)

Weekly maximum temperature (°C) 33.1 (0.9)

Weekly minimum temperature (°C) 23.9 (1.0)

Weekly mean relative humidity (%) 80.5 (4.1)

Weekly total precipitation (mm) 51.6 (63)
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managed vegetation cover, both forest and grass covers 
were found to be negatively associated with the abun-
dance of Ae. aegypti. This was not unexpected given 
that Ae. aegypti prefers highly urbanized areas where 
it can breed in artificial containers. On the other hand, 
there was a positive association between forest cover 
and Ae. albopictus abundance based on the point esti-
mate, which is consistent with the existing knowledge 
of the vector’s ecology [28].

Our analysis showed a borderline significant negative 
association between drain line density and the abun-
dance of Ae. aegypti in contrast to the positive correla-
tion reported by Seidahmed et al. [29]. This discrepancy 
can be due to a number of reasons: for example, the 
study conducted by Seidahmed et  al. was restricted 

to a small area of Singapore, and results may be con-
founded by the different housing types with different 
demography [29], whereas this study used 2-year data 
collected from the same type of housing areas across 
the island. Moreover, the number of Aedes mosquitoes 
caught inside the high-rise residential buildings and the 
number of outdoor breeding habitats can be impacted 
by drain line density in different ways. Since perimeter 
drains are known to be the most common breeding 
habitats of Aedes in Singapore’s public areas accord-
ing to routine inspections [30], their abundance could 
simultaneously decrease the per-mosquito probability 
of looking for oviposition sites inside residential build-
ings and increase the total number of Aedes mosquitoes 
in the nearby public area. Thus, our estimate is likely to 

Table 2  Posterior estimates of the Bayesian spatio-temporal model parameters§

All the environmental and anthropogenic variables were standardized to zero mean and unit variance prior to model fitting, and a quadratic term for each of the 
standardized temperature variables was also created to introduce nonlinear effects. Estimates are posterior median and equal tailed 95% credible intervals
*  Refers to the posterior estimate of the standard deviation of the spatial random effect
**   Refers to the posterior estimate of the standard deviation of the independent second-order increment in the temporally structured effect
§  Each regression parameter (i.e. intercept and the coefficients of the fixed effects) was assigned a normal prior N

(
0, 52

)
 . We assumed a logGamma(1, 0.01) prior on 

the logarithm of the precision of the spatial random effects and independent second-order increment in the temporally structured effect. The default penalized 
complexity prior in R-INLA was specified for the logarithm of the negative binomial size parameter

Ae. aegypti Ae. albopictus

2.5th percentile 50th
percentile

97.5th percentile 2.5th percentile 50th
percentile

97.5th percentile

Forest cover (within 300 m radius buffer) − 0.140 − 0.074 − 0.008 − 0.018 0.031 0.080

Water cover (within 300 m radius buffer) − 0.009 0.059 0.128 − 0.006 0.046 0.098

Grass cover (within 300 m radius buffer) − 0.135 − 0.065 0.005 − 0.075 − 0.022 0.031

Managed vegetation cover (within 300 m radius 
buffer)

0.072 0.144 0.215 0.037 0.091 0.146

Drain line density (within 300 m radius buffer) − 0.152 − 0.064 0.023 − 0.235 − 0.167 − 0.100

Distance to waterway − 0.242 − 0.165 − 0.088 − 0.068 − 0.010 0.048

Distance to water area 0.072 0.152 0.232 − 0.076 − 0.014 0.047

Building age 0.351 0.421 0.490 0.270 0.323 0.376

Max temperature lag 1 − 0.037 − 0.027 − 0.018 − 0.027 − 0.016 − 0.004

(Max temperature lag 1)2 − 0.008 − 0.004 0.000 − 0.010 − 0.005 − 0.001

Mean relative humidity lag 1 − 0.020 − 0.011 − 0.002 − 0.032 − 0.020 − 0.008

Precipitation lag 1 0.003 0.010 0.016 − 0.018 − 0.010 − 0.002

Max temperature lag 2 − 0.040 − 0.031 − 0.021 − 0.029 − 0.017 − 0.005

(Max temperature lag 2)2 − 0.008 − 0.005 − 0.001 − 0.010 − 0.005 0.000

Mean relative humidity lag 2 − 0.015 − 0.006 0.003 − 0.021 − 0.009 0.003

Precipitation lag 2 0.006 0.012 0.018 − 0.003 0.005 0.013

Max temperature lag 3 − 0.032 − 0.023 − 0.013 − 0.025 − 0.013 − 0.002

(Max temperature lag 3)2 − 0.009 − 0.006 − 0.002 − 0.010 − 0.005 0.000

Mean relative humidity lag 3 − 0.016 − 0.007 0.002 − 0.021 − 0.008 0.004

Precipitation lag 3 0.007 0.013 0.020 0.007 0.015 0.023

Unstructured spatial effect (site)* 0.603 0.642 0.686 0.443 0.475 0.508

Unstructured spatial effect (planning area)* 0.383 0.514 0.708 0.240 0.337 0.487

Temporally structured effect** 0.048 0.058 0.071 0.076 0.092 0.113

Negative binomial size parameter 6.681 6.863 7.049 12.877 13.679 14.597
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be a reflection of the resulting net effect and similarly 
for the estimated effects of other spatial covariates such 
as nearby managed vegetation cover.

Previous work has highlighted the challenges of map-
ping the spatial distribution of Aedes mosquitoes for 
operational dengue vector control [31]. In particular, pre-
dictors that can be informative across an entire continent 
or a sufficiently large country may lose predictive power 
within the confines of a single city [31]. While we did 
observe substantial evidence of a non-zero association 
between many spatial covariates and Aedes abundance 
in our analysis, the estimated standard deviations of the 
spatial random effects remained large, suggesting sub-
stantial unexplained heterogeneity across space. Hence, 
entomological surveillance remains critical to generat-
ing knowledge of Aedes abundance in the field to inform 
vector control. On the other hand, we found that in most 
cases the model performed significantly better than the 
baseline at predicting mosquito abundance at new loca-
tions, based on the spatial variables at those locations, 
suggesting that statistical modeling can still serve as a 
complementary tool to refine our understanding of the 
Aedes abundance at locations where entomological data 
are unavailable and hence to identify additional locations 
that may require enhanced vector control. It should be 

noted that the model’s improvement in prediction accu-
racy over the baseline was found to be smaller for Ae. 
aegypti than Ae. albopictus, despite the former being the 
most important dengue vector in Singapore. This finding 
may be explained by the ecology of Ae. aegypti, which is a 
container breeder that is subject to the vagaries of human 
behavior; adherence to household practices to prevent 
breeding is hard to measure and may vary spatially, ren-
dering spatial modeling much more challenging.

There is abundant literature on how different weather 
variables regulate the population dynamics of Aedes via 
influencing mosquito habitat availability, development, 
survival, and reproduction [9]. In this study, however, 
we estimated the effects of all the lagged weather vari-
ables on the observed Aedes abundance to be very min-
imal, which can be owing to the restricted range of the 
weather variables in the context of Singapore as well as 
vector control activities that were typically ramped up 
during higher breeding seasons. The assessment of the 
out-of-sample forecast errors, too, shows that the addi-
tional inclusion of weather covariates did not improve 
the accuracy of the Aedes abundance forecasts, and a 
simple model with autoregressive terms alone could yield 
a modest and statistically significant improvement in the 
2- and 3-week-ahead forecasts over the baseline. While 
these results may suggest that weather had a negligible 
impact on Aedes abundance in Singapore, it should be 
noted that this study was conducted in public housing 
estates and detected mosquitoes that may have hatched 
nearby, and the relationship between weather and out-
door breeding habitats may be more complex than was 
identified herein. A longitudinal entomological study in 
the Geylang neighborhood of Singapore found that the 
outdoor Aedes population was likely to be shaped by 
rainfall through a monsoon-driven sequence of flush-
ing, drying and return of breeding habitats [32]. Taken 
together, these results suggest the differential impacts 
of weather on the Aedes population dynamics and hence 
the potential risk of exposure to mosquito bites in dif-
ferent settings, i.e. Aedes abundance inside and nearby 
public housing estates may be less sensitive to changes in 
weather compared with outdoor abundance.

Our results need to be interpreted in the light of the 
following limitations. First, we were unable to account for 
the effects of vector control programs on the observed 
Aedes abundance across space and time. Regulatory 
inspections and community efforts aimed at remov-
ing larval habitats, as well as chemical control to reduce 
adult mosquito populations, usually peak during higher 
vector breeding/dengue transmission seasons, and this 
could to some extent mask the true association between 
different weather variables and the Aedes abundance, 
with the confounding bias difficult to quantify or adjust 

Fig. 2  Estimated percentage change in the expected value of Aedes 
abundance (weekly mean catch per trap) due to a 1-SD increase in 
each covariate when all the other variables were held constant. Filled 
circles denote the posterior median estimates, and the solid lines 
denote the 95% credible intervals. The standard deviation of each 
covariate can be found in Table 1, and the estimated effects of lagged 
temperature covariates on the predicted Aedes abundance were 
visualized in Fig. 3
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for. Besides, there could be a residual spatial depend-
ence structure in our data due to factors such as potential 
ongoing expansion of Aedes mosquitoes, which may have 
been coincidentally absorbed by certain spatial covari-
ates because of confounding. Nonetheless, this issue was 
assessed via a leave-one-planning-area-out cross-vali-
dation framework with baseline predictions created to 
serve as a benchmark for model performance compari-
son, and results suggest that the spatial covariates could 
indeed enhance the out-of-sample predictive accuracy. 
In addition, our parameter estimates were derived based 
on mosquito data collected from Singapore’s high-rise 
public residential zones and thus should not be used for 
extrapolation to low-rise houses. Previous work has sug-
gested that the risks of indoor breeding of Aedes mosqui-
toes could be highly dependent on the accommodation 

type in Singapore [29]. In early 2020, the National Envi-
ronment Agency extended the deployment of Gravitraps 
to private landed residential estates [33], and as more 
data are being generated, this will shed further light on 
how Aedes abundance differs between high- and low-rise 
residential zones across the island.

Conclusions
Our study has demonstrated the potential and chal-
lenges of spatio-temporal modeling for improving the 
understanding of the main dengue vectors’ ecology and 
provided empirical evidence to guide the refinement of 
vector control strategies in the context of Singapore. Our 
findings suggest that public residential estates with older 
buildings and more nearby managed vegetation should 

Fig. 3  Predicted values of Aedes abundance (weekly mean catch per trap) at different values of lagged weekly maximum temperature with all 
the other variables held fixed at their average values. Solid lines denote the posterior median estimates and the shaded areas denote the 95% 
prediction bands
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be prioritized for vector control inspections and com-
munity advocacy to reduce the abundance of Aedes mos-
quitoes and the risk of dengue transmission. The insights 
obtained from this study could also be helpful to inspire 
future studies that attempt to understand the spatio-tem-
poral dynamics of the dengue vector population at a city 
scale, particularly in settings where entomological sur-
veillance data are less abundant and thus require mod-
eling to further narrow the knowledge gap.

Fig. 4  Box-plots of the observed site-level Aedes abundance (mean catch per trap per week) during 2017–2018 within each quintile based on 
the out-of-sample model predictions: (a), (b) leave-one-site-out cross validation and (c), (d) leave-one-planning-area-out cross validation. A small 
number of extreme values were omitted from the graph for clarity

Table 3  Percentage reduction in the out-of-sample mean 
absolute prediction error of the model compared with the 
baseline prediction

Under both types of spatial cross validation, the mean absolute prediction error 
was derived by averaging the absolute prediction errors across all sites. The 
p-values were obtained based on a two-sided paired t test

Leave-one-site-out Leave-one-planning-area-out

Ae. aegypti 3.6% (p = 0.477) 9.3% (p = 0.006)

Ae. albopictus 17.5% (p < 0.001) 14.1% (p < 0.001)
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