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Abstract

Background: Strongyloidiasis caused by Strongyloides stercoralis is a soil-transmitted helminthiasis affecting an esti-
mated 370 million people and considered one of the most neglected tropical diseases. Although mostly distributed
in tropical and subtropical areas, autochthonous infections have also been documented in north-eastern Italy, even
though the transmission presumably stopped decades ago. Because of its peculiar auto-infective cycle, strongyloidia-
sis can persist lifelong, but the pathophysiological mechanisms associated with the maintenance of such a chronic
infection are yet to be fully deciphered.

Methods: Serum levels of 23 immune factors were retrospectively assessed in a subgroup of participants in a
randomised clinical trial for the treatment of strongyloidiasis (Strong Treat). Here we included Italian subjects born
between 1931 and 1964 and diagnosed with strongyloidiasis between 2013 and 2017 (Sst, n=32). Serum samples
obtained before (BT) and 6 months (6M AT) after ivermectin treatment, as well as from age- and gender-matched
uninfected controls (CTRL, n = 34) were analysed.

Results: The assessed immune factors showed a general reduced concertation in Ss* patients and a lack of asso-
ciation with eosinophilia. In our cohort, we did not observe the classical shift towards a type 2 immune response,
since Th1 and Th2 cytokines were mostly unaltered. Instead, we observed chemokines as particularly affected by the
presence of the parasite, since IL-8, CCL3, CCL4 and CCL5 were significantly reduced in concentration in Ss* sub-
jects compared to CTRL, suggesting that immune cell recruitment to the infection site might be dampened in these
patients. This observation was further sustained by a significant increase of CCL4, CCL5 and CCL11 concentrations
6M AT. A significant raised systemic concentration of three growth factors, bFGF, PDGF-BB and IL-7 (haematopoietic
growth factor) was also observed post-treatment, indicating a potential involvement in restoring tissue integrity and
homeostasis following parasite elimination.

Conclusions: These preliminary data suggest that, in order to survive for such a long period, S. stercoralis might
suppress host responses that could otherwise result in its ejection. Our results offer novel insights in the potential
mechanisms of disease tolerance that might take place during this chronic infection, including a potential T-cell hypo-
responsiveness and a role for chemokines.
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Background

Strongyloidiasis is a chronic helminthiasis due to Stron-
gyloides stercoralis and considered to affect 30—100 mil-
lion people worldwide [1], although these estimates are
regarded as inaccurate and a prevalence of 370 million
cases was recently proposed [2]. Strongyloidiasis is pri-
marily endemic in tropical and subtropical regions; how-
ever, autochthonous transmission has also been reported
in temperate climate areas, including Europe [3]. In Italy,
according to a large epidemiological study in six northern
provinces, about 8% of Italians born before 1952 and pre-
senting eosinophilia had S. stercoralis infection [4], even
though the transmission presumably stopped decades
ago. The infection caused by S. stercoralis can, in fact,
last lifelong due to the auto-infective life-cycle, which is
peculiar of this nematode [5]. The free-living stage found
in soil generates infective iL3 larvae that can penetrate
the intact skin of the human host. Once settled in the
host’s small intestine, females reproduce by partheno-
genesis, producing eggs that hatch already in the gut, so
that L1 larvae are released with faeces. Some larvae may
mature inside the intestinal lumen into infective larvae
that can then penetrate the perianal skin again and com-
plete an autoinfection cycle. This autoinfection allows
S. stercoralis to complete its life-cycle within the human
host perpetuating the infection potentially indefinitely in
the absence of further exposure to contaminated soil [5,
6].

Strongyloidiasis is often asymptomatic or presents
with non-specific symptoms usually involving the skin,
the lung or the gut [6]. Nonetheless, in some immuno-
compromised subjects, particularly in those receiving
corticosteroid therapy or co-infected with human T cell
lymphotropic virus type 1 (HTLV-1), strongyloidiasis can
be fatal due to the development of hyper-infection or dis-
seminated disease characterised by an accelerated auto-
infection responsible for a rapid increase in the parasitic
load and the possible dissemination of larvae throughout
the host [5, 6].

The lack of a diagnostic gold standard makes the diag-
nosis of strongyloidiasis cumbersome, especially in low-
resource settings, and contributes to the underestimation
of the disease prevalence. The traditional microscopic
detection of larvae in faeces has unsatisfactory sensitiv-
ity; similarly, molecular detection of S. stercoralis DNA in
stools by PCR is still considered inadequate for screen-
ing purposes [7]. Higher sensitivity can be achieved using
serological methods, although there are some concerns
about the specificity, particularly when used in endemic
areas, due to possible cross-reactions with other nema-
todes [8, 9].

From a pathophysiological point of view, the mainte-
nance of the chronic infection without the development
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of severe strongyloidiasis seems to be the result of a
fine interplay between the host immune system and
the pathogen, although the specific mechanisms are yet
to be fully deciphered [10]. Indeed, compared to other
parasites, little is known about S. stercoralis mechanisms
of interaction with its human host. Previous clinical
and experimental studies have found that, as for most
helminths, S. stercoralis elicits a response that involves
the activation of eosinophils and neutrophils and an
increased release of type 2 cytokines, especially interleu-
kin (IL-) 4, IL-5 and IL-13 [11-18]. Additionally, S. ster-
coralis co-infection in patients suffering from different
co-morbidities, namely HTLV-1 or type 2 diabetes mel-
litus, was shown to modulate the host response towards
a down-regulation of the Thl immune response [13,
19-22]. Moreover, conditions that have a major impact
on the host immune system, such as co-infection with
HTLV-1 or treatment with immunosuppressive drugs,
have been postulated to act as “triggers” for the dissemi-
nation [6, 11, 23].

In recent years, few studies have investigated the immu-
nological status in human strongyloidiasis, and associa-
tions between anti-inflammatory and type 2 cytokines
at both the systemic and cellular level were reported in
asymptomatic cases. Specifically, subjects suffering from
strongyloidiasis were reported to exhibit increased anti-
inflammatory and decreased pro-inflammatory cytokines
and this profile was reverted after anti-helminthic treat-
ment [14]. Similarly, increased frequencies of CD47
T cells expressing type 2 cytokines (namely, IL-4, IL-5
and IL-13) and decreased frequencies of CD4" T cells
expressing type 1 or 17 cytokines were observed in in
vitro cultures of whole blood in response to Strongyloides
antigens [13].

In the study here presented, we hypothesised that the
retrospective investigation of serum levels of immune
factors in a unique population of elderly Italian sub-
jects diagnosed with non-disseminated strongyloidia-
sis between 2013 and 2017 and supposedly infected for
decades, might contribute in further understanding the
mechanisms of maintenance of parasitism in chronic
strongyloidiasis.

Methods

Study population and sample collection

Patients with strongyloidiasis were enrolled in the con-
text of a randomised controlled clinical trial (Strong
Treat clinical trial), the objective of which was to evalu-
ate two different ivermectin regimens for the treatment
of non-disseminated strongyloidiasis (ClinicalTrial.gov,
NCT01570504) [24]. All patients here included were
enrolled at the IRCCS Sacro Cuore Don Calabria Hos-
pital (Negrar, Italy) and were subjected to a one-year
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follow-up with visits and blood examinations performed
6 and 12 months post-treatment.

For the present study, the following inclusion crite-
ria were applied: (i) diagnosis of strongyloidiasis estab-
lished by detection of S. stercoralis larvae in stools and/
or positive serology (inclusion of participants in the
Strong Treat trial followed a serological threshold crite-
rion, as described in the following paragraph); (ii) Italian
origin without any history of travelling to strongyloi-
diasis endemic areas; (iii) availability of serum samples
obtained at baseline (i.e. before treatment administra-
tion) and 6 months after treatment. Patients with other
known parasitic infections were excluded (Additional
file 1: Figure S1).

Age and gender matched non-infected controls were
selected among subjects of Italian origin, having a neg-
ative serology for strongyloidiasis and whose serum
had been stored in our biobank (Tropica Biobank,
Protocol n. 50950/2019, approved by the Ethical Com-
mittee for Clinical Research of Verona and Rovigo
Provinces). As for patients of the Strong Treat clini-
cal trial, subjects with known primary and secondary
immunodeficiencies (such as oncological, rheuma-
tological conditions, but also genetic conditions) and
those under treatment with steroids, monoclonal
antibodies and other immunosuppressant drugs were
excluded from the selection.

All sera analysed were collected between 2013 and
2017, aliquoted and stored at — 80 °C until further use.

Diagnosis of strongyloidiasis and response to treatment
Diagnosis of strongyloidiasis was established as reported
by Buonfrate et al. [24]. Briefly, presence of larvae in
stools was evaluated through direct parasitological exam-
ination by microscopy and/or agar plate culture. The
presence of anti-Strongyloides antibodies in serum was
assessed using either an in-house immunofluorescent
test (IFAT) [25] or commercially available ELISA assays
(Strongyloides serum ELISA, IVD Research, Carlsbad,
CA, USA, or Strongyloides ratti ELISA, Bordier Affinity
Products, Crissier, Switzerland). According to the Strong
Treat clinical trial, the diagnosis of strongyloidiasis was
established based either on the detection of larvae in
stools or on a positive serology at high titre, i.e. IFAT titre
of at least 1:160, IVD Research ELISA normalised opti-
cal density (OD) > 2, Bordier ELISA normalised OD >2.5
[24].

The primary outcome was defined as clearance from
infection (established as negative agar plate culture and
negative serology, or a positive serology with a two-fold
decrease in IFAT titre or ELISA normalised OD com-
pared to baseline) assessed 12 months after treatment.
The clearance of infection 6 months after treatment
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(defined as per primary outcome) was defined among
secondary outcomes.

Non-infected controls were defined as having a nega-
tive IFAT result (i.e. IFAT titre =0).

Multiplex bead suspension assay (Bio-Plex)
The serum concentration of 27 cytokines, chemokines
and growth factors were simultaneously quantified using
the Bio-Plex Pro'™ Human Cytokine 27-plex immuno-
assay (Bio-Rad, Hercules, CA, USA) on a Bio-Plex 200
System (Bio-Rad). The concentration of the following
targets was assessed: IL-1p; IL-1ra; IL-2; IL-4; IL-5; IL-6;
IL-7; IL-8 (or C-X-C motif chemokine—CXCLS8); IL-9;
IL-10; IL-12p70; IL-13; IL-15; IL-17A; eotaxin (C-C motif
chemokine 11—CCL11); basic fibroblast growth factor
(bFGEF); granulocyte-colony stimulating factor (G-CSF);
granulocyte-macrophage colony-stimulating factor (GM-
CSEF); interferon gamma (IFN-y); interferon gamma-
induced protein 10 (IP-10, also known as CXCL10);
monocyte chemoattractant protein 1 (MCP1 or CCL2);
macrophage inflammatory proteins la (MIP-la or
CCL3); macrophage inflammatory proteins 1 (MIP-1B
or CCL4); platelet-derived growth factor subunit B
(PDGF-BB); RANTES (CCL5); tumour necrosis factor
(TNF); and vascular endothelial growth factor (VEGF).
Samples were randomly distributed across two 96-well
plates and assessed according to the manufacturer’s
instructions, using 12.5 pl of serum for each sample.
Quality controls consisting of a pool of sera spiked with
three different known amounts of standard (i.e. zero,
medium or high) were tested in duplicate on each plate.
The performance of the assay, assessed for each target
individually, was evaluated through the percentage recov-
ered concentration (comprised in the range 75-125%)
and the percentage coefficient of variation on replicates
(CV below 20%) measured for each standard within
a plate. The variability between plates, was assessed
through the % CV on internal quality controls (geometric
mean on the CV of 6%). In order to avoid missing values,
arbitrary values corresponding to the mean lowest con-
centration observed on the two plates divided by two or
to the mean highest observed concentration multiplied
by two was assigned to all samples out of range (OOR).
Considering all the above-mentioned criteria, IL-5,
IL-10, IL-15 and GM-CSF were excluded from further
analyses due to the high variability between plates or very
high frequency (> 89%) of OOR values, which hampered
a proper calculation of their concentration.

Statistical analysis

Statistical analyses were performed using STATA 14.0
(StataCorp LLC, College Station, TX, USA) and Graph-
Pad Prism v 8.4.0 (GraphPad Software, San Diego, CA,
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USA). Comparisons between Strongyloides-infected
patients and uninfected controls were performed using
the Mann-Whitney U-test, while pre- and post-treatment
paired comparisons were assessed with the Wilcoxon
signed rank test. All tests were two-tailed and the signifi-
cance level was set at 0.05.

Non-parametric Spearman correlation and univari-
ate regression analyses were performed to assess the
association and the dependence between absolute
eosinophil count measured on admission and cytokine
concentrations.

Receiver operator characteristic (ROC) curves were
built to assess the ability of selected variables in discrimi-
nating between Strongyloides-positive patients (Ss*) and
uninfected controls. For each variable, the best cut-off
was defined through the Youden’s index computing the
best combination of sensitivity (SE) and specificity (SP).
Marker combination was evaluated using PanelomiX
[26] considering all immune factors significantly altered
in Ss™ patients at baseline, eosinophilia and white blood
cell (WBC) count as variables. Only panels comprising a
maximum of three markers were allowed and optimisa-
tion of the global accuracy was chosen for combination
and cut-off selection.

Results

Population characteristics

The demographic description of patients suffering from
strongyloidiasis (Ss™, n=32) at baseline and of unin-
fected control subjects (CTRL, n=34) is summarised
in Table 1. As shown, no differences in age or gender
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were detected between the two groups, while Sst sub-
jects showed a significantly higher eosinophil count,
expressed as both absolute count (Mann-Whitney
U-test: Z=—4.057, P<0.0001) and percentage of total
WBC (Mann-Whitney U-test: Z=—2.983, P=0.0029).
A slight, yet significant, increased WBC count was also
recorded in infected subjects (Mann-Whitney U-test:
Z=—2.066, P=0.0388).

The clinical and haematological description of Ss™
patients at baseline (BT) and 6 months after treatment
(6M AT) is compared in Table 2. A significant decreased
eosinophil count was observed 6 months after treat-
ment (absolute count, Mann-Whitney U-test, Z=4.451,
P <0.0001), while the WBC count remained unvaried. At
baseline, 47% of patients had S. stercoralis larvae in their
stools and 63% had a baseline IFAT titre > 160; this latter
proportion significantly decreased to 3% 6 months after
treatment. The majority of patients were also tested by
qPCR, a method that is recommended as a confirmatory
test rather than as a primary screening tool [7]. Indeed,
50% of patients were negative at baseline, although this
proportion significantly increased to 88% after treatment.

The majority (69%) of Ss* subjects presented clinical
symptoms on admission (defined as pruritus, skin rash,
abdominal pain/distension, respiratory distress), 41% of
which having two or more manifestations. Six months
post-treatment clinical manifestations were improved
in 59% of subjects presenting symptoms at baseline,
ceased in 9% and persisted in 32%. Overall, among the 32
patients with strongyloidiasis here tested, 69% were con-
sidered to have responded to therapy as soon as 6 months

Table 1. Demographic description of uninfected and S. stercoralis infected (baseline) subjects

CTRL (n=34) Sst(n=32) P-value

Gender, F (n) 13 (38%) 13 (41%) ns
Age (years), median (IQR) 72 (61.5-78.0) 74 (63.5-78) ns
Eosinophils (cells/ul), median (IQR) 290 (100-622.5) 815 (550-1078) <0.0001
Eosinophils (%), median (IQR) 3.79 (1.515-7.425) 1045 (6.4-14.55) 0.0029
WBC (cells/ul), median (IQR) 6305 (5675-12,230) 7470 (6600-9305) 0.0388
Geographical origin, Italy (n) 34 32
S. stercoralis stool exam, n (%)

Positive 0 15 (47)

Negative 16 (47) 16 (50)

Unknown 18 (53) 1(3)
S. stercoralis serology, n (%)

Positive 0 32 (100)

Negative 34 (100) 0

Notes: Statistical differences were assessed with the Mann-Whitney U-test, except for gender, which was tested with Fisher’s exact test. Statistical significance was set

at P<0.05

Abbreviations: CTRL, uninfected controls; Ss™, S. stercoralis infected individuals; IQR, interquartile range; WBC, white blood cells; ns, not significant
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Table 2. Clinical description of infected subjects before (BT) and 6 months after treatment (6M AT)
Baseline—BT (n=32) 6M AT (n=32) P-value
Eosinophils (cells/ul), median (IQR) 815 (550-1078) 245 (117.5-367.5) <0.0001
Eosinophils (%), median (IQR) 1045 (6.4-14.55) 3.16 (1.465-5.6) <0.0001
WBC (cells/ul), median (IQR) 7470 (6600-9305) 7425 (6168-8308) ns
S. stercoralis stool exam, n (%) <0.0001
Positive 15 (47%) 0
Negative 16 (50%) 29 (91%)
Unknown 1 (3%) 3 (9%)
S. stercoralis IFAT titre, n (%)° <0.0001
<160 11 (34%) 28 (88%)
>160 20 (63%) 3 (9%)
S. stercoralis qPCR, n (%) <0.0001
Positive 14 (44%) 1 (3%)
Negative 16 (50%) 28 (88%)
Unknown 2 (6%) 3 (9%)
Clinical symptoms BT, n (%)
Present 22 (69%) na
Absent 10 (31%) na
Detailed clinical symptomsb, n (%)
Pruritus 17 (77%) na
Skin rash 9 (41%) na
Abdominal pain/distension 3 (14%) na
Respiratory symptoms 6 (27%) na
Clinical symptoms 6M AT®, n (%)
Improved na 13 (59%)
Persist na 7 (32%)
Ceased na 2 (9%)
Response to treatment 12M AT, n (%)
Yes 24 (75%) na
No 8 (25%) na
Response to treatment 6M AT 1 (9%)
Yes 22 (69%) na
No 10 (31%) na

2 Missing information for one subject, who had positive serology by ELISA

b Computed over the 22 subjects with clinical manifestations at baseline

¢ Response determined 12 months after treatment completion as primary outcome

4 Response determined 6 months after treatment as secondary outcome

Notes: Statistical significance was assessed using the Wilcoxon signed rank test for continuous variables or with the Fisher’s exact test for categorical variables.

Statistical significance was set at P<0.05

Abbreviations: IQR, interquartile range; WBC, white blood cells; na, not applicable; ns, not significant

post-treatment, and 75% had responded by the end of the

12-month follow-up.

Infected subjects show decreased systemic levels
of immune factors compared to uninfected controls

In the population of elderly Italian subjects here investi-
gated, we observed an overall decreased concentration
of immune factors in Ss™ compared to CTRL (Fig. 1,

Additional file 1: Table S1). Among the Thl cytokines
assessed (i.e. IL-2, IL-12p70, TNF and IFN-y), only TNF
was significantly decreased in Ss* subjects (Mann-Whit-
ney U-test: Z=2.073, P=0.0382). Similarly, IL-9 was the
only Th2 cytokine significantly altered (Mann-Whitney
U-test: Z=2.284, P=0.0224) among those tested (IL-4,
IL-6, IL-9 and IL-13).

In our population, chemokine concentrations were par-
ticularly affected by S. stercoralis infection. Indeed, four
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Fig. 1. Immune factors significantly altered in infected patients at baseline. Scatter plots showing the decrease in immune factor concentrations
in serum from S. stercoralis-infected patients (Ss*, n=32) compared to uninfected controls (CTRL, n=34). The line on each graph represents the
median concentration and bars the interquartile range. Statistical significance was assessed using the Mann-Whitney U-test, and the exact P-value is
reported on each plot

out of seven chemokines, i.e. IL-8 (Mann-Whitney U-test:
Z=2.021, P=0.0432), CCL3 (Mann-Whitney U-test:
Z=2.560, P=0.0105), CCL4 (Mann-Whitney U-test:
Z=2.258, P=0.0239) and CCL5 (Mann-Whitney U-test:
Z=2.019, P=0.0435), were significantly diminished in
infected subjects compared to CTRL. Similarly, infection
was also associated with an altered profile of two growth
factors, namely bFGF and G-CSF (Mann-Whitney U-test:
Z=2.225, P=0.0261 and Z=2.028, P=0.0426, respec-
tively). Correlations between immune factors and age
were computed in order to assess for dependency in our
population of elderly individuals. A significant, although
weak, correlation was recorded only for IL-2 (Spearman
correlation: rho=0.2747, P=0.0256), IL-12p70 (Spear-
man correlation: r70=0.3137, P=0.0103) and CCL5
(Spearman  correlation: rho=—0.3775, P=0.0018)
(Additional file 1: Table S2).

ROC analysis was used to further evaluate the ability of
Sst-associated immune factors to discriminate between
the two groups of subjects. TNF, IL-8, IL-9, CCL3, CCL4,
CCL5, bFGF and G-CSF discriminated between Ss* and
controls with percent area under the curve (AUC) rang-
ing from 64.4% to 68.3%, with CCL3 showing the best
individual accuracy defined as the best combination of
SE and SP (96.9% and 38.2%, respectively) (Additional
file 1: Table S3a). When assessed in combination with
eosinophilia (i.e. >400 cells/pl) and absolute WBC count,
a panel comprising eosinophilia, IL-9 and CCL3 was
highlighted as having 87.6% AUC (85.3% SP—87.5% SE),
as soon as two out of the three variables are above (or
below) their respective cut-offs. This combination signifi-
cantly improved the discriminatory ability of eosinophilia
(P=0.0005—De Long’s test), which alone was the best
predictor (Additional file 1: Table S3a, b).
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Ivermectin treatment induces changes in the systemic
concentrations of immune factors

When the concentration of immune factors assessed
before treatment was compared to the one measured
6 months after treatment, we observed a decrease in two
Th1 cytokines and an increase in chemokines and growth
factors (Fig. 2, Additional file 1: Table S1). Among Thl
cytokines, the concentrations of IL-2 (Wilcoxon signed
rank test: Z=2.124, P=0.0337) and IFN-y (Wilcoxon
signed rank test: Z=2.534, P=0.0113), which were unal-
tered at baseline compared to controls, dropped follow-
ing treatment. TNEF, which was decreased at baseline
compared to controls, remained unaltered.

CCL4 and CCL5 chemokines showed a significantly
increased concentration (Wilcoxon signed rank test:
Z=-2309, P=0.0209 and Z=-2.122, P=0.0338,
respectively) when measured after treatment, with a
reverted profile compared to baseline. Six months after
ivermectin treatment, the concentration of CCL11
rose very significantly (Wilcoxon signed rank test:
Z=—4.226, P<0.0001) from the same levels as controls
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observed at baseline. Three growth factors, IL-7 (hemat-
opoietic growth factor) (Wilcoxon signed rank test:
Z=-—2.051, P=0.0403), bFGF (Wilcoxon signed rank
test: Z=—2.625, P=0.0087) and PDGF-BB (Wilcoxon
signed rank test: Z=—2.786, P=0.0053) showed raised
concentration after treatment as well. Of these, bFGF was
also decreased at baseline compared to CTRL. Finally,
IL-1ra had a decreased concentration after treatment
compared to the baseline (Wilcoxon signed rank test:
Z=2.216, P=0.0267). All other targets remained unvar-
ied after treatment.

Variation in immune factor concentration according

to the presence of clinical symptoms in Ss* subjects

at baseline

Sixty-nine percent of subjects with strongyloidia-
sis presented clinical symptoms before treatment
(Table 2). In order to evaluate a potential association
between the immune status and clinical manifestations,
we compared the circulating levels of the 23 studied
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Fig. 2. Immune factors significantly altered after ivermectin treatment. Line plots showing the variation in immune factor concentrations observed
in serum from S. stercoralis-infected patients (Ss*, n=232), before treatment (BT) and 6 months after ivermectin treatment (6M AT). The profile for
each individual patient is reported. The arrow beside each molecule indicates whether a significant increase or decrease in systemic concentration
was observed in Ss* patients. Statistical significance was assessed using the Wilcoxon signed rank test and the exact P-value is reported on each
plot
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factors in Ss* patients with (# =22) or without (#=10)
clinical manifestations at admission (Fig. 3, Addi-
tional file 1: Table S4). Among the tested molecules, 9
showed altered concentration (Mann-Whitney U-test):
IL-2 (Z=3.308, P=0.0009); IL-12p70 (Z=2.856,
P=0.0043); IL-4 (Z=3.504, P=0.0005); IL-17A
(Z=3.004, P=0.0027); IL-8 (Z=2.278, P=0.0227);
CCL11 (Z=2.887, P=0.0039); IL-1p (Z=2.057,
P=0.0396); IL-7 (Z=2.980, P=0.0029); and G-CSF
(Z=3.416, P=0.0006). All these molecules were lower
in concentration in patients with symptoms compared
to those without symptoms, which instead exhibited
higher levels than controls. Considering the targets
modulated by S. stercoralis infection (Fig. 1), only IL-8
and G-CSF were also affected by the clinical manifesta-
tions, suggesting that the results observed for the com-
parison Sst vs CTRL might be influenced by patients
with clinical signs that present a particularly low con-
centration of these molecules. All other factors signifi-
cantly decreased in Sst vs CTRL were not associated
with clinical manifestations.
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Immune factors associated with strongyloidiasis

at baseline are independent from eosinophil count
Eosinophilia has been long time considered as an indi-
cator of suspicion of S. stercoralis infection [27, 28],
although its utility for screening is still debated [29]. We
thus assessed whether the immune factors highlighted
as significantly associated with Ss* at baseline, were also
associated with the absolute count of eosinophils. As
shown in Fig. 4a, according to the Spearman statistics no
correlation was observed between eosinophil count, nor
WBC, at admission and any of the assessed molecules.
Significant (P<0.05) positive or negative correlations,
with Spearman indices varying from low (rho=10.28|)
to moderate (rho=|0.47|) were instead observed
for the following molecules: IL-6 and lymphocytes
(rho=—0.4288) or neutrophils (r70=0.3415), IL-13 and
RBC (rho=0.3111) or neutrophils (r70o=—0.2781), IL-
1ra and lymphocytes (rho=—0.2879), bFGF and plate-
lets (rho=0.3310), PDGF-BB and platelets (rho=0.4744)
or basophils (rh0=0.2817) (Fig. 4a). No correlation was
recorded between any haematological parameter and
chemokines. The independence between the studied
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Fig. 3. Immune factors significantly altered according to clinical symptoms. Tukey box-plots showing the variation in immune factor
concentrations observed in S. stercoralis-infected patients classified according to the absence (no, n=10) or the presence (yes, n=22) of clinical
symptoms at baseline. The '+ on each plot represents the mean. Statistical significance was assessed using the Mann-Whitney U-test, and the exact
P-value is reported on each plot
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WBC: white blood cells; EOS: eosinophils; PLT: platelets; RBC: red blood cells; LYMPH: lymphocytes;
NEUT: neutrophils; MONO: monocytes; BASO: basophils

b Predictor: Eosinophil count (cells/pl)

Variable [pg/ml] Intercept (95% Cl) p-value R?

TNF -0.01 -0.02 0.01 0.24 0.022
IL-9 -0.01 -0.03 0.01 0.23 0.023
IL-8 0.00 -0.04 0.04 0.90 0.000
CCL3 0.00 0.00 0.00 0.65 0.003
CCL4 -0.01 -0.03 0.01 0.21 0.025
CCL5 32.33 -15.46 80.12 0.18 0.028
bFGF 0.00 -0.01 0.00 0.26 0.020
G-CSF -0.03 -0.12 0.06 0.56 0.006

strongyloidiasis at baseline

Fig. 4. Relation between immune factors and eosinophilia. a Correlation between haematological parameters and the serum concentration of
immune factors. Correlation with WBC and EOS was computed on the entire population (n=66, Ss™ n=32, CTRL n=34), correlation with the other
cell types was computed on n =53 patients (Ss™ n=19, CTRL n = 34) due to missing information for some infected subjects. Significant correlations
(P<0.05) according to the Spearman statistics are marked with an asterisk. Colour-code indicates spearman rho coefficient. b Univariate regression
analysis showing the independence between eosinophil absolute count (cells/ul) and the serum concentration of the immune factors decreased in

molecules and eosinophilia was also confirmed by linear
regression analysis (Fig. 4b) where an absence of associa-
tion between the assessed variables was observed.

Discussion

In the present study, we investigated the systemic lev-
els of 23 immune mediators, including cytokines,
chemokines and growth factors, in the serum of Italian
subjects affected by non-disseminated strongyloidiasis.
Indeed, these subjects born between 1931 and 1964 and
diagnosed with strongyloidiasis between 2013 and 2017,
presumably contracted the infection decades ago, when

transmission was still active in Italy as in other Mediter-
ranean countries [4, 30, 31]. Since none of the subjects
here investigated had visited endemic countries, they
were not exposed to re-infection and did not present
co-infection with other soil-transmitted helminths. We
believe that this population represents a unique opportu-
nity to study the mechanisms of maintenance of parasit-
ism and of disease tolerance in strongyloidiasis.

As for other helminths, S. stercoralis has been shown
to modulate the host immune system towards a predomi-
nant Th2 response [11, 12, 18, 32-34]. In in vitro and ex
vivo studies analysing samples from patients affected by
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pathological conditions known to elicit a type 1 response,
a shift from a Th1 to a Th2 response was reported when
co-infected with S. stercoralis [18-20, 22, 35]. According
to evidence mainly drawn from murine studies, intestinal
epithelial cells (IECs) contribute to elicit type 2 immu-
nity, through the release of alarmins (including IL-25 and
IL-33). These cytokines have been reported to stimulate
tissue-resident type 2 innate lymphoid cells (ILC2) to
release Th2 cytokines (such as IL-4, IL-5, IL-9 and IL-13)
involved in the recruitment of eosinophils and alterna-
tively activated macrophages, and in promoting worm
expulsion and wound healing [36-39]. In agreement with
these observations increased circulating levels of Th2 and
anti-inflammatory cytokines were reported in a popula-
tion of subjects affected by strongyloidiasis from endemic
areas [14]. A number of studies investigating directly
patients’ plasma or isolated lymphocytes cultured in
vitro, have further revealed the association between
S. stercoralis infection and raised type 2 cytokines,
while type 1 (especially IFN-y) and type 17 factors were
reduced (Additional file 1: Table S5). Conversely, in our
population of long-lasting infections, we did not observe
this classical profile but rather a general decrease in
immune factors, with chemokines and growth factors
being the most affected groups of molecules. Type 1 and
type 2 cytokines exhibited, instead, profiles similar to
those observed in control subjects.

The co-evolution over millennia of helminths and their
human host has likely contributed to the adaptation of
the host immune system to tolerate these parasites [38].
Strongyloides stercoralis exemplifies this aspect in that,
due to its auto-infective cycle, it can generate a chronic
infection lasting indefinitely, which can even remain
asymptomatic for decades [30]. It has been proposed that
disease tolerance might establish during chronic infec-
tions as both an alternative mechanism of host defence
and as a tool for the parasite to dampen resistance (i.e.
worm expulsion) thus ensuring the continuation of its
life-cycle [38, 40, 41]. Moreover, it has been proposed
that infective and auto-infective larvae might be associ-
ated with different host responses [12, 42].

With few exceptions, in our population, overall, we did
not observe differences in type 1 and type 2 cytokines
between chronically infected patients and uninfected
controls, nor after treatment of infected subjects.
Although they should be confirmed on a larger number of
samples, these results open the question whether mecha-
nisms of T-cell hypo-responsiveness might contribute to
the establishment of long-lasting S. stercoralis infections.
Indeed, a suppressed type 2 immunity, characterised by
hypo-responsive Th2 cells with impaired production of
Th2 cytokine, has already been associated with chronic-
ity in murine schistosomiasis and filariasis [43—45]. More
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in depth functional analysis of T-cell responsiveness from
chronically infected patients from non-endemic coun-
tries - as those here investigated - should thus be carried
out to further understand the role of T cells in disease
tolerance and in the response to auto-infective larvae in
human strongyloidiasis.

As previously mentioned, in our population we
observed a number of chemokines to be affected by
both the infection and the treatment. The functional
role of chemokines in driving immune cell recruitment
in strongyloidiasis remains largely unexplored. To the
best of our knowledge, the association between circulat-
ing chemokines and S. stercoralis infection has only been
assessed in patients either co-infected with tuberculo-
sis [46] or suffering from type 2 diabetes [21]. Although
patients exclusively suffering from strongyloidiasis were
not included, both those studies showed chemokines
down-modulation in patients with strongyloidiasis and
a reverted profile after anti-helminthic treatment. These
results partly agree with those observed in the present
work, in which, a significant decrease in inflammatory
chemokines IL-8, CCL3, CCL4 and CCL5 was observed
at baseline in infected patients compared to controls, and
a restored concentration was detected after treatment for
CCL4 and CCL5; CCL11 also showed a raised concentra-
tion AT. CCL3, CCL4, CCL5 and CCL11 partly share the
same receptors (i.e. CCR1, CCR3 and CCR5) which are
mainly expressed on monocytes and macrophages, baso-
phils, eosinophils and T cells [47]; while IL-8 is mainly
implicated in neutrophil trafficking. Being involved in
the migration of immune cells to the site of inflamma-
tion, these molecules might play an important role in the
resistance to the infection, and thus in parasite elimina-
tion. A decreased chemokine concentration in chroni-
cally infected patients might instead be associated with
an impaired recruitment of inflammatory cells (includ-
ing eosinophils, macrophages, neutrophils and NK cells)
to the site of inflammation and, although speculative, it
could be hypothesised that this could contribute to dis-
ease tolerance.

It is worth noticing that despite the baseline eosino-
philia, eosinophil chemo-attractants CCL11 and CCL5
did not correlate with eosinophil count and their con-
centration was either unaltered (CCL11) or decreased
(CCL5) in S. stercoralis-infected subjects. Moreover, the
significant drop in eosinophil count observed following
ivermectin treatment was not accompanied by a decrease
in CCL11 and CCL5 concentration, which instead sig-
nificantly increased. Eosinophil response to treatment
in strongyloidiasis might be variable. For instance, in
our cohort, as well as in the Strong Treat clinical trial,
a significant decrease in eosinophil count was recorded
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as soon as 17 days post-treatment (data not shown) [24],
while Anuradha et al. [14] did not observe differences six
months after treatment. Importantly, it has been reported
that S. stercoralis-derived factors exhibit chemoattract-
ant properties on murine eosinophils iz vitro upon IL-5
priming, indicating that mechanisms other than classi-
cal host chemokines contribute to eosinophil chemotaxis
[48]. More in depth functional analyses of eosinophils
isolated from these patients should be carried out to
more precisely define the role of these cells and of asso-
ciated cytokines in the pathogenesis of chronic strongy-
loidiasis. Nonetheless, in our dataset CCL11 exhibited
a highly significantly raised systemic concentration fol-
lowing treatment, while at baseline showed the same
level as controls. At baseline, this chemokine was also
significantly more abundant in the serum of asympto-
matic patients compared to those presenting with clinical
manifestations. Based on CCL11 investigations in other
pathological conditions and its role in eosinophil chemo-
taxis to the infection site [49, 50], it could be hypothe-
sised that this chemokine could be involved in eosinophil
recruitment to contribute to parasite elimination and tis-
sue remodelling following treatment.

Not surprisingly, some growth factors showed altered
concentrations in the analysed samples with bFGE,
PDGE-BB and IL-7 (or haematopoietic growth factor)
being increased post-treatment, suggesting that these
molecules might be involved in restoring tissue integrity
and homeostasis following parasite elimination. A Th2
mediated repair has, in fact, been hypothesised to occur
in helminthiasis and a potential role for wound healing
processes in both disease tolerance and resistance has
been proposed [51].

Non-disseminated chronic strongyloidiasis can be
either asymptomatic or associated with general clinical
symptoms [6]. In our population, a number of cytokines
were significantly lower in concentration in patients
with symptoms. Of these, only IL-8 and G-CSF were
associated with infection at baseline compared to con-
trols indicating that, at least for these cytokines, the
results could be influenced by the particularly low levels
observed in symptomatic patients. Since all other mol-
ecules associated with the infection were not influenced
by the presence of symptoms, it is likely that their levels
reflect an alteration of the immune status as a result of
the chronic presence of the parasite. Nonetheless, we
cannot exclude that mechanisms other than disease tol-
erance might establish in these patients and that the
overall decrease in immune factors might be exacerbated
in patients with a slightly more severe clinical presenta-
tion. Indeed, patients’ stratification according to clinical
manifestations revealed an overall lower, although not
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significant, concentration of immune factors in sympto-
matic patients. Interestingly, the molecules the concen-
tration of which was significantly lower in symptomatic
patients, exhibited higher concentrations in asympto-
matic patients when compared to controls. Despite the
limited number of analysed samples, this result could
indicate that a different response might be occurring in
this two sub-groups.

In non-endemic countries, increased eosinophil counts
might raise, under certain circumstances, suspicion of
strongyloidiasis. In the attempt to extend the potential
utility of circulating immune mediators beyond disease
pathophysiology, we also evaluated their potential for
discriminating between infected and uninfected patients.
Although none of the molecules in exam showed individ-
ually high accuracy (<68%), the combination of IL-9 and
CCL3 with eosinophil count, significantly improved the
accuracy of the latter in discriminating between the two
groups. This result, although preliminary and performed
on a limited dataset, highlights the importance of the
host-response to the infection not only to understand the
mechanisms of disease but also as potential biomarker to
highlight individuals possibly at risk of chronic infection,
deserving further investigations.

This study presents some limitations that should be
taken into account. First, since exploratory, we decided
to assess a wide commercial panel of cytokines. Although
some relevant novel aspects were revealed, chemokines
for instance, some other important mediators such as
alarmins (IL-25 and IL-33) and regulatory cytokines as
IL-27, IL-37 and TGF-$ were not examined. Moreover,
some key mediators as IL-5 and IL-10 were not efficiently
measured, although included in the experimental panel.
In order to evaluate the immune response in a broader
context, investigations should also be extended to such
molecules.

The study population encompasses elderly subjects
that, in addition to strongyloidiasis, might suffer from
age-related pathologies or conditions. To minimise
potential biases, the subjects of the control group were
selected to match patients’ age, so that the unknown
presence of potential age-related conditions would be
represented among the two groups. Nonetheless, we can-
not exclude that such conditions might also influence
the level of the assessed immune factors. Only a limited
number of patients was available for the present study; in
the future, investigations should be extended to a larger
number of samples, ideally collected in a multi-centre
study. In order to be able to evaluate the trend in the
host immune response on a relatively small population
and since the exploratory nature of our study, we did not
perform a statistical correction for the comparison of the
23 factors on the same population. The extension of the
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study to a larger population will allow achieving a higher
statistical power and obtaining more robust results, with
potential clinical implications.

Conclusions

The immune response to S. stercoralis, and to helminths
in general, has largely been studied in animal mod-
els [52]. Although useful to evaluate the response in a
controlled system, these models can mimic only some
of the aspects of the human infection. We believe that
the here analysed population offers a unique window
to study the host response to S. stercoralis auto-infec-
tion in chronic long lasting human strongyloidiasis in
the absence of re-infection. Our preliminary results
revealed novel insights in the potential mechanisms
of disease tolerance that might take place during this
chronic infection, including a potential T-cell hypo-
responsiveness and a role for chemokines. The peculiar
auto-infective cycle of S. stercoralis makes this parasite
unique among other helminths and this might explain
the difficult generalisation of some known pathophysi-
ological aspects to S. stercoralis. More in depth inves-
tigations on clinical samples from chronically infected
patients not subjected to re-infection will contribute
in elucidating functional aspects of the maintenance of
parasitism in strongyloidiasis. Moreover, understand-
ing such mechanisms will also pave the way for stud-
ies on the association between chronic strongyloidiasis
and susceptibility to autoimmune diseases.
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