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Abstract 

Background: Masked palm civets are known to play an important role in the transmission of some zoonotic patho-
gens. However, the distribution and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Crypto-
sporidium spp. in these animals remain unclear.

Methods: A total of 889 fecal specimens were collected in this study from farmed masked palm civets in Hainan, 
Guangdong, Jiangxi and Chongqing, southern China, and analyzed for these pathogens by nested PCR and DNA 
sequencing.

Results: Altogether, 474 (53.3%), 34 (3.8%) and 1 (0.1%) specimens were positive for E. bieneusi, G. duodenalis and 
Cryptosporidium sp., respectively. Sequence analysis revealed the presence of 11 novel E. bieneusi genotypes named 
as PL1–PL11 and two known genotypes Peru8 and J, with PL1 and PL2 accounting for 90% of E. bieneusi infections. 
Phylogenetically, PL4, PL5, PL9, PL10 and PL11 were clustered into Group 1, while PL1, PL2, PL3, PL6, PL7 and PL8 were 
clustered into Group 2. Assemblage B (n = 33) and concurrence of B and D (n = 1) were identified among G. duodena-
lis-positive animals. Further multilocus genotyping of assemblage B has revealed that all 13 multilocus genotypes in 
civets formed a cluster related to those from humans. The Cryptosporidium isolate from one civet was identified to be 
genetically related to the Cryptosporidium bamboo rat genotype II.

Conclusions: To the best of our knowledge, this first report of enteric protists in farmed masked palm civets suggests 
that these animals might be potential reservoirs of zoonotic E. bieneusi and G. duodenalis genotypes.
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Background
Enterocytozoon bieneusi, Giardia duodenalis and Crypto-
sporidium spp. are enteric pathogens in humans and 

various wild and domestic animals, causing diarrhea 
and other gastrointestinal symptoms. Humans can be 
infected by these pathogens through contact of contami-
nated fomites or ingestion of contaminated food or water 
(food-borne or water-borne transmission) [1–3].

The identification of genetic diversity in these patho-
gens has accelerated in recent years. Thus far, nearly 500 
E. bieneusi genotypes have been identified, belonging to 
11 phylogenetic groups with different host preferences, 
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including the zoonotic Group 1 and host-adapted Groups 
2–11 [2]. Similarly, eight distinct G. duodenalis assem-
blages of A–H with different host ranges have been 
identified by genetic characterization [4]. Among them, 
assemblages A and B are the most common causes of 
human giardiasis [5]. There are also nearly 40 recognized 
Cryptosporidium species and at least as many genotypes 
of unknown species status, most of which have host pref-
erence [3]. Recently, high-resolution multilocus geno-
typing (MLG) tools have been employed to elucidate the 
genetic heterogeneity of these pathogens in humans and 
animals [6–8].

Masked palm civets (Paguma larvata), belonging to the 
order Carnivora and family Viverridae, are wild mam-
mals distributed widely in Asia [9]. In southern China, 
they are raised as new farm animals, as their meat is con-
sidered a culinary delicacy. In 2003, masked palm civets 
gained attention due to their potential involvement in the 
outbreak of severe acute respiratory syndrome (SARS), 
which originated from southern China and spread to 
over 30 countries [10]. In addition, results of other stud-
ies have suggested that they may play a role in the trans-
mission of other zoonotic pathogens such as Salmonella 
enterica, Campylobacter spp., Bartonella henselae and 
Toxoplasma gondii [11–14]. Thus far, the occurrence 
and zoonotic potential of E. bieneusi, G. duodenalis and 
Cryptosporidium spp. in masked palm civets remain 
unclear.

This study was conducted to examine the prevalence, 
genetic identity and zoonotic potential of E. bieneusi, G. 
duodenalis and Cryptosporidium spp. in farmed masked 
palm civets in southern China.

Methods
Specimens
From April 2018 to March 2019, a total of 889 fecal 
specimens were collected from masked palm civets on 
four commercial farms in Hainan, Guangdong, Jiangxi 
and Chongqing, southern China (Fig.  1). The manage-
ment of animals on all four farms was similar, with the 
farm in Jiangxi being the largest in scale and having the 
longest history of over 20 years. The sanitary conditions 
of farms in Hainan and Chongqing were poor compared 
with the other two farms. Masked palm civets were kept 
in groups of 2–6 animals per cage, with some interac-
tions with those in neighboring cages. Fresh fecal drop-
pings from civets were collected on the ground under 
each cage, with one fecal specimen being collected from 
each cage for this study. The age of animals was divided 
into three groups: < 1 year (n = 469); 1–2 years (n = 129); 
and > 2 years (n = 291). All animals sampled in this study 
were clinically normal without obvious signs of diarrhea. 

Specimens were stored at 4 °C in 2.5% potassium dichro-
mate before DNA extraction.

DNA extraction
Prior to genomic DNA extraction, potassium dichromate 
was removed by washing 500 μl of fecal suspension three 
times with distilled water by centrifugation at 2000×g for 
10 min. DNA was extracted from the sediment using the 
FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH, 
USA) as described [15]. The extracted DNA was stored at 
− 20 °C until being used in PCR analyses.

PCR amplification
Enterocytozoon bieneusi was identified by nested PCR 
amplification of the internal transcribed spacer (ITS) of 
the rRNA gene [16]. Giardia duodenalis was detected by 
nested PCR targeting the triosephosphate isomerase (tpi), 
β-giardin (bg), and glutamate dehydrogenase (gdh) genes 
[17]. Cryptosporidium spp. were detected by PCR and 
sequence analyses of the small subunit (SSU) rRNA and 
further characterized by sequence analysis of the 60-kDa 
glycoprotein (gp60), 70-kDa heat-shock protein (hsp70) 
and actin genes [18–21]. Two replicates were used in 
PCR analysis of each target for each specimen. DNA of 
genotype PtEb IX from dogs, assemblage E from cattle, 
and Cryptosporidium bovis from cattle were used as posi-
tive controls in PCR analysis of E. bieneusi, G. duodenalis 
and Cryptosporidium spp., respectively, while reagent-
grade water was used as the negative control.

Sequence analysis
All positive secondary PCR products were sequenced bi-
directionally on an ABI 3730 Genetic Analyzer (Applied 
Biosystems, Foster City, CA, USA). To determine the 
genetic identity of E. bieneusi, G. duodenalis and Crypto-
sporidium spp., sequences obtained were assembled 
using ChromasPro 2.1.6. (http://techn elysi um.com.au/
Chrom asPro .html), edited using BioEdit 7.1 (http://
www.mbio.ncsu.edu/BioEd it/bioed it.html), and aligned 
with each other and reference sequences downloaded 
from GenBank using ClustalX 2.0.11 (http://clust al.org). 
Genotypes or subtypes of these pathogens were named 
according to the established nomenclature system [22, 
23]. Maximum likelihood (ML) trees were constructed 
to infer the phylogenetic relationships among species or 
genotypes of these pathogens using MEGA 7.0.14 (http://
www.megas oftwa re.net/). The general time-reversible 
model was used in substitution rate calculations and 1000 
replicates were used in bootstrapping analysis.

Statistical analysis
The Chi-square test was used to compare differences 
in the prevalence of pathogens among geographical 
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locations or age groups. Differences were considered sig-
nificant at P < 0.05.

Nucleotide accession numbers
Representative nucleotide sequences generated in this 
study were deposited in the GenBank database under the 
accession numbers MT497888–MT497900 (E. bieneusi), 
MT487560–MT487588 (G. duodenalis), MT487589–
MT487591 and MT779807 (Cryptosporidium sp.).

Results
Occurrence of E. bieneusi, G. duodenalis 
and Cryptosporidium sp
Occurrence of the three pathogens was determined based 
on the PCR positivity of at least one PCR replicate. Of the 
889 fecal specimens collected from masked palm civets, 
474 (53.3%) were positive for E. bieneusi, with infection 
rates ranging from 35.2% (172/489) to 86.1% (180/209) 
among the four farms sampled. Infection rates on the 
farms in Hainan (86.1%) and Chongqing (85.9%) were sig-
nificantly higher than in Guangdong (46.2%; χ2 = 56.407 

and 32.149, respectively; P < 0.0001) and Jiangxi (35.2%; 
χ2 = 152.05 and 76.11, respectively; P < 0.0001) (Table 1). 
By age, E. bieneusi infection rates in animals of < 1 year 
(61.0%; χ2 = 29.110, P < 0.0001) and 1–2  years (53.5%; 
χ2 = 5.734, P = 0.0166) were significantly higher than in 
animals of > 2 years (40.9%) (Table 1).

For G. duodenalis, 34 (3.8%) of the 889 specimens were 
positive based on the PCR positivity at any one of the 
three genetic loci. The highest infection rate was 13.2% 
(14/106) on the farm in Guangdong, followed by Chong-
qing (8.2%, 7/85), Hainan (3.8%, 8/209) and Jiangxi (1.0%, 
5/489). The infection rate on the farm in Guangdong was 
significantly higher than in Hainan (χ2 = 9.525, P = 0.002) 
and Jiangxi (χ2 = 37.993, P < 0.0001) (Table  1). Addition-
ally, animals of 1–2 years (10.9%) had significantly higher 
prevalence of G. duodenalis than those of < 1 year (2.8%; 
χ2 = 15.324, P < 0.0001) and > 2  years (2.4%; χ2 = 13.427, 
P = 0.0002) (Table 1).

Among the 889 specimens analyzed, only one (0.1%) 
from the farm in Hainan was positive for Cryptosporid-
ium sp. This civet was co-infected with E. bieneusi. In 
addition, co-infection of E. bieneusi and G. duodenalis 

Guangdong

Jiangxi

Hainan

Chongqing

Fig. 1 Locations (triangles) of four farms in southern China examined in the present study



Page 4 of 10Yu et al. Parasites Vectors          (2020) 13:403 

was detected in 31 other animals, with a significantly 
higher occurrence of co-infection of the two pathogens 
on the farm in Guangdong (12.3%) than in Hainan (2.9%; 
χ2 = 10.949, P = 0.0009) and Jiangxi (1.0%; χ2 = 33.793, 
P < 0.0001). By age, a significantly higher co-infection 
rate was detected in civets aged 1–2  years (10.1%) than 
< 1  year (2.6%; χ2 = 14.278, P = 0.0002) and > 2 years 
(2.1%; χ2 = 13.296, P = 0.0003) (Table 1).

Enterocytozoon bieneusi genotypes
Sequence analysis of the ITS PCR products was suc-
cessful for 457 of 474 E. bieneusi-positive specimens. 
The remaining 17 specimens generated sequences with 
underlying signals of mixed nucleotides, probably due 
to concurrence of more than one E. bieneusi genotype 
in each specimen. Altogether, 13 E. bieneusi genotypes 
were detected, including two known ones (Peru8 and J) 
and 11 novel genotypes (named as PL1–PL11) (Table 1). 
The latter were identified based on nucleotide sequence 
differences from known E. bieneusi genotypes. The ITS 
sequences of Peru8 in Group 1 and genotype J in Group 
2 were identical to the GenBank reference sequences 
AY371283 and MF592787, respectively. Among the 11 
novel E. bieneusi genotypes, PL4, PL5, PL9, PL10 and 
PL11 were phylogenetically placed in Group 1, while 
PL1, PL2, PL3, PL6, PL7 and PL8 formed a clade named 
as Group 2-like, which was mostly related to Group 2 
(Fig. 2).

PL1 (53.0% or 242/457) and PL2 (37.0% or 169/457) 
were the two most prevalent genotypes (Table  1). PL1 
was the dominant genotype on the three farms in Hainan, 
Chongqing and Jiangxi, while PL2 was the most com-
mon one on the farm in Guangdong. The highest genetic 
diversity was observed on the farm in Jiangxi, with 2 
known and 8 novel genotypes. Several unique genotypes 
were detected on some of the farms, including PL4, PL5, 
PL6, PL9, PL10, PL11 on the farm in Jiangxi, PL7 and 
PL8 on the farm in Guangdong, and PL3 on the farm in 
Chongqing.

Giardia duodenalis assemblages
Among the 34 G. duodenalis-positive specimens, assem-
blage B was the dominant genotype, being detected in 33 
specimens. One specimen, however, had the concurrence 
of assemblages B and D. By genetic locus, 13 sequence 
types were present among the 28 assemblage B-positive 
specimens at the tpi locus, including 3 known ones and 
10 new ones. The three known sequence types, i.e. MB8 
(n = 8), MB7 (n = 3) and B14 (n = 1), were identical to 
GenBank reference sequences KF679746, KF679745 and 
KF679737, respectively. In contrast, the new sequence 
types B-PL01 to B-PL10 had 1 to 6 single nucleotide pol-
ymorphisms (SNPs) compared with the GenBank refer-
ence sequence KF679746.

At the bg locus, one known and two new sequence 
types were obtained among the 16 assemblage B-positive 
specimens. Bb-3 (n = 5) was identical to the GenBank 

Table 1 Distribution of Enterocytozoon bieneusi and Giardia duodenalis genotypes in farmed masked palm civets in southern China by 
sampling location and age

a P < 0.01, for Hainan and Chongqing in comparison with Guangdong and Jiangxi
b P < 0.05, for above 2 years-old in comparison with 1–2 years-old
c P < 0.01, for Guangdong in comparison with Hainan and Jiangxi
d P < 0.01, for 1–2 years old in comparison with under 1 year and above 2 years-old
e P < 0.01, for Guangdong in comparison with Hainan and Jiangxi
f P < 0.01, for 1–2 years-old in comparison with under 1 year and above 2 years-old

Specimen No. of 
specimens

E. bieneusi G. duodenalis Co-infection

No. positive (%) Genotype (n) No. positive (%) Genotype (n) No. positive (%)

Hainan 209 180 (86.1)a PL1 (95), PL2 (75) 8 (3.8) B (8) 6 (2.9)

Chongqing 85 73 (85.9)a PL1 (57), PL3 (11), PL2 (5) 7 (8.2) B (6), B + D (1) 7 (8.2)

Guangdong 106 49 (46.2) PL2 (30), PL1 (16), PL7 (1), PL8 (1) 14 (13.2)c B (14) 13 (12.3)e

Jiangxi 489 172 (35.2) PL1 (74), PL2 (59), PL4 (15), PL9 (5), PL6 (4), PL5 (3), 
PL10 (2), PL11 (2), J (1), Peru8 (1)

5 (1.0) B (5) 5 (1.0)

< 1 year 469 286 (61.0) PL1 (157), PL2 (87), PL3 (11), PL4 (10), PL9 (4), PL6 (4), 
PL5 (3), PL11 (2), PL10 (1), Peru8 (1)

13 (2.8) B (12), B + D (1) 12 (2.6)

1–2 years 129 69 (53.5) PL2 (35), PL1 (30), PL7 (1), PL8 (1) 14 (10.9)d B (14) 13 (10.1)f

> 2 years 291 119 (40.9)b PL1 (55), PL2 (47), PL4 (5), PL9 (1), PL10 (1), J (1) 7 (2.4) B (7) 6 (2.1)

Total 889 474 (53.3) PL1 (242), PL2 (169), PL4 (15), PL3 (11), PL9 (5), PL6 (4), 
PL5 (3), PL10 (2), PL11 (2), PL7 (1), PL8 (1), J (1), Peru8 
(1)

34 (3.8) B (33), B + D (1) 31 (3.5)
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reference sequence KJ888976, while the new sequence 
types of B-PL11 and B-PL12 had one SNP compared with 
the GenBank reference sequence KJ888976.

At the gdh locus, 10 new sequence types 
(B-PL13 ~ B-PL22) were detected among the 22 assem-
blage B-positive specimens, with 1–4 SNPs compared 
with the GenBank reference sequence LC430575.

Multilocus genotypes of G. duodenalis assemblage B
Of the 33 assemblage B-positive specimens, 13 were pos-
itive by PCR at all three loci, forming 13 MLGs (Civet-
MLG-B1 to Civet-MLG-B13) based on the concatenated 
sequences of the gdh, bg and tpi loci. Phylogenetic analy-
sis of these MLGs was conducted together with those 
from previous studies of assemblage B in humans and 
various animals [24–28]. It showed that all 13 MLGs 
from civets in this study formed a cluster, which was a 
sister group with MLGs from humans in Sweden (Fig. 3).

Cryptosporidium genotype
For the Cryptosporidium-positive specimen SCAU12558, 
DNA sequencing of PCR products of the SSU rRNA, 
gp60 and hsp70 genes revealed that it was phylogeneti-
cally related to the Cryptosporidium bamboo rat geno-
type II (Fig.  4). The SSU rRNA sequence generated had 
one SNP and three nucleotide insertions compared with 
the sequence from the bamboo rat genotype II (Gen-
Bank: MK731962). The gp60 sequence generated had 
a maximum nucleotide identity of 83.0% to the bam-
boo rat genotype II (GenBank: MK731966), with exten-
sive sequence differences in the non-repeat regions. The 
hsp70 sequence generated had 17 SNPs and 1 nucleo-
tide deletion with the bamboo rat genotype II (Gen-
Bank: MK731969), mostly over the repeat region at the 
3′-end of the gene. Due to the absence of the actin gene 
sequence from the bamboo rat genotype II in the Gen-
Bank database, the actin sequence of SCAU12558 was 
found to be most similar to the Cryptosporidium ferret 
genotype (GenBank: MF411076) with 12 SNPs.

Discussion
In this study, to the best of our knowledge, we report 
for the first time the occurrence and genetic identity of 
E. bieneusi, G. duodenalis and Cryptosporidium sp. in 
masked palm civets, with infection rates of 53.3%, 3.8% 
and 0.1%, respectively. Within the family Viverridae, 
several small carnivores genetically related to masked 
palm civets have been examined for these pathogens 
without much success. For example, a recent study in 
Spain reported the occurrence of an unknown Crypto-
sporidium genotype in one of six genets (Genetta genetta) 
examined for Cryptosporidium spp. and G. duodenalis 
[29]. Another study in the Philippines examined an Asian 

palm civet (Paradoxurus hermaphroditus) for G. duode-
nalis but did not detect this pathogen [30].

Results of the present study have revealed some dif-
ferences in infection rates of E. bieneusi and G. duode-
nalis among farms and age groups. Significantly higher 
infection rates of E. bieneusi were observed on farms in 
Hainan (86.1%) and Chongqing (85.9%) than in Guang-
dong (46.2%) and Jiangxi (35.2%). This was likely due to 
the poor sanitary conditions of the two farms in Hainan 
and Chongqing, as the housing and management of ani-
mals were similar among the four farms. By age, a higher 
prevalence of E. bieneusi was obtained from young civets 
of < 1 year. This is in agreement with previous findings 
of age-associated occurrence of E. bieneusi infections in 
other farmed wild animals such as macaques, boars and 
squirrels [31–33]. In contrast, a significantly higher infec-
tion rate of G. duodenalis was observed on the farm in 
Guangdong, and masked palm civets of 1–2 years had the 
highest infection rate of G. duodenalis, suggesting that E. 
bieneusi and G. duodenalis are transmitted differently in 
these animals.

Results of the sequence analysis have demonstrated a 
high genetic diversity of E. bieneusi in masked palm civ-
ets. Altogether, 13 E. bieneusi ITS genotypes were identi-
fied in this study, with two novel genotypes PL1 and PL2 
accounting for about 90% E. bieneusi infections in civets. 
These two ITS genotypes together with several other 
novel ones formed a clade related to Group 2, thus might 
be civet-adapted E. bieneusi genotypes. In comparison, 
the remaining novel genotypes PL4, PL5, PL9, PL10 and 
PL11 were phylogenetically clustered into the zoonotic 
Group 1. In addition, one civet was found positive for 
Peru8, which is a common zoonotic genotype in humans 
[2]. Thus, masked palm civets could carry human-patho-
genic E. bieneusi.

High genetic heterogeneity of E. bieneusi was observed 
in masked palm civets on a large farm in Jiangxi. This 
farm is the largest among the four study farms and has 
been established for over 20 years. It has 10 of the 13 E. 
bieneusi genotypes identified in the study, including all 
six ITS genotypes (Peru8, PL4, 5, 9, 10 and 11) of the 
zoonotic Group 1. One explanation for the high het-
erogeneity is that genetic exchange might have occurred 
among ancestral types on this farm during the past 20 
years [34]. The long history of the farm and high geno-
type diversity have probably facilitated the genetic 
exchange among E. bieneusi isolates and emergence of 
novel genotypes in farmed masked palm civets.

The zoonotic assemblage B appears to be the domi-
nant G. duodenalis genotype in masked palm civets. In 
this study, all G. duodenalis-positive civets harbored 
assemblage B, with only one having concurrent infec-
tion of assemblages B and D. Assemblage B is the most 
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Fig. 2 Phylogenetic relationship among Enterocytozoon bieneusi genotypes based on the maximum-likelihood analysis of the internal transcribed 
spacer of the rRNA gene. Bootstrap values greater than 50% from 1000 replicates are shown on the branches. Known and novel genotypes 
identified in this study are indicated by blue and red triangles, respectively
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Fig. 3 Phylogeny of multilocus genotypes (MLGs) of Giardia duodenalis assemblage B from this and previous reports based on the 
maximum-likelihood analysis of concatenated sequences of the gdh, bg and tpi loci. Bootstrap values greater than 50% from 1000 replicates are 
shown on the branches. MLGs identified in this study are indicated by red triangles
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common human-pathogenic genotype in both indus-
trialized and developing countries [4, 35]. In animals, 
assemblage B has been recently reported as the dominant 
G. duodenalis genotype in farmed macaques, horses, 

donkeys, rabbits, chinchillas and bamboo rats, mostly 
in China [24, 36–43]. Within assemblage B found in this 
study, a high genetic heterogeneity was observed at the 
three genetic loci examined. Of the known subtypes, 
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Fig. 4 Phylogeny of Cryptosporidium spp. based on the maximum-likelihood analyses of the small subunit rRNA (a), 60-kDa glycoprotein (b), 
70-kDa heat-shock protein (c) and actin (d) genes. Bootstrap values greater than 50% from 1000 replicates are shown on the branches. The 
Cryptosporidium-positive specimen detected in this study is indicated by red triangle
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MB7 and MB8 at the tpi locus and Bb-3 at the bg locus 
were reported in non-human primates [27, 44], while B14 
at the tpi locus was detected in urban wastewater previ-
ously [45]. In addition, phylogenetic analysis of the con-
catenated sequences from the three loci showed that the 
MLGs of assemblage B in civets formed a separate clus-
ter, which confirms the previous suggestion on the likely 
occurrence of host adaptation within assemblage B [24, 
27]. Nevertheless, the assemblage B MLGs from civets 
were genetically related to several MLGs from humans, 
indicating that they could have zoonotic potential.

The Cryptosporidium isolate from masked palm civ-
ets was found to be genetically related to the Crypto-
sporidium bamboo rat genotype II from bamboo rats in 
south-central China based on sequence analysis of the 
SSU rRNA, gp60 and hsp70 genes [46]. As only one fecal 
specimen was positive for Cryptosporidium, whether it is 
a native parasite of masked palm civets remains unclear. 
Further studies are needed to understand its host range.

Conclusions
This report of the occurrence and identity of E. bieneusi, 
G. duodenalis and Cryptosporidium bamboo rat geno-
type II in farmed masked palm civets in southern China 
extends our knowledge on the genetic diversity and trans-
mission of these pathogens in farmed wild animals. The 
presence of zoonotic E. bieneusi genotypes and G. duo-
denalis assemblage B in masked palm civets suggests that 
these animals might be potential reservoirs for human 
infections with these pathogens. Further studies involv-
ing extensive sampling of animals as well as farmworkers 
are needed to elucidate the role of newly domesticated 
wild animals in the epidemiology of human microsporidi-
osis, giardiasis and cryptosporidiosis.
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