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Abstract 

Background:  Biological controls with predators of larval mosquito vectors have historically focused almost exclu‑
sively on insectivorous animals, with few studies examining predatory plants as potential larvacidal agents. In this 
study, we experimentally evaluate a generalist plant predator of North America, Utricularia macrorhiza, the common 
bladderwort, and evaluate its larvacidal efficiency for the mosquito vectors Aedes aegypti and Aedes albopictus in 
no-choice, laboratory experiments. We sought to determine first, whether U. macrorhiza is a competent predator of 
container-breeding mosquitoes, and secondly, its predation efficiency for early and late instar larvae of each mosquito 
species.

Methods:  Newly hatched, first-instar Ae. albopictus and Ae. aegypti larvae were separately exposed in cohorts of 10 
to field-collected U. macrorhiza cuttings. Data on development time and larval survival were collected on a daily basis 
to ascertain the effectiveness of U. macrorhiza as a larval predator. Survival models were used to assess differences in 
larval survival between cohorts that were exposed to U. macrorhiza and those that were not. A permutation analysis 
was used to investigate whether storing U. macrorhiza in laboratory conditions for extended periods of time (1 month 
vs 6 months) affected its predation efficiency.

Results:  Our results indicated a 100% and 95% reduction of survival of Ae. aegypti and Ae. albopictus larvae, respec‑
tively, in the presence of U. macrorhiza relative to controls within five days, with peak larvacidal efficiency in plant 
cuttings from ponds collected in August. Utricularia macrorhiza cuttings, which were prey-deprived, and maintained 
in laboratory conditions for 6 months were more effective larval predators than cuttings, which were maintained 
prey-free for 1 month.

Conclusions:  Due to the combination of high predation efficiency and the unique biological feature of facultative 
predation, we suggest that U. macrorhiza warrants further development as a method for larval mosquito control.
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Background
The control of larval mosquitoes with predators and 
other biological agents has been widely recognized as a 
promising strategy that can reduce negative environmen-
tal impacts associated with chemical control [1, 2]. Sev-
eral diverse animal taxa have been explored as biological 
controls of larval mosquitoes including larvivorous fish, 
amphibians, and aquatic insects such as odonates and 
even larvae of certain mosquito species [3]. The advan-
tages and disadvantages to each predator species are a 
function of prey specificity, larvacidal efficiency, and ease 
of management of applications for sustained periods and 
across the various habitats of mosquito vector species [4, 
5].

Larvivorous fish have successfully controlled larvae 
in the genus Anopheles in a variety of habitats world-
wide [6–11], though they have been less successful in 
the control of Aedes species [12]. This success is largely 
attributed to the high predation rates of species such as 
the mosquito fish, Gambusia affinis and G. holbrooki 
[13]. The disadvantage of mosquito fish is that with 
repeated introductions to aquatic habitats for mosquito 
control, there has been little consideration of their 
impacts on the ecosystem [14], and they have become 
invasive in pristine aquatic habitats [15]. Invasive mos-
quito fish impact native fish through indirect competi-
tion for resources [15–18] and direct competition by 
biting [19]. Other species of catfish have been assessed 
in domestic water containers with high demonstrated 
larvacidal efficacy for Aedes mosquitoes [20]. Domestic 
containers are not sustainable habitat for these fish and 
they must be replenished, a limitation of the overall fea-
sibility of larvivorous fish for sustained control [5].

There are several options for arthropod predator 
controls of mosquito larvae that have been explored. 
Mosquitoes of the genus Toxorhynchites have been iden-
tified as predators of other larvae [21]. Their distribu-
tion largely overlaps with that of Aedini disease vectors 
[22, 23] and they colonize otherwise cryptic breeding 
sites that are difficult to reach for control. Field applica-
tions demonstrate limited success [24, 25] or even have 
resulted in an increase in prey density [26–28]. Releases 
of nymphal dragonflies and damselflies of Odonata as 
alternative predators have had mixed success [29, 30]. 
Unlike Toxorhynchites [19], odonates are generalists and 
can cover a wide range of habitats [31–33]. Past studies 
have reported promising predation rates [34–36] even 
in container habitats [37]. Similarly, copepods of the 
genus Mesocylops have shown promising results with 
regards to control of the yellow fever mosquito (Aedes 
aegypti). In Vietnam, community-involved releases have 
resulted in local eradications of Ae. aegypti from 40 non-
urban communities [38, 39]. Overall however, successful 

applications of odonates and copepods are limited in 
number in part because of the difficulty in maintaining 
large stocks capable of supporting repeated releases in 
order to sustain biological control [3, 38, 40–43].

Amphibian tadpoles have demonstrated high lar-
vacidal efficiency, although their predatory efficiency of 
mosquito larvae has not been estimated in the presence 
of alternative prey sources [5]. Several disadvantages to 
tadpoles for biocontrol of Aedes species have been noted, 
including low survival in small containers, the influence 
they exert on ecosystems, and the caution needed when 
considering introductions either in the low likelihood of 
success or in introducing an invasive species.

An understudied predator-prey association that merits 
exploration for biological control is that between aquatic 
plants in the genus Utricularia and mosquito larvae 
(Fig.  1a–c). Darwin & Darwin [44] first described the 
ability of Utricularia vulgaris to capture and asphyxiate 
insect larvae using lentil-shaped bladders. Bladderworts 
have been described as effective suction feeders of a vari-
ety of zooplankton, rotifers, protozoans, Daphnia and 
even small fish fry [45]. The biological control properties 
of the plant were noted and described by Matheson [45] 
and Twinn [46]. Despite this, the application of bladder-
worts as a biological control of mosquito larvae has been 
relatively unrecognized and understudied in recent years. 
Recent reviews of biological control tools for mosquito 
larvae excluded Utricularia [47] even when focusing on 
control with larvacidal predators [5] or alternative strat-
egies [48]. Estimates of predation capabilities of blad-
derworts for mosquito larva are limited, with a notable 
exception. Utricularia macrorhiza (commonly referred 
to as U. vulgaris in North American’s literature prior to 
Taylor [49]) was observed to have high rates of preda-
tion on Culex pipiens larvae, ranging between 50–100% 
[50]. It has since been suggested that using bladderwort 
as a biological control strategy may be of limited value 
because of the abundance of alternative prey sources in 
the natural habitats of Culex pipiens [50–52]. These stud-
ies have centered on mosquito species that develop in 
permanent and temporary pools with large volumes of 
water. There is evidence to suggest that several Utricu-
laria predators may thrive outside of their natural habitat 
[46, 50, 53, 54], and thus may be applied to the control of 
container-breeding species.

Utricularia macrorhiza is widely distributed in North 
America [55] but has yet to be explored in small water 
containers such as those utilized by Aedes mosquitoes for 
larval development. In this study, we explore the potential 
for aquatic bladderworts in the genus Utricularia (Len-
tibulariaceae) as predators of Ae. aegypti and Ae. albop-
ictus. These species have a habitat preference for small 
man-made containers that are naturally prey-limited [12, 
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56–58], and this preference has been a driving feature of 
their expansion through urban areas [59, 60].

We first sought to determine if plant cuttings could 
survive when displaced from their natural habitats for 
lengthy periods of time and placed in small man-made 
containers typically inhabited by Ae. aegypti and Ae. 
albopictus mosquitoes. We hypothesized that U. mac-
rorhiza would readily predate mosquito larvae regardless 
of species and larval stage, and effectively reduce mos-
quito laboratory populations through direct impacts on 
survival during the larval stages. We tested this hypoth-
esis in no-choice, laboratory rearing experiments, and 
estimated daily predation efficiency of plant cuttings of 
standardized bladder density.

Both Ae. aegypti and Ae. albopictus are historically and 
currently important vectors of pathogens including den-
gue, yellow fever, Zika and chikungunya viruses [61, 62], 
and although few autochthonous cases have been noted 
recently in their USA range, the distribution and abun-
dance of these vectors is resurging in recent years [63]. 
The rise of insecticide resistance in natural mosquito 
populations [64, 65], combined with the discovery of 
non-target effects of chemical pesticides on other spe-
cies, including humans [66–68] underscores the need to 
develop alternative, eco-friendly strategies for the man-
agement strategies for these vectors.

Methods
Mosquito colony conditions
Laboratory colonies of Ae. aegypti strain originating from 
Puerto Rico and Ae. albopictus colony, originating from 
New Orleans, LA, were maintained at 27 °C, 75% RH, 
with a 16:8 L:D photoperiod. Experimental larvae were 
hatched from the laboratory colony from generations 
F10-F18 and placed in experimental conditions within 24 
h of hatching.

Bladderwort collection/cultivation
Common bladderwort (U. macrorhiza) was collected 
throughout the spring, summer and fall seasons of 2017 
from 6 freshwater ponds in South Kingstown, RI, USA 
(Fig. 2). The presence of other species in the genus Utri-
cularia was noted for each pond. Whole plants and 
segments of approximately 30–45 cm in length were sam-
pled from the edges of ponds by hand and transported in 
water to the laboratory. Strands of U. macrorhiza were 
checked and cleared of symbiotic odonates. Plants were 
placed in container-tubs and left to acclimate to labora-
tory conditions (at room temperature) for a minimum 
of a month before being used for experimentation. Blad-
derworts continuously grow bladders, which become 
active and decay. A constant number of bladders was 
therefore not feasible, but strands were chosen for the 

experimental period which has approximately 100 blad-
ders in order to start the experiments with an initial blad-
der to larva ratio of 10:1.

Predation of container‑dwelling mosquitoes by U. 
macrorhiza
Experimental eggs were hatched in Picotap-filtered 
water by multiple-immersion clue. Eggs were briefly sub-
merged and dried for three times prior to hatching to 
simulate oxygen fluctuation that would be typical under 
field conditions. We examined the survival rates of con-
tainer-dwelling mosquitoes in the presence of predating 
U. macrorhiza under the conditions of 10 larvae per 500 
ml of Picotap-filtered water with a 15-cm-long segment 
of U. macrorhiza with approximately 100 bladders. We 
recorded the survival status and developmental stage of 
each individual on a daily basis until death or emergence 
occurred. Larvae were fed every-other-day with finely 
ground and sieved fish-food (TetraMin Tropical Flakes, 
Tetra, Melle, Germany). Food was added on a per-capita 
basis to each cup [69] such that larvae were provided 0.06 

a b

c

Fig. 1  Utricularia macrorhiza is pictured maintained indoors in small 
containers in a close up view of a single bladder with trap chamber 
and trigger appendages labeled (a), expanded view of the plant 
cutting (b) and with Utricularia macrorhiza close up with bladders on 
stems digesting Aedes aegypti larvae indicated with red asterisks (c)



Page 4 of 11Couret et al. Parasites Vectors          (2020) 13:208 

mg/larva on day 1, 1.0 mg/larva on day 3, 1.5 mg/larva on 
day 5, and 1.8 mg/larva on day 7. Upon emergence, adults 
were transferred into 2.0 ml microcentrifuge tubes and 
stored at − 30 °C.

Fourteen replicates were conducted with Ae. aegypti 
larvae and plant cuttings that had been without prey for 
one month. Four additional replicates were conducted 
with Ae. aegypti with cuttings that had been stored in 
open containers in a windowsill indoors at ambient room 
conditions without availability of prey for 6 months. 
Twenty replicates were conducted for Ae. albopictus 
using cuttings of U. macrorhiza that had been stored 6 
months without prey. Because the period without prey 
is known to alter the number of bladder traps in several 
species of Utricularia [70–73], we separated replicates 
based on the number of months the plants had been 
stored. However, the initial number of bladders used in 
experimental cups was standardized to 100 bladders. 
Therefore, differences observed between 1-month rep-
licates and 6-month replicates are attributed to differ-
ences in bladder trapping activity rather than the number 
of bladders. For each replicate, the number of bladders 
per U. macrorhiza segment was measured less than 24 
h before set-up. The cause of larval mortality was attrib-
uted to direct predation when larvae were found wholly 
or partially inside of bladders. When larvae were found 
dead outside of bladders cause of death was not noted. 
The experiment concluded when all U. macrorhiza 
exposed larvae either died or emerged.

We investigated whether U. macrorhiza, under similar 
laboratory conditions as previous experiments, was able 
to predate third- and fourth-instar Ae. aegypti larvae. We 
placed 8 replicates of ten larvae that were initially third-
instar to U. macrorhiza segments. Over the course of the 
experiment several larvae molted to fourth-instar. After 
24 h we recorded total survival and life stage. The aim 
of this experiment was to assess whether bladders were 
capable of trapping larger prey. Bladder size is highly var-
iable even within U. macrorhiza. We estimated bladder 
traps used in this experiment to range from 2–4 mm in 
width.

Statistical analysis
Statistical analyses were conducted in RStudio v.1.0.143 
[74] using the survival package v.2.42-6 [75]. We esti-
mated the effects that exposure to U. macrorhiza had on 
mosquito survival using the Cox-proportional Hazard 
model with an Efron approximation and Weibull func-
tion [76]. The assumption of proportional hazard was 
tested using Schoenfeld’s residual test [77]. Bladders 
predate to satiation and thus their ability to impact mos-
quito survival is implicitly linked with time. Thus, it was 
expected that these data would violate the assumption 

of proportional hazard. While the Mantel-Cox logrank 
test [78] is the most commonly used statistical method of 
comparison for survival curves, its usage becomes unsuit-
able when the hazard ratio does not remain proportional 
with time, as these data suggested. To account for this 
violation of the assumption of proportionality with the 
Mantel-Cox test, we instead used the non-parametric 
Peto & Peto modification of the Gehan-Wilcoxon test. 
This method remains robust even when the assumption 
of proportional hazard is violated [79].

Results
Aedes albopictus replicates exposed to plant predation 
showed a greater Cox proportional hazard than controls 
(Fig. 3a; Likelihood ratio test: 239.9, df = 1, P < 0.0001). 
There was sufficient mortality in control cups, which 
developed in the absence of predators, to develop Cox 
proportional hazard estimates (HR = 9.812, CI: 7.06–
13.66, P < 2 × 10−16). In cups with the plant predator 
an average of 71.5% of larvae died within the first 24 h. 
Over the course of the next four days larvae continued 
to be preyed upon, with 16% of larvae dying on the sec-
ond day, 4.5% dying on the third day, 1.5% dying on the 
fourth day, and a further 1.5% dying on the fifth day. By 
the end of the fifth day, 95% of all larvae coexisting with 
U. macrorhiza had died. No further deaths due to pre-
dation occurred past the fifth day. Out of the surviving 
individuals (n = 10), all but one originated from the same 
experimental container. A non-parametric test of sur-
vival hazards comparing predation in experimental cups 
versus treatments cups shows that predation by U. mac-
rorhiza significantly reduced larval survival (χ2 = 209, df 
= 1, P < 1 × 10−16).

Similarly, the presence of the plant predator was found 
to significantly reduce Ae. aegypti survival under labora-
tory conditions (χ2 = 308, df = 3, P < 1 × 10−16, Fig. 1c). 
Across all replicates, the average predation efficiency was 
highest during the first 24 h, during which, 83.1% of lar-
vae were found consumed within bladder traps. Within 
48 h 95.5% of larvae were preyed upon. On days three and 
four 97.7% and 99.4% of larvae were preyed upon, respec-
tively (Fig. 3b). By day 5 all larvae within cups with a plant 
predator were consumed. Having been placed within 24 
h of hatching, the latest developmental stage achieved by 
Ae. aegypti larvae in the presence of predating U. mac-
rorhiza was the second instar.

In addition to comparing treatments with and with-
out the plant predator, we considered the number of 
months that plant cuttings sat without prey. Table  1 
presents the results of a permutation model of Ae. 
aegypti larval survival that accounts for both the time 
plant cuttings were stored without prey (one month 
or six months) and treatment (presence or absence of 
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predator) which significantly improved prediction of 
larval survival probability over a model of treatment 
alone (F(1, 356) = 25.03, P < 8.87 × 10−7).

A further experiment was conducted to deter-
mine whether U. macrorhiza was capable of prey-
ing upon third-instar (Additional file  1: Video 1) and 

Fig. 2  Presence and absence of Utricularia spp. at collection sites in Washington County, Rhode Island
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fourth-instar (Additional file 2: Video 2) Ae. aegypti lar-
vae. Eight replicates of 10 larvae each were placed into 
containers with U. macrorhiza. After 24 h the preda-
tion efficiency was variable from 60 to 100% consumed, 
demonstrating that plant predatory bladders were 
capable of consuming later instars (mean ± SE, 77.5 ± 
4.91%).

We carried out predation experiments with small 
cuttings of U. macrorhiza measuring approximately 
1.25 cm, with one bladder and placed into the well of a 
6-well cell-culture plate with 10 ml of water. We pre-fed 
the bladder with one larva and counted the number of 
replicates which predated a second larva of Ae. aegypti 
or Ae. albopictus over the course of the experiment. We 
found that larval environments with small cuttings of 
U. macrorhiza with even a single bladder can effectively 
reduce larval survival relative to conditions without 
the plant present (Fig. 4a, b). We also found that a one 
bladder under these conditions can potentially hold up 
3 larvae (Fig. 4c).

Discussion
In this study we evaluated the predation efficiency of U. 
macrorhiza in two medically important species of Aedes 
mosquitoes, finding drastic and effective reduction of 
daily survival for Ae. aegypti and Ae. albopictus larvae in 
no-choice predation experiments. The effective control of 
larval population for both Ae. aegypti and Ae. albopictus, 
suggests that U. macrorhiza is a viable option to explore 
for biocontrol of container-breeding mosquitoes even in 
small water volumes. Although U. macrorhiza survival 
and growth were not formally measured under prolonged 
laboratory conditions, through this study, we determined 
that the plant is a capable predator of mosquito larvae 
even after six months after displacement from its original 
habitat.

We found U. macrorhiza to be capable of preying on 
first- through third-instar Ae. aegypti larvae. These 
results are in line with previously published work [80], 
which suggested that U. macrorhiza can predate mos-
quitoes at three stages of development. These results 
were consistent when repeated at smaller water volumes. 
In comparison to the predation experiments at larger 

Fig. 3  Survival probability over time (in days) of Ae. albopictus (a) and Ae. aegypti (b) in the presence and absence of U. macrorhiza stored without 
prey for six months. Dotted lines represent water-only controls. Solid lines represent experimental cups with U. macrorhiza. Black indicates plants 
were stored for 1 month without prey and green indicates plants were stored for 6 months without prey. For both figures, data are censored as of 
the day when the last death from predation by U. macrorhiza was observed
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volumes, the survival of larvae exposed to a single blad-
der on small cuttings of U. macrorhiza is at first glance 
reduced. However, the bladder to larva ratio in the latter 
experiment was 1:1, whereas the previous experiments 
had a ratio of 10:1. While control of larvae at such small 
water volumes is impractical, these results demonstrate 
that small water volume is not on its own a limiting factor 
in the application of U. macrorhiza.

It is possible that U. macrorhiza is capable of effectively 
preying upon Aedes pupae or large fourth instars; how-
ever, the trap sizes observed under laboratory conditions 
were smaller than those initially collected in the field. 
As the metamorphic stage, pupae do not forage for food 
and thus might not interact as frequently with bladders 
as foraging larvae. However, we expect that fourth instars 
would be susceptible to U. macrorhiza predation. We 
observed in third instars that although bladders did not 
wholly consume them, they were trapped by the siphon, 
resulting in asphyxiation. Previous work on bladderworts 

shows that trap size and the ability of the bladders to 
capture prey is largely dependent on nutrient availability 
[46, 81–84]. Predation efficiency on larger prey, includ-
ing fourth instars likely depends upon the environmental 
conditions in which it is being measured [80, 85].

Angerilli & Beirne [86] explored another Utricularia 
species, Utricularia minor, finding similar results that the 
plant is capable of eliminating Ae. aegypti larvae within 
6 days of exposure under artificial container conditions. 
We found that larval Ae. aegypti were eliminated within 
four days of exposure to U. macrorhiza, which suggests 
while there may be some variation between plant spe-
cies in predation efficiency, there is potential for applying 
several species within Utricularia to biological control of 
Ae. aegypti. Similarly, Ae. albopictus larvae were elimi-
nated by day 5. There was one replicate exception for Ae. 
albopictus, a cup in which U. macrorhiza preyed on only 
10% of developing larvae. We attribute the low survival in 
this replicate to the readily observable poor quality of the 
cutting used, with greater numbers of senescent bladders. 
Senescent bladders are known to continue to photosyn-
thesize but do not fire as often or effectively capture prey 
[87]. Bladders regularly are produced and senesce on cut-
tings; it is unclear why, but we observed this replicate lost 
many bladders in the course of the experimental period. 
The experimental results showed some differences in 
predation between the two species considered (Fig.  3). 
Notably, plant predation was sufficient to eliminate lar-
vae prior to the number of days typically needed for lar-
vae to complete larval development.

Table 1  Permutation analysis of Ae. aegypti survival times with 
treatment (presence or absence of plant predator, U. macrorhiza) 
and trial (1 or 6 months of storage time without prey for plant 
predator prior to experiment)

***P < 0.001

Source df Sum Sq Mean Sq Iterations Significance

Trial 1 1.620 1.620 5000 ***

Treatment 1 63.184 63.184 5000 ***

Residuals 356 23.04 0.065

17.4mm

cba

Fig. 4  Survival probability over time (in days) of Ae. albopictus (a) or Ae. aegypti (b) with small cuttings of U. macrorhiza with two bladders placed in 
10 ml of dH20. Pre-fed signifies that bladders were provided one larva of the respective species just prior to the start of the experiment. Image of the 
experimental set up with the U. macrorhiza cutting having consumed 3 larvae consecutively (heads visible as black dots inside bladder) (c)
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Bladderworts can exist for extended periods without 
prey, adaptively shift to carnivory, and increase preda-
tory efficiency as prey density increases. When plants 
are maintained in the absence of prey for long periods, it 
can impact the number of bladders [70–73]. Englund & 
Harms [88] demonstrated that the investment in preda-
tory biomass (bladders) increases at high prey densities. 
Subsequently as prey populations dwindle with preda-
tion, nutrient enrichment in the plant results in a shift 
away from carnivory and toward photosynthesis. Indeed, 
bladderworts exhibit the highest rates of photosynthesis 
among submerged plants [89]. This suggests that long-
term maintenance of nutrient poor conditions is essential 
to stimulate bladder production [90]. Our results indi-
cated that extended periods without prey did not nega-
tively impact the ability of all but one experimental cup to 
predate larvae of Ae. aegypti and Ae. albopictus. Faculta-
tive predation, and plasticity in energy allocation toward 
different growth strategies differentiates bladderworts 
from other animal predators currently in use for biologi-
cal control. While not all oviposition sites of Ae. aegypti 
or Ae. albopictus will be practical or appropriate for con-
trol by a photosynthetic plant, we expect U. macrorhiza 
to be appropriate for a variety of sunlit water storage ves-
sels which individuals are unable or unwilling to empty.

It is possible that bladderworts may be used alongside 
other chemical and biological control tools. Bladderworts 
have not yet been explored in conjunction with other 
control agents, but have been found to be highly resistant 
to certain insecticides, pesticides and herbicides [91–93]. 
Bladderworts are not expected to be vulnerable to the 
most commonly deployed larvacidal biological control 
measures, Bacillus thuringiensis var. israelensis (Bti) or 
Bacillus sphaericus, due the bacteria’s specificity to larvae 
of some Diptera [94, 95]. Indeed, water pools containing 
Utricularia plants are preferred as oviposition sites by 
damselflies and other mosquito predators [96, 97], sug-
gesting that introducing Utricularia into novel contain-
ers may indirectly affect mosquito populations by aiding 
the natural predators of container-breeders to establish 
in these otherwise cryptic environments [98–104]. These 
results suggest the potential for bladderworts to be useful 
and merit further experiments to explore the impacts of 
combination with other biological control methods.

The effectiveness of a predatory biological control 
agent depends on a variety of factors that include the bio-
logical features of predators and predation efficiency as 
well as aspects of the management of stocks for biocon-
trol applications. Biological features relevant to control 
of larvae include habitat overlap, prey specificity, preda-
tory efficiency, and population dynamics and auto-repro-
duction. Feasible management of predator populations 

for biological control include ease of growing and main-
taining stock, overlap in distribution between predator 
and prey and survival in prey habitats, auto-reproduc-
tion for sustained control, and the cost-effectiveness of 
the biocontrol measure [105]. One advantage of aquatic 
bladderworts as a biocontrol is their extended period of 
efficacy. Previous field experiments have found various 
Utricularia plants to be effective at controlling macro-
invertebrate preys throughout the summer season [106]. 
The plants are most predacious in July and August [106], 
suggesting that their main period of efficacy coincides 
with that of multivoltine mosquito vectors [107, 108]. 
The synchrony in seasonality between aquatic bladder-
worts and mosquito vectors suggests that early releases 
of the plants may be sufficient to inhibit the development 
of vectors within accessible container habitats during 
peak season. In contrast, applications of other common 
biocontrol measures such as Bacillus thuringiensis var. 
israelensis, Toxorhynchites, or odonates generally require 
two or more seasonal applications to be effective [43, 
109–111].

As bladderworts are globally widely distributed gener-
alist predators across every continent except Antarctica 
[55]. All Ae. aegypti- and Ae. albopictus-colonized conti-
nents have Utricularia plant species that are suitable for 
vector-control. The plant here studied, U. macrorhiza, is 
broadly distributed in North America, Central America 
and North Asia [55], while Europe and Northern Africa 
are colonized by a related species also known to predate 
mosquitoes, U. vulgaris [55, 80]. In Central Africa, Utri-
cularia radiata has recently been identified as a poten-
tial biocontrol [54]. To the best of our knowledge, no 
bladderworts have been examined for their biocontrol 
properties in South America and Australia, but both con-
tinents are considered “hot spots” with regards to Utri-
cularia diversity [112], with various studies documenting 
the plants’ diets [103, 113], suggesting that finding local 
alternatives to U. macrorhiza is plausible. The wide dis-
tribution of native Utricularia species signifies that this 
method need not rely on the introduction of non-native 
species to control mosquitoes in a given area.

Environmental impacts of the use of U. macrorhiza or 
other Utricularia species should be considered in com-
parison to the current methods commonly used, both 
biological and chemical. The proposed application to 
control Aedes vector species is limited to container-
breeding sites rather than natural aquatic systems. The 
specificity of the bladderworts, predating only aquatic 
organisms within the container, reduces the impact on 
non-target organisms. Further, as these are freshwater 
predators, plant cuttings are not expected to have a nega-
tive impact on ecologically beneficial pollinators [114].



Page 9 of 11Couret et al. Parasites Vectors          (2020) 13:208 	

Conclusions
This study provides insights into the potential for local 
predacious bladderworts to work as biological controls 
of container-breeding mosquitoes, especially in the 
peri-domestic environment. As an alternative to chemi-
cal controls that harm non-target insects, Utricularia 
produces emergent flowers that are pollinated by insects 
[115], and thus can supply floral resources for bees. Inte-
grated vector management strategies can reduce impacts 
on non-target insects, pollinators in particular [114], 
and any novel method for biocontrol must be evaluated 
for efficacy in mosquito control as well as its impact on 
beneficial insects. Future studies should evaluate the fea-
sibility, practicality, and effectiveness of biological control 
of Aedes larvae using U. macrorhiza and additional Utri-
cularia species under a variety of field conditions. Simi-
larly, interactions between Utricularia plants and other 
common animal predators utilized for biocontrol should 
be evaluated to assess interactions that could impact the 
incorporation of Utricularia into integrated vector man-
agement strategies.
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