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Abstract 

Background:  Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus com-
prises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health 
and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature 
and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure 
analyses of this genus. Our recent work indicated a sequence gap (> 1 kb) in the mt genomes of E. granulosus geno-
type G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to 
define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method.

Methods:  We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus 
genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-
read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled 
using a recently-developed workflow.

Results:  We assembled a complete mt genome sequence of 17,675 bp, which is > 4 kb larger than the complete mt 
genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, 
which is 4417 bp long and consists of ten near-identical 441–445 bp repeat units, each harbouring a 184 bp non-cod-
ing region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted 
repeat.

Conclusions:  We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and 
characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions 
remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such 
‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the complete-
ness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. 
This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to 
achieve improved genomes.
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Background
Cestodes of the genus Echinococcus cause a disease 
called echinococcosis, which affects humans, and vari-
ous domestic and wild mammals [1]. Echinococcus spp. 
are distributed worldwide and represent a substan-
tial global public health and socioeconomic burden 
[2]. Echinococcosis is recognised by the World Health 
Organization (WHO) as a neglected tropical disease 
(NTD), requiring a prioritisation of global research and 
control efforts [3].

Genetically, Echinococcus is a diverse cestode group, 
currently consisting of 10 species [4–7]: E. multilocularis, 
E. oligarthra, E. vogeli, E. shiquicus, E. granulosus (sensu 
stricto; genotypes G1 and G3), E. equinus (genotype G4), 
E. ortleppi (genotype G5), E. intermedius (species name 
is being debated [6, 8–10]; comprising genotypes G6 and 
G7), E. canadensis (genotypes G8 and G10) and E. felidis. 
These species are distinctly different from one another in 
their ecology (e.g. infectivity to humans, prevalence, dis-
tribution and host ranges) [1]; thus, exploring the extent 
of genetic variation within the genus Echinococcus is cen-
tral to understanding disease transmission patterns. Echi-
nococcus granulosus genotype G1 is recognised as the 
most wide-spread of all Echinococcus taxa, and is, thus, of 
particular importance [2, 11].

Mitochondrial (mt) genomes have provided use-
ful genetic markers to discover the nature and extent 
of genetic diversity within Echinococcus [7, 12–15], and 
have underpinned extensive phylogenetic and popula-
tion structure analyses of this genus over the years (e.g. 
[16–20]). Published reports show that mt genomes of 
genotype G1 sequenced using Sanger-, 454- or Illumina-
methods are ~ 13,600 bp in length [16, 21, 22]; in addition 
to 12 protein-encoding genes, 22 tRNAs and 2 rRNAs, 
the mt genome contains two non-coding regions (NCRs), 
one of which is between tRNA-Tyr and tRNA-Leu genes 
(NR1; estimated at 87 bp [16] or 66 bp [21]) and the other 
between nad5 and tRNA-Gly (NR2, estimated at 184 bp; 
[16, 21]). However, our recent work [23], exploring the 
“global” genetic structure of E. granulosus genotype G1 
using near-complete mitogenome sequences of 211 indi-
vidual samples of this genotype revealed a gap (estimated 
at > 1  kb) between the 3′-end of the nad5 gene and the 
5′-end of the cox3 gene. In spite of many attempts to 
PCR-amplify (using a range of different oligonucleotide 
primer sets designed specifically to the nad5 and cox3 
genes flanking this enigmatic region), we were not able to 
define this region for any of the 211 genotype G1 isolates 
investigated using a Sanger-based sequencing approach 
(cf. [23]). This finding was suggestive of a repetitive, non-
coding region of complex structure(s) that is “resistant” 
to amplification by conventional PCR. This challenge 
needed to be circumvented using a different approach.

The availability of PacBio sequencing technology [24] 
and the advent of an automated pipeline [25] for the 
assembly of long-read sequence data provided an oppor-
tunity to overcome this obstacle and to, for the first time, 
directly define a complete mt genome of Echinococcus, in 
one sweep, irrespective of the nature or structural com-
plexities in intergenic regions. Here, we report what we 
consider to be the first complete mt genome of E. granu-
losus genotype G1 and characterise all repeat regions in 
this genome.

Methods
High molecular weight genomic DNA, extracted from 
protoscoleces from a single cyst of E. granulosus geno-
type G1 from a liver of a sheep from New South Wales 
in Australia using a conventional phenol:chloroform 
method [26], was sequenced using the PacBio Sequel [27] 
and BGISEQ-500 short-read sequencing [28] platforms 
employing established protocols. Sequence data obtained 
were assembled using a recently established common 
workflow language (CWL)-based pipeline [25]. To check 
the contiguity and sequencing depth of the assembly, the 
program Circlator v1.5.5 [29] was used to map corrected 
PacBio reads to the assembly; subsequently, short-read 
data were mapped using the program Bowtie2 v2.1.0 
[30] and sorted using the program SAMtools v1.3.1 [31]. 
Aligned reads were inspected for any nucleotide incon-
sistencies using the program IGV v2.3.97 [32].

The mt genome was compared with a representa-
tive, published mt genome of E. granulosus genotype G1 
(GenBank: AF297617; [21]), and its sequence deposited 
in the GenBank database under accession no. MK774655. 
Protein-encoding genes and rRNAs were annotated using 
an established bioinformatics pipeline [33]; tRNAs were 
identified using the same bioinformatic pipeline [33] 
and/or by a BLAST search [34] against an E. granulosus 
genotype G1 mt genome sequence available in GenBank 
(accession no. AB786664; [16]). The repeat region was 
characterised using the tandem repeat finder Dot2dot 
[35], and the secondary structures of non-coding regions 
were predicted using the RNAfold web server [36]. All 
annotations were curated manually.

Results and discussion
From totals of 2757 PacBio long-reads equating to 41 
Mb, we assembled a complete mt genome for E. granulo-
sus genotype G1 at an average sequencing depth of 2268, 
resulting in a contig of 17,675 bp, which is > 4 kb larger 
than all published mt genomes representing genotype G1 
(~ 13,600 bp) [16, 21, 22], but with the same order of pro-
tein-coding genes (Fig. 1).

We succeeded in assembling a tandem repeat region 
(TRR) of 4417 bp; 1895 reads spanned this and flanking 
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regions (≥ 1  kb, both 5′ and 3′). No length or sequence 
variation was detected among these reads, indicating 
a lack of polymorphism within or among protoscoleces 
within the sample from one cyst. The annotation of TRR 
revealed that it contains 10 tandemly repeated, near-
identical repeat units: the first unit is 444  bp in length; 
units two to nine are identical in sequence, being 441 bp; 
and the tenth unit is 445  bp (Fig.  1). Each repeat unit 
within TRR contains 144–147 bp of the 3′-end of nad5, 
184 bp of the non-coding region NR2, 63–67 bp of tRNA-
Gly, a 3 bp-intergenic region and 47 bp of the start of the 
cox3 gene (Fig. 1). The tRNA in the tenth unit appears to 
be the only functional tRNA-Gly in the genome, but this 
suggestion requires experimental verification. In addition 
to characterising the 4417  bp intergenic region (TRR), 

we also succeeded in defining the complete sequence of 
the non-coding region NR1, which equated to a total of 
183 bp (Fig. 1), the same length as estimated previously 
for E. multilocularis [37] but longer than the 87 bp [16] 
or 66  bp [21] recorded for E. granulosus genotype G1. 
Parts of NR1 and NR2 were predicted to fold into sec-
ondary stem-loop structures with possible roles in the 
regulation of replication and/or transcription of the mt 
genome (Fig. 1).

Sanger-sequencing and second-generation short-read 
sequencing, used previously to sequence mt genomes 
of Echinococcus [7, 16, 21–23, 37–39], are not suited to 
defining complex genomic regions, such as repeat ele-
ments. However, PacBio single-molecule real-time 
sequencing offers the long-read lengths to identify and 
characterise long, complicated repetitive regions [24], 
as achieved here. Other recent examples of success with 
PacBio sequencing include the resolution of unique, 
complex sequence tracts of ~ 4  kb and ~ 6.9  kb in the 
mt genomes of Schistosoma bovis [40] and Paragonimus 
westermani [41], respectively.

Published mt genomes of parasitic and free-living flat-
worms (e.g. [40–46]) are known to harbour non-coding 
regions of varying sizes, which may contain repeat ele-
ments. Two NCRs (66–875  bp) [47] appear to be char-
acteristic of cestodes, in which repetitive elements are 
relatively common [47–55]. In E. granulosus genotype 
G1, the two NCRs are located between two tRNAs 
upstream of the nad5 gene (NR1) and between nad5 
and tRNA-Gly (NR2), and have both been estimated at 
< 200 bp [16, 21]. Our results are consistent with the pre-
vious observations, in terms of the location of NR1 and 
NR2, and the length and sequence of NR2; however, the 
tandem replication of NR2 and its adjacent sequences are 
unique features not previously reported for mt genomes 
of cestodes.

In the future, the nature and extent of polymorphism in 
the tandem repeat region should be assessed by sequenc-
ing a large number of genotype G1 samples from individ-
ual cysts from distinct hosts and geographical locations 
using the PacBio approach, as the consistency of occur-
rence, size and sequence in this repeat region are pres-
ently unknown. It is possible that not all G1 isolates 
harbour tandem repeats, as they had not been observed 
in the published mitogenomes of G1 [16, 21, 22]. How-
ever, as the sequencing approaches used previously might 
not have been able to resolve complex regions, there is a 
question regarding the completeness of previously pub-
lished mt genome sequences. In addition to the intra-
genotypic variation, length and/or structural differences 
in TRR among different Echinococcus taxa should also be 
explored. The mt genome of genotype G3 is likely to har-
bour the tandem repeat region as well, as we detected but 

Fig. 1  The complete mitochondrial genome of Echinococcus 
granulosus (sensu stricto) genotype G1. The 12 protein-encoding 
genes, 2 rRNAs and 21 tRNAs (except tRNA-Gly) are depicted in 
light grey; the non-coding region NR1 is in darker grey. Transfer 
RNAs are designated by one-letter amino acid abbreviations; gene 
designations follow Le et al. [83]. The tandem repeat region (in 
four shades of brown) spans 4417 bp and includes 10 repeat units. 
Each unit contains the 3′-end of nad5, the non-coding region 
NR2, tRNA-Gly (proposed pseudo-tRNAs in repeat units 1–9), 
3 bp-intergenic region (not shown on figure) and 5′-end of cox3. 
Repeat units 2–9 are identical, whereas units 1 and 10 each have a 
3–4 nucleotide insertion, marked by an asterisk. The TTT insertion 
occurs in repeat unit 1, at the 3′-end of nad5, the TTTT insertion 
occurs in repeat unit 10, in tRNA-Gly. Secondary structures of NR1 
(a) and NR2 (b) are shown at the top; parts of these structures are 
predicted to have hair-pin loops with no mis-matches - depicted in 
green (stem) and yellow (loop); mis-matches are boxed
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could not resolve the enigmatic region for 39 G3 samples 
using Sanger-based sequencing [56]. However, this might 
not be the case for genotypes G6 and G7, as Sanger-based 
sequencing defined, without complication, complete mt 
genomes (n = 94) for these genotypes in a recent study 
[7]. Taken together, these findings suggest that there is 
significant scope for studies of the nature and extent of 
variation in repeat regions within and among different 
Echinococcus species and genotypes, and their evolution.

We hypothesise that tandem repeats within genotype 
G1 might provide an evolutionary advantage over mt 
genomes with no such replications. Most mt genomes 
of animals are relatively small (typically 15–20 kb in size; 
[57, 58]), lack introns and have short intergenic regions 
(usually only a few bp; [59]) and are, thus, thought to be 
under selection for compactness (cf. [60]). Non-func-
tional replications could be rare and would be expected 
to be eliminated relatively quickly due to the rapid rate 
of replication of compact mt genomes [60, 61]. It could 
be speculated that the existence of the tandem repeat 
region (TRR) within the mt genome of G1 overrides the 
selection for a small genome size and might provide an 
evolutionary advantage. A key element of this proposal 
could be the existence of replicated control regions (CRs) 
within TRR.

It is well established that mt genomes of animals con-
tain a control region that initiates replication and tran-
scription [62, 63]. Interestingly, there have been several 
reports of duplications of the control region in the mt 
genomes of various species of animals [64–68], which 
are thought to be advantageous, in terms of more effi-
cient transcription and/or replication of mt genes [64, 65, 
69]. As a working hypothesis, we propose that the 184 bp 
non-coding sequence (NR2) within each repeat unit of 
TRR is a putative control region of genotype G1 and, 
thus, the mt genome contains 10 identical copies of CR 
which might be beneficial, in terms of more efficient rep-
lication and/or transcription. Parts of this region appear 
to be capable of folding into secondary stem-loop struc-
tures (see Fig. 1), which, as suggested previously [37, 42, 
44, 55], could be associated with mt genome replication 
in cestodes. This hypothesis warrants testing.

If the mt genome of E. granulosus genotype G1 did 
consistently contain 10 identical CRs, this might provide 
an advantage, in terms of cellular energy production, 
especially during life-cycle phases that require short-
term bursts of energy in a micro-aerobic habitat. As an 
adaptation to this environment, it has been hypothesised 
that the parasite uses fermentative pathways to gener-
ate cellular energy, specifically lactic fermentation and 
malate dismutation [70–72]. While lactate is produced 
in the cytosol and excreted, mt fermentation of malate 
is known to occur in helminths [73] and is encoded in 

Echinococcus [74]. More effective mt replication and/
or transcription mechanisms might compensate for the 
lower energy yield of fermentation [73] compared with 
aerobic respiration [75] and be under strong selective 
pressure. Efficient energy production would be particu-
larly important during the phase in which eggs hatch, 
oncospheres activate and are then required to rapidly 
penetrate the intestinal wall of the intermediate host ani-
mal [76, 77]. The successful development of an Echino-
coccus cyst in an intermediate host is highly dependent 
on a rapid penetration of the oncosphere and immediate 
post-oncospheral establishment [77, 78]. Interestingly, 
genotype G1 has the broadest host range of all Echino-
coccus taxa [2]. Thus, it could be proposed that efficient 
energy production at the oncosphere stage might be one 
of the factors contributing to this genotype’s success at 
infecting a diverse range of host species. Another crucial 
phase requiring rapid energy production is during the 
development of protoscoleces into adult worms in the 
small intestine of the definitive host [77].

We suggest that the other non-coding region, NR1, 
might have an exclusive functional role in the replication 
of the mt genome. Several mechanisms, including roll-
ing circle, strand-displacement, and strand-coupled rep-
lication, have been proposed for mt DNA in vertebrates 
and invertebrates [62]. Although the replication mecha-
nisms in cestodes are not understood, the secondary 
structure of NR1 (see Fig. 1) seems to lend support to the 
strand-displacement mechanism being utilised (cf. [63]). 
According to this model, there are two distinct origins of 
replication, a CR containing the origin of leading-strand 
replication and another origin initiating lagging-strand 
replication, which is characterised by a stem-loop struc-
ture [63]. The 183 bp non-coding region assembled here, 
for the first time, for genotype G1 appears to assume a 
long stem-loop (Fig.  1), suggesting that, if the strand-
displacement mechanism is utilised by the Echinococcus 
tapeworms, NR1 could be the initiation site for lagging-
strand replication. The NR1 (183  bp) identified in E. 
multilocularis [37] is also predicted to fold into a long 
stem-loop of a similar size [44], suggesting that it has 
structural and functional significance in the mt genome. 
Future work might focus on exploring the roles of both 
NR1 and NR2 using 2D neutral agarose gel electrophore-
sis, Southern blot-hybridisation and electron microscopy 
techniques [79–82].

Conclusions
Here, we report what we consider to be the first complete 
mt genome of E. granulosus genotype G1. We succeeded 
in defining an elusive tandem repeat region (4.4  kb), 
which consists of ten repeat units, each harbouring a 
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184 bp non-coding region and adjacent regions, a unique 
feature, not previously observed in mt genomes of ces-
todes. We also characterised a short non-coding region 
(183 bp; containing a long, inverted repeat) for the first 
time for genotype G1. The presence, size, sequence and 
function of tandem repeat regions in different isolates of 
genotype G1, and in other genotypes and species, remain 
to be studied. The discovery here of “new” repeat ele-
ments in the mt genome of G1 raises a question about the 
completeness of some published genomes of taeniidae 
assembled previously from conventional or short-read 
sequence data sets. The present study shows that PacBio 
sequencing overcomes the challenges associated with the 
assembly of repeat elements in genomes and indicates its 
benefits for investigating the genomes of cestodes and 
other parasites.
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