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Abstract

Background: Current strategies to control mosquito-transmitted infections use insecticides targeted at various
stages of the mosquito life-cycle. Control is increasingly compromised by the evolution of insecticide resistance but
there is little quantitative understanding of its impact on control effectiveness. We developed a computational
approach that incorporates the stage-structured mosquito life-cycle and allows tracking of insecticide resistant
genotypes. This approach makes it possible to simultaneously investigate: (i) the population dynamics of
mosquitoes throughout their whole life-cycle; (ii) the impact of common vector control interventions on disease
transmission; (iii) how these interventions drive the spread of insecticide resistance; and (iv) the impact of resistance
once it has arisen and, in particular, whether it is sufficient for malaria transmission to resume. The model consists
of a system of difference equations that tracks the immature (eggs, larvae and pupae) and adult stages, for males
and females separately, and incorporates density-dependent regulation of mosquito larvae in breeding sites.

Results: We determined a threshold level of mosquitoes below which transmission of malaria is interrupted. It is
based on a classic Ross-Macdonald derivation of the malaria basic reproductive number (R0) and may be used to
assess the effectiveness of different control strategies in terms of whether they are likely to interrupt disease
transmission. We simulated different scenarios of insecticide deployment by changing key parameters in the model
to explore the comparative impact of insecticide treated nets, indoor residual spraying and larvicides.

Conclusions: Our simulated results suggest that relatively low degrees of resistance (in terms of reduced mortality
following insecticide contact) can induce failure of interventions, and the rate of spread of resistance is faster when
insecticides target the larval stages. The optimal disease control strategy depends on vector species demography
and local environmental conditions but, in our illustrative parametrisation, targeting larval stages achieved the
greatest reduction of the adult population, followed by targeting of non-host-seeking females, as provided by
indoor residual spraying. Our approach is designed to be flexible and easily generalizable to many scenarios using
different calibrations and to diseases other than malaria.
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Background
Approximately 17% of human infectious diseases are
transmitted by vectors such as mosquitoes, ticks and
fleas [1, 2] and many are controlled by public health
interventions using insecticides to target the vector.
Malaria is the most serious example of a vector-borne
infection and caused an estimated 212 million clinical
cases and 429,000 deaths in 2016 [3]. Deploying insecti-
cides against Anopheline mosquitoes, primarily in the
form of insecticide-treated nets (ITNs) and indoor re-
sidual spraying (IRS), has been highly successful (see for
example [4–7]) and are credited with contributing 68%
and 13%, respectively, to recent dramatic reductions in
falciparum malaria in Africa [7]. These successes come
at a cost: large amounts of insecticides have to be
deployed, and it is estimated that more than 50% of the
population in sub-Saharan Africa was protected by at
least one vector control intervention in 2015 [8]. A
near-inevitable consequence has been the emergence
and spread of insecticide resistance (IR) in mosquito
vector species [9]. Almost two thirds of countries
with ongoing malaria transmission now report resist-
ance to one or more classes of insecticide [10–12]
and this is widely recognised as a major threat to the
sustainable impact of malaria control programmes
(reviewed in [9]). Similar patterns of insecticide resist-
ance are noted in other mosquito populations under
public health control, notably the Aedes mosquitoes
that transmit dengue.
The threat posed by insecticide resistance in mosquito

populations has stimulated a series of theoretical papers
to investigate the processes. They have been of two main
forms. The first relates to evolutionary genetic and/or
mathematical models exploring resistance management
strategies designed to minimise selection for resistance
(e.g. [13–20]). These models simply regarded insecticide
resistance as something to be avoided and sought ways
to understand, avoid or slow its evolution; this meant
they usually had to ignore the most important
operational factor of IR, i.e. its quantitative impact on
undermining insecticide-based control of human
disease transmission. A second suite of models does
investigate the impact of insecticide resistance on
mosquito population demography and hence on
disease transmission (e.g. [19, 21, 22]). These could
assess the impact of IR on control (using a ‘with’ vs
‘without’ comparison) but neglected the dynamics by
which IR evolved and spread, and how it might be
potentially delayed. The purpose of this paper is to
close this methodological disconnect between the two
approaches and demonstrate how they can be com-
bined to simultaneously quantify the likely impact of
insecticide deployment and resistance on malaria
transmission potential.

We developed a demographic/genetic model for
mosquito population dynamics that tracks overlapping
generations and runs in discrete time steps of one day. It
focuses on malaria transmission by its key vectors,
Anopheles, although it can easily be modified to accom-
modate the bionomics of other species. The model
incorporates the stage-structured mosquito life-cycle, i.e.
eggs, larvae, pupae and adults. Modelling the adult stage
allows mortality rates to differ between sexes (males do
not blood-feed) and between the feeding and digesting/
oviposition stages of the adult female. Density-dependent
competition, and hence population regulation, is assumed
to occur at the larval stage such that the emergence rate
of new mosquitoes includes the non-linear impact of in-
secticides on reducing the population size. We integrated
insecticide resistance into the model and allowed differen-
tial survival of mosquitoes depending on their genotypes
(SS, SR and RR where S is the sensitive allele and R is the
resistant), sex and the stage of the life-cycle (egg, larvae,
pupae, adults). We then show how to interrogate this
demography to calculate the R0 of the mosquito popula-
tion; if vector R0 is less than 1 then the mosquito popula-
tion will go extinct and disease transmission will cease. If
extinction does occur we can then predict whether the
presence (or importation) of resistance will be sufficient to
re-establish the vector population, i.e. whether its R0 in
the presence of resistance is greater than 1. We then used
a Ross-Macdonald model to investigate situations where
vector R0 > 1 to predict whether malaria transmission will
continue despite control interventions reducing adult
female population size and longevity and/or whether
transmission will re-emerge once resistance is present in
vector populations. The model is, therefore, designed to
simultaneously answer a series of questions that arise
naturally from control programmes:

� What impact do insecticides have on the mosquito
population: will it be driven to extinction and, if not,
how will insecticide deployment affect mosquito
numbers and adult female longevity?

� What impact will these changes in mosquito
demography have on disease transmission: assuming
the mosquito populations are not eliminated, will
there still be ongoing transmission?

� How will different patterns of insecticide
deployment select for resistance?

� How will the spread of insecticide resistance affect
mosquito populations and compromise attempts to
reduce disease transmission?

We focus on malaria transmission, but Ross-Macdonald
is a generic model for vector-borne disease transmission
and, in principle, our methodology is equally applicable to
other mosquito-borne diseases such as dengue.
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Methods
The anopheline mosquitoes that transmit malaria
undergo complete metamorphosis through four distinct
life-cycle stages: egg, larva, pupa and adult. Adult
females feed on a vertebrate host and lay eggs in water
bodies. Eggs hatch, within one or two days to a week or
more, into larvae that breathe air through tubes, eating
floating organic matter. Larvae moult four times until
they became pupae. Pupae live near the surface of the
water and do not eat, breathing through siphons on their
back, and after a few days emerge as adults. The adult
lives for a few days to several weeks [23]. The juvenile
stages are similar in males and females, but the adult stage
differs significantly in their behaviours as only females
seek and feed on vertebrate hosts. A more detailed de-
scription of the life-cycle from a modelling perspective
can be found in [24]. Note that because males do not bite
and transmit infections they can be ignored in models that
deal solely with transmission (e.g. [24, 25]) but they must
be included here because they contribute half the genes to
the next generation and their behaviour means adult
males often inhabit a largely insecticide-free “refugia” with
corresponding low selection for resistance [19]. Figure 1
outlines the model structure designed to reflect this
life-cycle, and its parameterisation. It was constructed as a
discrete-time, stage-structured model using a system of
difference equations. The inclusion of the stage-structure
allows realistic modelling of the life-cycle and selection of
resistance at appropriate points within that life-cycle.
Population regulation was assumed to occur through lar-
val competition. The model was implemented in R [26]
and used discrete time steps of one day to capture the cir-
cadian nature of mosquito behaviour.
We assumed resistance is encoded at a single gene with

two alleles encoding resistance and sensitivity. We simul-
taneously ran this model in parallel for the three geno-
types i.e. SS, SR and RR. This allows the genotypes to have
different patterns of mortality depending on their level of
insecticide resistance. Note that larval competition directly
occurs between all three genotypes and that adults mate
(at random) between the three genotypes. We assumed
that males can mate multiple times but female mosquitoes
mate once, immediately after emergence from pupae, and
carry the sperm for the rest of their lives. We explicitly
tracked the genotype of the sperm each female carries.

A demographic/genetic model of mosquitoes under
insecticide control
We use two superscripts in the notations: the first to
denote gender (f for females and m for males) and the sec-
ond to denote the mosquito genotype j, where j is one of
SS, RS, or RR. We append a third superscript, k, to adult
female mosquitoes, where k is one of SS, SR or RR and de-
notes the genotype of the male mosquito that she mated

with. We describe the model parameters, and their
specific values, for the life-cycle in Table 1.

Tracking the mosquito juvenile population
Development through the juvenile life-cycle is tracked
using the index i to represent days since the egg was laid
(i = 1 denotes a newly laid egg): θe is the duration of the
egg stage, θl is the duration of the larval stage and θp is
the duration of the pupal stage (all measured in days). The
total duration of the juvenile stages is therefore ζ
where ζ = θe + θl + θp and we denote the female juvenile
mosquito population of genotype j at time t as xfj(t) where

� xfji ðtÞ for 1 ≤ i ≤ θe denotes the number of female egg
stages, of genotype j, of age i, at time t,

� xfji ðtÞ for (θe + 1) ≤ i ≤ (θe + θl) denotes the number of
female larval stages of genotype j, of age i, at time t,

� xfji ðtÞ for (θe + θl + 1) ≤ i ≤ ζ denotes the number of
female pupal stages of genotype j, of age i, at time t.

The male juvenile population is described in an
analogous manner with a superscript m instead of f.
Note that the symbol x−−i ðtÞ denotes the number of
juveniles at stage “i” at the end of day “t”. The
equations in this section therefore all function in the
same way. They calculate the number of mosquitoes
coming into stage “i” at the start of the current day
[i.e. from the previous day and stage, x−−i−1ðt−1Þ ],
allowing for factors such as density dependence and
mating, and then multiplying this number by the sur-
vival probability of that stage to obtain the number
surviving at the end of that day, i.e. x−−i ðtÞ.
We describe the dynamics of the juvenile male and

female mosquito populations of genotype j in Eqs. 1 to 8.
After each iteration, mosquitoes are moved forward in
chronological time (to t + 1) and in developmental time
(to i + 1).
The juvenile female mosquito population of genotype j

at time t, xfj(t) was tracked by first determining the num-
ber of newly laid female eggs i.e. the first day of the egg
stage, i = 1:

xfj1 tð Þ ¼ Λ j t−1ð Þφρfje ð1Þ
where Λj(t − 1) is the total number of eggs of genotype j
laid at time t – 1 (see later discussion of Eqs. 15 to 17)
and φ is the proportion of female eggs (always set to
0.5 here).
The developing eggs after the first day were tracked

using:

xfji tð Þ ¼ xfji−1 t−1ð Þρfje for 2≤ i≤θe ð2Þ
where eggs develop over θe days and progress is
dependent on the daily egg survival probability, ρe.

Barbosa et al. Parasites & Vectors  (2018) 11:482 Page 3 of 21



The larval stages were tracked as:

xfji tð Þ ¼ xfji−1 t−1ð Þ 1

1þ cfji
L t−1ð Þ

Z

2
64

3
75ρfjl for θe þ 1ð Þ≤ i≤ θe þ θlð Þ

ð3Þ

where larval stages persist for θl days and progress is
dependent on the daily larval survival probability ρl. In
this model, density-dependent population regulation
(DDPR) occurs in the larval stages of both sexes and is
represented by the factor encoded in square brackets.

This factor is described in more detail below in Eqs. 9
and 10.
The pupal stages were tracked as:

xfji tð Þ ¼ xfji−1 t−1ð Þρfjpfor θe þ θl þ 1ð Þ≤ i≤ζ ð4Þ

The juvenile male mosquito population of genotype j
at time t, xmj(t) was similarly defined for number of male
eggs, developing eggs, larval stages and pupal stages as

xmj
1 tð Þ ¼ Λ j t−1ð Þ 1−φð Þρmj

e ð5Þ

xmj
i tð Þ ¼ xmj

i−1 t−1ð Þρmj
e for 2≤ i≤θe ð6Þ

Fig. 1 A schematic of our mosquito stage-structured model. The adult stage dynamics is considerably different in male and female mosquitoes
primarily because male mosquitoes do not feed on vertebrate hosts and hence do not enter a host-seeking phase. Male adults are composed of
newly emerged individuals plus the adult males that survived the previous day. Female adults are grouped in three classes: (i) unfed individuals
that are currently host-seeking (newly emerged individuals, individuals that did not find a host the previous day, and individuals that laid eggs
the previous day and are starting a new gonotrophic cycle), Eq. 12; (ii) fed individuals, Eq. 13; and (iii) resting individuals, Eq. 14. The model tracks
the three potential genotypes j ∈ (SS, RS, RR) of the individuals through their developmental stages. The total number of eggs laid by all females is
Λ (Eqs. 15 to 17), of which (1 − φ)Λ are males and φΛ are females. We assume adult females mate once upon emergence, while males can mate
multiple times. The θ parameters refer to the duration of each stage in days, and ρ to the proportion of individuals that survive per day in a
given stage (e, eggs; l, larvae; p, pupae)
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xmj
i tð Þ ¼ xmj

i−1 t−1ð Þ 1

1þ cmj
i

L t−1ð Þ
Z

2
64

3
75ρmj

l for θe þ 1ð Þ≤ i≤ θe þ θlð Þ

ð7Þ

xmj
i tð Þ ¼ xmj

i−1 t−1ð Þρmj
p for θe þ θl þ 1ð Þ≤ i≤ζ ð8Þ

Implementing density-dependent population regulation
(DDPR)
The DDPR was incorporated into the larval populations
in Eqs. 3 and 7 using the Leslie Gower population
growth model, analogous to Beverton-Holt (B-H), which
is a classic discrete time population growth model whose
continuous-time equivalent is logistic growth towards a
carrying capacity [27]. The B-H equation is:

xtþ1 ¼ xtR0
1

1þ xt
Z

2
64

3
75 ð9Þ

where xt is the number of individuals at generation t, R0

is the per capita growth rate per generation and Z is a
number that determines the carrying capacity of the
population, K, as K = (R0 − 1)Z. We extend the B-H

model in Eqs. 3 and 7 with a change in scale from indi-
vidual animals (Z in Eq. 9) to amount of larval resources
to account for competition between different genotypes
(in this manuscript). The DDPR described within square
brackets in Eqs. 3 and 7 is analogous to that in Eq. 9
with this change of scale. The total amount of larval
resources is user-defined as a constant Z in arbitrary,
undefined units, which sets the carrying capacity of the
population. L(t) is the current amount of larval resources
being consumed at time t (see below) hence the ratio
L(t)/Z in Eqs. 3 and 7 plays exactly the same role as x(t)/
Z in Eq. 9; it is simply that Eq. 7 defines the approach to
carrying capacity in units of resources while Eq. 9
defines it in units of population. The only remaining
difference between Eqs. 7 and 9 is the extra term c in
Eq. 7 that describes relative competitive ability of the
genotypes, age and sex of the larvae. The competitive

ability of larvae, cfji and cmj
i , may differ depending on

their genotype (for example, resistant forms may pay a
fitness penalty for carrying the resistance mutation) and
the resource consumption (denoted ωfj and ωmj, see
below) of each genotype may vary (for example, resistant
forms may be larger and consume more resources).
Similarly, older larvae are likely to consume more food

Table 1 Parameters used in the mosquito demographic simulations

Symbol Meaning Default value (range)

θe Duration of the egg stage (days) 2

ρfje (ρ
mj
e Þ Proportion of female (male) eggs of genotype j that survive one day 0.72 (0–1)

θl Duration of the larval stage (days) 10

ρfjl (ρ
mj
l ) Density-independent proportion of female (male) larvae of genotype j that survive one day 0.94 (0–1)

Z Total larval resources availability (arbitrary units) 0.25 × 108 (1 × 106 – 0.33 × 1011)

cfji (c
mj
i ) Effect of larval competition on female (male) larvae of genotype j in stage i 0.67 (0–1)

ωfj
i (ω

mj
i ) Relative resource consumption of female (male) larvae of genotype j in stage i 0.67 (0–1)

θp Duration of the pupal stage (days) 3

ρfjp ðρmj
p Þ Proportion of female (male) pupae of genotype j that survive one day 0.55 (0–1)

τ Duration of the resting period of the gonotrophic cycle of a female adult mosquito (days) 3

Hj Proportion of adult females of genotype j that find a host and successfully feed while seeking per day 0.67 (0–1)

ρfjs Proportion of adult females of genotype j that survive while host-seeking per day 0.71 (0–1)

ρfjn Proportion of adult females of genotype j that survive while resting per day 0.96 (0–1)

ρmj
d

Proportion of male adults of genotype j that survive one day 0.5 (0–1)

βj Number of eggs laid per oviposit by female mosquitoes of genotype j 100

σk Mating viability of a male of genotype k. 0 < σk ≤ 1 1.0

φ Proportion of eggs that are female 0.5

The superscripts, m and f denote males and females; j and k denote genotype and can be any of SS, representing homozygous susceptible, RS, representing
heterozygous, and RR, representing homozygous resistant. Default parameter values are identical for males and females when applicable. The range gives, where
applicable, the values used in the sensitivity analysis and define the limits of a triangular (with mode 0.85) for all parameters except c, ω and Z that follow a
uniform distribution. Parameter choice and supporting citations are provided and discussed in Additional file 3
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and may be more resilient to competition. The total lar-
val consumption of resources by male and female larvae
of all genotypes is obtained simply by summing over the
sexes, genotypes, and stages, i.e.

L tð Þ ¼
X

j∈ SS;RS;RRf g
X

θeþθl
i¼θeþ1ω

fj
i x

fj
i tð Þ þ ωmj

i xmj
i tð ÞÞ

�
ð10Þ

where ωi is the relative resource consumption of the
larval sex/genotype, the latter being indicated by its
superscript, j, of age i. Isolating the DDPR as a distinct
factor in Eqs. 3 and 7 means it is simple to substitute
other forms of DDPR if required (e.g. [24, 25]) or other
functions such as the Ricker function [28].

Tracking the mosquito adult population
The adult male population of genotype j at time t, ymj(t) is:

ymj tð Þ ¼ ymj t−1ð Þ þ xmj
ζ t−1ð Þ

h i
ρmj
d ð11Þ

which is the number of male adults that survived from
the previous day (ymj(t − 1)) augmented by male adults

that emerged from pupae ðxmj
ζ ðt−1ÞÞ , scaled by the

probability that they survive the day (ρmj
d ).

Females mate once when they emerge and store the
sperm to fertilise all their future egg production while
males may mate multiple times (see for example [29]).
Female anophelines need to blood-feed to produce eggs,
so their behaviour differs significantly from those of
males (who do not blood-feed). Fertilised females initiate
their gonotrophic cycle that consists of 3 phases: (i)
foraging for a host and blood-feeding; (ii) resting to
allow digestion of the blood and egg maturation; and
(iii) searching for a suitable oviposition site and ovipos-
ition (Fig. 1). This gonotrophic cycle is repeated
throughout the female’s remaining lifespan.
The female adult population time t + 1 is described in

Eqs. 12 to 14. Recall that adult female mosquitoes re-
quire a third superscript k (where k is one of SS, SR or
RR) to denote the genotype of the male mosquito she
mated with (which will be the paternal genotype for her
subsequent egg production).
The number of host-seeking unfed females in the

current gonotrophic cycle is:

yfjk1 tð Þ ¼ ½xfjζ t−1ð Þ
σk ymk t−1ð Þ þ xmk

ζ t−1ð Þ
� �

ρmk
dP

hε SS;RS;RRf gσH ymk t−1ð Þ þ xmk
ζ t−1ð Þ

� �
ρmk
d

þ yfjk1 t−1ð Þ 1−H j
� � þ yfjkτ t−1ð Þ�ρfis

ð12Þ
where the first term describes the number of newly

emerged female adults f, of genotype j ðxfjζ ðt−1ÞÞ , that

will mate with a male of genotype k i:e:ð ymkðt−1Þ þ xmk
ζ

ðt−1ÞÞρmk
d , which has a mating viability σk (this term

is normalised by dividing by the total adult male
population weighted by their mating viability). The

second term, yfjk1 ðt−1Þð1−H jÞ , refers to other female
mosquitoes still in the host-seeking state that were
unfed adults the previous day and unsuccessful in
finding a host on the previous day (H is the probabil-
ity of successfully finding a host and feeding). The
third term, yfjkτ ðt−1Þ represents females that success-
fully laid eggs, completing their gonotrophic cycle,
and are now seeking a host in their new gonotrophic
cycle. These terms are then scaled by the probability
that they survive this day of host-seeking, i.e. pfjs :
The number of female mosquitoes entering the second

adult phase of the gonotrophic cycle (resting and fed the
previous day) corresponds to individuals in y1 that
survived and successfully fed (a proportion Hj) and is
described as:

yfjk2 tð Þ ¼ yfjk1 t−1ð ÞH jpfjn ð13Þ

The number of females in the remaining days of this
“resting” phase of digestion of the blood and egg matur-
ation, was found using:

yfjki tð Þ ¼ yfjki−1 t−1ð Þρfjnfor 3≤ i≤τ ð14Þ

if the duration of the resting stage is sufficiently long
i.e. (τ ≥ 3).
We assume, for simplicity, that the probability rested

females successfully survive while finding an oviposition
site and mating (the third phase of the female gono-
trophic cycle) is the same as their daily probability of
survival while resting, i.e. ρ j

n. This factor enters the equa-
tions describing egg laying, i.e. Eqs. 15 to 17 below.

Tracking the spread of resistance
The frequency of resistance is defined at the start of the
simulations and is assumed to be equal in males and fe-
males, with genotypes in Hardy-Weinberg equilibrium
[30]. Male and female genotypes are tracked separately
in the simulations (Fig. 1) because their exposure to
insecticides as adults will differ and hence genotype
frequencies may differ between males and females in the
adult, breeding population. Mating is assumed to occur
at random and inheritance is by standard Mendelian
genetics. We can therefore calculate the proportion of
genotypes in the next generation according to the
following three equations where βj is the number of eggs
laid by genotype j.
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The number of homozygous susceptible eggs laid at
time t is

ΛSS tð Þ ¼ βSSρSSn yfSSSSτ tð Þ þ 1
2
yfSSRSτ tð Þ

� �

þ βRSρRSn
1
2
yfRSSSτ tð Þ þ 1

4
yfRSRSτ tð Þ

� �
ð15Þ

The number of heterozygous eggs laid at time t is

∧RS tð Þ ¼ βSSρSSn
1
2
yfSSRSτ tð Þ þ yfSSRRτ tð Þ

� �

þ βRSρRSn
1
2
yfRSSSτ tð Þ þ 1

2
yfRSRSτ tð Þ þ 1

2
yfRSRRτ tð Þ

� �

þ βRRρRRn yfRRSSτ tð Þ þ 1
2
yfRRRSτ tð Þ

� �
ð16Þ

The number of homozygous resistant eggs laid at time
t is

ΛRR tð Þ ¼ βRSρRSn
1
4
yfRSRSτ tð Þ þ 1

2
yfRSRRτ tð Þ

� �

þ βRRρRRn
1
2
yfRRRSτ tð Þ þ yfRRRRτ tð Þ

� �
ð17Þ

The ρ parameters in these equations represent the
additional mortality associated with searching for
oviposition sites; for simplicity, these were assumed to
be equal to that of non-host-seeking.
Immigration, emigration and mutation are absent but

it would be straightforward to include these effects by al-
tering genotype frequencies at the egg stage (mutations)
or by altering the number and/or genotypes of adult
stages to represent immigration/emigration.

Estimating population basic reproductive rate (R0) for
mosquitoes
A natural question considered by control programmes is
whether an intervention will eliminate the local
mosquito population. It is possible to run the model
described above to find if a population is viable, i.e. start
the demographic simulation from extremely low
mosquito numbers and find if they increase over the
longer term and a stable age distribution has been
reached. This is computationally expensive, especially if
large-scale sensitivity analyses are being run, so an

algebraic expression for R0 is desirable. The R0 for
female mosquitoes, ignoring differences in genotypes, is

R0 ¼ φβρθee ρ
θl
l ρ

θp
p ρsHρτ−1n

1−ρs 1−Hð Þ−ρsHρτ−1n
ð18Þ

This equation can be derived in two ways (using an
“intuitive” approach and a rigorous mathematical
approach); both yield the same result and are described
in Additional files 1 and 2, respectively. Obviously if
R0 < 1, the mosquitoes are locally extinct and no dis-
ease transmission will occur, i.e. the intervention has
succeeded.

Estimating population basic reproductive rate (R0) for
malaria and human malaria prevalence
Assuming a viable mosquito population remains despite
the intervention (i.e. R0 > 1 for mosquitoes, see above),
the next step is to predict whether this mosquito popula-
tion is able to transmit malaria. The basic reproductive
rate of malaria, R0m, using the approach attributed to Ross
and Macdonald (R-M) [31] is as follows (although we note
there are several variations of this basic equation [32]):

R0m ¼ ma2b1b2
gr

ρi ¼
M
N

∙
a2b1b2
gr

ρi ð19Þ

where:

m=M/N is the number of female mosquitoes per
human host where N is the size of the human
population and M is the size of the female adult
mosquito population (i.e. Af(t) in our models, see later
description of Eq. 23);
a is the rate of biting on humans by a single mosquito
(number of bites per unit time);
b1 is the probability of infection transmission from
infectious mosquitoes to susceptible humans;
b2 is the probability of infection transmission from
infectious humans to susceptible mosquitoes
r is the per capita rate of recovery for humans
(so 1/r is the average duration of infection in the
human host);
g is the per capita constant mortality rate for female
mosquitoes (so 1/g is the average life time of a
mosquito). This is usually obtained as − ln(p) where p is
the daily survival rate (Box 2 of [32]);
ρi is the probability of surviving the “extrinsic
incubation period” i.e. the time period between the
mosquito biting a malaria-infected human and that
mosquitoe becoming infectious to other humans
(i.e. the presence of sporozoites in her mouthparts).
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The R-M approach does not differentiate between
females in different stages of their gonotrophic cycle
whereas our approach explicitly defines different death
rates according to the behaviour of the female of any
given day (i.e. actively host-seeking or resting). We now
illustrate how the R-M approach may be used with
differential female survivorship in different states. We
will assume, for convenience, locally intense transmis-
sion of malaria by An. gambiae, a vector that feeds
almost exclusively on humans and bites approximately
every 4 days (see Additional file 3). Assuming the female
always completes her cycle in these 4 days and then pro-
ceeds to the next cycle, the approximate adult female
daily survival probability is the geometric mean of daily
survival rates during the cycle, so that the daily mortality
rate is:

g ¼ − ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ j
s ρ j

n

� �34

r" #
¼ − ln ρ j

s ρ j
n

� �3h i
=4 ð20Þ

The duration of the extrinsic incubation period
depends on temperature but assuming ideal conditions,
we will let it be ~10 days; we also assume that the adult
always finds a human on the day she starts host-seeking.
The mosquitoes will have fed at the start of the extrinsic
incubation period so the extrinsic incubation period will
consist of 3 days resting, another day host-seeking, 3
days resting, another day feeding and 3 days resting until
she is ready to feed again and transmit the infection, i.e.
9 days resting and 2-host-seeking so we can estimate the
probability of surviving the extrinsic incubation period
as:

ρi ¼ ρ j
n

� �9
ρ j
s

� �2 ð21Þ

These calculations were, as mentioned above, based
on ideal situations for mosquitoes [i.e. they always find
hosts (so H = 1), extrinsic incubation only lasts 10 days,
and so on]. Mosquitoes can be age-dated by parity in
the field so we can revise Eq. 21 to obtain the prob-
ability a mosquito survives 3 or more feeding/parity
cycles, each cycle of 3 days resting and one feeding,
as (0.963 × 0.71)3 = 0.25. This is rather high but not
unrealistic. Gilles & Wiles [33] found 20% and 23% of
An. gambiae and An. funestus, respectively, were
“3-parous and older” in Muheza, Tanzania; these data
came from 1965 when there was much less insecticide be-
ing deployed in public health. Background mortality rates
will be higher in contemporary settings with widespread
insecticide deployment although incorporating this
background exposure greatly complicates extraction of
basal mortality rates (see [34] for a recent example). More

realistic calculations may be used to incorporate ‘non-per-
fect’ conditions in the mosquito populations, for example
wide scale ITN coverage may mean mosquitoes take two
or even three days of host-searching to obtain a blood
meal. Equations 20 and 21 can be updated to reflect these
new combinations of days spent searching and resting. In
reality, a range of different combinations will occur in the
mosquito population and the solutions to the equations
will be a type of weighted mean across the combinations
[35]. We omitted these complications in the interests of
simplicity, because the calculations only serve as illustra-
tive target reductions for interventions (see later) and to
avoid duplication of previous work [35].
This approach does enable us to obtain the parameters

required to calculate, M’, the target number of adult
mosquitoes that results in R0m < 1 and hence elimination
of malaria as

M0 < N
rg

a2b1b2ρi
ð22Þ

These equations do not distinguish between the
genotypes with differing levels of insecticide resistance
(which results in the different genotypes having different
survival probabilities). It is straightforward to incorp-
orate resistant genotypes by regarding them as
equivalent to different “species”; since malaria is often
spread by more than one vector species, methods for
calculating R0 in the presence of several species is
well worked out [36, 37].
The value of R0m allows the equilibrium preva-

lence, P̂ of malaria in humans to be calculated
algebraically. Anderson & May [31], for example,
calculated it as P̂ ¼ ðR0−1Þ=ðR0 þ ab2=gÞ . The problem
with R-M applied to malaria is that it does not allow for
super-infection or for acquired immunity so preva-
lences obtained algebraically should be interpreted
with caution. An alternative, and probably more
robust approach, is to obtain R0m as described above
and then obtain malaria prevalence using their empir-
ical relationships estimated from field surveys; for
example, using figure 2 of [38] to convert R0 to ento-
mological inoculation rate (EIR) and then figure 1 of
[39] to convert EIR to prevalence.

Simulating mosquito populations
When tracking the spread and impact of resistance in
the simulation, the starting frequency of resistance was
assumed to be 0.5 in all cases. The initial frequencies
will be much lower at the start of most real-life interven-
tions so these simulations show the last stages of resist-
ance spread following interventions. These intermediate
frequencies of alleles reduce the impact of stochastic
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frequency changes, allowing better estimation of selec-
tion coefficients; these coefficients are key summary
measures in population genetic theory allowing results
to be generalised. For example, section coefficients
determine the rate of geographical migration of
resistance, and the chance of resistance alleles first
emerging in the populations (e.g. [40]). The genotypes
were introduced in Hardy-Weinberg equilibrium, i.e.
25, 50 and 25% of the SS, SR and RR genotypes,
respectively. We calibrate the models for an area of
high malaria transmission and use a value of 110 for
mosquito density (i.e. number of adult female mos-
quitoes per human host; m in the Ross-Macdonald
model) as justified in Additional file 3.
A useful starting point for identifying high-impact

interventions is to use the calculations developed
above to identify those parameters, such as larval sur-
vival probability, in which small changes may have a
disproportionately large impact on adult female popu-
lation size. This enables us to identify key parameters
which are prime candidates to be targeted by insecti-
cides. The demographic/genetic model described
above was run to equilibrium adult population size
using 3000 randomly generated combinations of
parameter values drawn from the parameter space
described in Table 1 with no genetic differences in
resistance levels. The output allowed us to perform a
sensitivity analysis of the influence of the parameters
on female population size. The total number of adult
females at time t, Af(t) is the sum of the number of
mosquitoes in each day of the feeding cycle as
described by Eqs. 12 to 14, i.e.

Af tð Þ ¼
Xτ
i¼1

X
j∈ SS;SR;RRf g

X
k∈ SS;SR;RRf g

yfjki tð Þ ð23Þ

Mann-Witney and t-tests were used to compare the
mean parameter values that generated a viable malaria
population with those that lead to extinction. Partial
rank correlation coefficients (PRCC) were then calcu-
lated as a sensitivity analysis of the model using only the
simulations that generated viable populations. The
PRCC were only calculated between parameters
expected to be affected by vector control measures (i.e.
ρe, ρl, ρp, ρs, ρn, c, ω, Z, ρd and H, assuming no differ-
ences between males or females in parameter values in
the non-adult stages); the magnitude of the absolute
PRCC values can be used to rank the relative importance
of the 10 input parameters.

The impact of insecticide deployment and threat posed
by resistance
Our main goal with the development of this model was
to address operational issues of insecticide deployment
and how it both drives, and is compromised by,

resistance. We focus on exploring the generic issues
concerning the application of insecticides rather than
attempting to parameterise a particular setting because
there are limited data on many of the key parameters,
particularly for differential survival of the different sensi-
tive/resistant genotypes. The combination of default pa-
rameters given in Table 1 resulted in a viable population
in the absence of insecticide deployment; we then inves-
tigated the likely impact of insecticide deployment (and
resistance) by changing the values of parameters that are
likely to be affected by the intervention. In particular, we
ran simulations that mimic larvicides, ITNs and IRS and
their impact on the mosquito population.
The total adult female mosquito population at equi-

librium (Eq. 23) for the default parameters in Table 1
is Af = 135,878. The equivalent number of humans
for this default setting was then obtained as N = 1235
using the value of m = 110 (Additional file 3). It is now
possible to use this value of N together with the numbers
of adult female mosquitoes when under control measures
to obtain M′ using Eq. 22 and hence to predict whether
disease transmission is possible.
We then investigated how the emergence and spread

of resistance would impact insecticide-based interven-
tions and, in particular, whether the spread of resistance
would allow mosquito populations to recover to the ex-
tent that malaria transmission would restart, i.e. R0m > 1.
We present the worst-case scenarios in terms of spread
of resistance, because we assume resistance to be com-
pletely dominant, i.e. we assume the survival probabil-
ities of the heterozygote and homozygote resistant
genotypes to be equal.
When considering the interventions below we assume

that those targeting the non-adult stages have the same
impact on both males and females as there is little, if
any, sexual difference in exposure in these stages, e.g. an
intervention reducing the female larvae daily survival
probability by 50% would also reduce male larval
survival probability by 50%. Interventions targeting
adults are assumed to only affect females. This avoids
having to define a differential impact on the two sexes
that will almost certainly arise due to behavioural differ-
ences; for example, IRS may reduce adult female resting
survival by 80% but adult male survival by only 5%.
Defining this differential impact on adults is also un-
necessary because male adult survival has no impact on
overall population size (because all females are assumed
to mate successfully irrespective of male population
size). Ignoring the potential impact of IRS and ITN on
male mortality slows the rate at which resistance spreads
(because there is no selective pressure on males by IRS
or ITN) but we regard this as a reasonable simplification
that could be relaxed later. Note that we do include male
mortality at the larvae stages because they contribute to
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DDPR; their deaths lessen competition at this stage and
help reduce the impact of female larval mortality on the
eventual adult population size.

Single-insecticide interventions
We initially simulate the dynamics of the mosquito
population under reduced survival imposed by the use
of insecticides that target single stages of the life-history
and without the emergence of resistance. We use the de-
fault values given on Table 1 as the baseline values that
lead to a viable population. We assume that ITNs act by
decreasing the survival probability of female adults while
host-seeking, ρs; IRS reduces female adult survival while
resting, ρn; larvicides reduce the survival probabilities of
larvae, ρl; and a pupacide that kills only pupae, ρp (we
are unaware of any agents that do this but include this
hypothetical example for methodological completeness).
Henceforth we will be using the intervention name and
the parameter that we assume it affects interchangeably.
We reduced each survival probability by 10, 30, 40 and

80% of the original value to explore the impact of differ-
ent degrees of intervention effectiveness. We tracked the
number of adult female mosquitoes post-intervention
and the intervention was considered to be successful if
the number of females was reduced below a threshold
value obtained using Eq. 22, below which malaria trans-
mission would be theoretically interrupted.

Combined-insecticide interventions
Interventions often use combinations of insecticides that
target two or more stages of the mosquito life-history.
The impact of these interventions was investigated, as
for single interventions, by reducing the survival
probabilities of the affected life-stages by 10%, 30%, 40%
and 80% of the original value and tracking the number
of adult female mosquitoes. We investigated three
specific interventions as listed below. They are designed
to illustrate our approach rather than to simulate
specific, well-calibrated examples (see later discussion
around calibration). The interventions are as follows:

� ITNs and IRS: these interventions reduce the
survival probabilities of host-seeking adult females
(ITN: ρs) and resting females (IRS: ρn).

� Larviciding and IRS: larviciding (for example with
temephos) is assumed to affect both larvae and
pupae (ρl and ρp) while IRS, as above, reduces the
survival of non-host-seeking adult females (ρn)

� Larviciding and ITNs: as above, larviciding is
assumed to reduce ρl and ρp while ITN reduces the
survival of host-seeking adult females, ρs.

The combination of interventions was considered
successful if the number of females was reduced below

the critical threshold value below which malaria trans-
mission is theoretically interrupted.

Results
We ran the model using 3000 randomly generated com-
binations of parameters from the distributions described
in Table 1 which resulted in viable mosquito populations
at equilibrium in 103 (3.4%) of these runs. Statistical
analysis (two-tailed t-tests and Mann-Witney U-tests) on
the parameters used in the sensitivity analysis (Table 1)
showed that the following parameters were highly
significantly (P < 0.0001 in both tests after correcting for
multiple testing using the BH method) higher in simula-
tions that resulted in viable populations compared to
those that went extinct: the daily survival probabilities of
the immature stages (i.e. eggs, larvae and pupae), of fe-
males seeking a host, and of females resting (ρe, ρl, ρp, ρs, ρn
respectively). In contrast, parameters describing the ef-
fect of larval competition (c), relative resource consump-
tion (ω), resource availability (Z), the daily probability
that a female successfully finds a host and feeds (H), and
the proportion of male mosquitoes (ρd) were not statis-
tically different (P > 0.05). Among the non-significant
parameters, the first three are associated with the larval
competition that is absent when populations are at very
low densities and are therefore expected to have no
effect on determining whether a population is viable or
not (although they will, of course affect the equilibrium
size of viable populations). The fourth factor, H, is
non-significant, presumably because a female that fails
to find a host one day can survive and successfully feed
the next. Finally, ρd is daily adult male survivorship
which again is not expected to affect whether a popula-
tion is viable because we assume females always find a
male and that males can mate multiple times.
These t-tests and Mann-Witney tests reveal whether a

factor has an impact on whether a mosquito population
is viable, but it is the PRCC analyses that reveal the
parameters with the largest impact in determining the
size of the adult female population. Density-dependent
population regulation in our models is assumed to occur
by larval competition so it is not surprising that those
factors with the largest impact on adult population size
were those controlling the intensity of larval competi-
tion, i.e. the total larval resources available (Z), the
relative resource consumptions of larvae (ω), the impact
of larval competition (c), and daily larval survivorship
(ρl), see Fig. 2. Note that the PRCC results on final
population size are consistent with the t-test and
Mann-Whitney results described in the previous para-
graph on whether a population is viable, i.e. the daily
survival probabilities are all highly significant (with the
except of male survival) while the probability that a fe-
male successfully finds a host and feeds (H) and male
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survival are non-significant. The only difference is in
factors associated with resource availability (ω, Z and c)
which affect final population size but, for reasons
described above, have no impact on whether or not a
population is viable.

The impact of insecticide deployment prior to the
emergence of resistance
An equilibrium adult female population size (Af(t)) of
135,878 was reached using the default parameterization
given in Table 1; the ability of the controlled population
to transmit disease can be investigated using a Ross-
Macdonald model calibrated as described in Table 2.
This equilibrium population size of adult females served
as the baseline adult female population size in the
absence of intervention in all simulations/scenarios
(i.e. Figs. 3, 4, 5 and 6).
We investigated the likely impact of single-insecticide

interventions by assuming insecticide deployment
decreases survival probabilities in various parts of the
mosquitoes’ lifestyle by 10, 30, 40 or 80% (Table 3).

Whether these impacts are sufficient to interrupt malaria
transmission can be investigated using Eq. 22 with the
calibration developed above (as summarised in Tables 1
and 2) to identify the threshold density of mosquitoes
below which malaria transmission cannot be sustained.
The equilibrium number of females present after the
intervention are given in Table 3. A 30% reduction of
the larval daily survival (0.94 to 0.66) resulted in extinc-
tion of the mosquito population, and hence interruption
of malaria transmission. The pupae survival probabil-
ity, ρp, would have to be lowered by 40% (0.55 to 0.33)
to drive the population to extinction. Note that we mod-
elled pupae independently from larvae, because pupae
do not feed and therefore are believed not to incur
density-dependence regulation, but in practice both
stages share the same physical space and interventions
such as larviciding may affect both stages. This scenario
of decreasing survival of only the pupal stage is, there-
fore, very unlikely to be used in the field. However, it
serves to show that theoretically we would have to
reduce pupae daily survival more than larval survival to

Fig. 2 Partial rank correlation coefficients (PRCC) between equilibrium adult female population size and selected model parameters. The parameters
symbols in the y-axes are defined in Table 1 and the horizontal error bars delimit the 95% confidence intervals. In order of importance: ω is resource
consumption of larvae, ρlis larval survival (per day), Z is total larval resources, c is the impact of larval competition, ρpis pupal survival (per day), ρnis
adult female survival (per day) when resting, ρsis adult female survival (per day) when host-seeking, ρeis egg survival (per day), H is the proportion of
adult females that successfully find a host (per day), and ρdis adult male survival (per day)

Table 2 Parameters used in the Ross-Macdonald transmission calculations

Symbol Meaning Default value

m Mosquito density, i.e. number of adult female mosquitoes per human host 110

a Mosquito biting rate on humans 0.25

b1 Probability a bite from an infectious mosquito transmits malaria to susceptible humans 0.5

b2 Probability a susceptible mosquito acquires a malaria infection when biting an infectious human 0.15

r Rate at which humans recover from a malaria infection 0.01

Note that mosquito density, m, is a relatively large number of adult females per host and thus represents an area of high malaria transmission; see Additional file 3 for
more information
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achieve the same level of reduction in the adult female
population, the underlying reason being that the pupal
stage is shorter so daily survival must be much lower to
achieve comparable overall killing to the longer larval
stage. Targeting adult females only in the non-feeding,
resting stage, ρn, requires a more modest decrease of
30% (0.96 to 0.67) to generate near-extinction of the
mosquito population with consequent cessation of mal-
aria transmission. ITNs target adult females seeking a
host for a blood meal and is one of the most widespread
malaria interventions; our results suggest it would be
necessary to decrease survival during the seeking
stage, ρs, by around 40% (0.96 to 0.58) to eliminate the
mosquito population.
Figure 3 illustrates the dynamics of these interventions

summarised in Table 3, taking the pre-intervention
population of 135,878 as its starting point. The bottom
panel of Fig. 3 shows the impact of reducing adult male
survival. As expected, it is not possible to decrease the
female adult population by targeting the male population
alone because our model assumes males can mate mul-
tiple times and so changes in male number caused by re-
duced ρd have no impact on the size of the next
generation unless they are so large as to eliminate all

males. We use a similar approach to investigate the im-
pact of combined-insecticide interventions by assuming
the insecticides reduced life-cycle survivals by 10 or
30%. The results are summarised in Table 4. The hypo-
thetical example of combining IRS and ITNs is sufficient
to drive the mosquito population to extinction or to a
very small size that is well below the threshold for inter-
ruption of malaria transmission assuming a decrease in
survival of 10% in the non-host-seeking females (ρn =
0.87) and 30% in the host-seeking females (ρs = 0.5), or
vice versa (Table 4). Combining larviciding with either
IRS or ITN suggests that small reductions (10%) in both
parameters are sufficient to render the mosquito popula-
tion inviable and to interrupt malaria transmission (Table
4).
The dynamics of the interventions shown in Figs. 3

and 4 suggest that interventions of this magnitude may
have a rapid effect acting on a timescale of weeks. Note,
however, that our simulations assumed instantaneous
deployment of the insecticide-based interventions and
so illustrate its fastest possible impact on the local
mosquito population. In reality, an intervention may
take days, weeks or even months to deploy and in this
case the reduction in population size will be much

Fig. 3 Simulations of the impact of insecticidal interventions on the female adult population size. Interventions were simulated by the decreasing
survival that would plausibly occur at five different stages: larval (ρl), pupal (ρp), adult females host-seeking (ρs), adult females resting (ρn) and
adult males (ρd). The legend shows the percentage of decreased survival imposed on each parameter i.e. 0 (the initial group) -10, -30, -40 and
-80%. Abbreviations: IRS, indoor residual spraying; ITN, insecticide-treated net
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slower. Importantly, the final equilibrium population size
will not be affected by how rapidly the intervention is
deployed and the proportionate reduction in population
size can be obtained from Table 3 noting that the
original population size was 135,878 (so, for example,
Table 3 shows that if larviciding decreases larval survival
by 10%, this will reduce the population size to 10,711
which is a 92% reduction in population size).

The impact of resistance on insecticide-based interventions
The simulations shown in Figs. 3 and 4 assumed only a
single genotype was present, i.e. the homozygous sensi-
tive, SS, genotype. We introduced resistance SR and RR
genotypes and re-ran these simulations to illustrate the
potential impact of resistance on insecticide-based
control programmes. The resistant allele, R, was

assumed to be present at a frequency of 50% and was as-
sumed to be dominant. It is important to note, given
our simplifying assumption that no fitness cost is
associated with resistance, that if resistance spreads
from a starting frequency of 50% it will spread from
any starting frequency, including very low ones. Con-
sequently, our results and conclusions are unaffected
by choice of initial resistance frequency. The reason
we chose a starting frequency of 50% was to empha-
sise how rapidly resistance spreads and potentially
undermines control, once it reaches detectable
frequencies (if we start with lower initial frequencies,
or recessive gene action, then there is a long period
before resistance reaches significant frequencies). We
start with the equilibrium population size that was
obtained under the default parameters (i.e. 135,878

Fig. 4 Simulations of the impact of combined insecticidal interventions on the female adult population size. Interventions were simulated by
decreasing the survival that would plausibly occur in three combined interventions. The legend on each panel shows the percentage of
decreased survival imposed on each parameter by the intervention. IRS combined with ITNs reduces female survival while resting (ρn) and host-
seeking (ρs). Larviciding combined with IRS reduces survival of both sexes in the larvae and pupal stages (ρl and ρp ) and in adult females resting
stages (ρn). Larviciding combined with ITNs reduces survival of both sexes in the larvae and pupal stages (ρl and ρp ) and adult females while
host-seeking (ρn). Abbreviations: IRS, indoor residual spraying; ITN, insecticide-treated net

Barbosa et al. Parasites & Vectors  (2018) 11:482 Page 13 of 21



adult females) then impose interventions that have il-
lustrative, differential effects on the sensitive and resistant
genotypes (as defined in the panels of Figs. 5 and 6).
Examples of hypothetical single-insecticide interven-

tions are shown in Fig. 5. In all cases, resistance spread
rapidly during the intervention. However, the magnitude
of the resistance phenotype was insufficient to prevent
the mosquito population from rapid, large and sustained
reductions post-intervention. Despite this apparent
success, Table 5 suggests this “crashed” population was
sufficiently large that malaria transmission would be
maintained. The adult population sizes in the absence of
resistance (i.e. if only SS genotypes were present) would
be zero in each example (second column of Table 5, but
the presence of resistance may allow a viable mosquito
population to be maintained once resistance has been
fixed (fourth column of Table 5) that is sufficiently large
so that malaria transmission is possible.
The analogous example of combined-insecticide inter-

ventions in the presence of resistance is shown in Fig. 6
and summarised in Table 6. The same basic dynamics
occurred as for single-insecticide interventions, i.e. a
rapid increase in resistance and an immediate fall in the

adult female population. The impact of the latter was
more heterogeneous. All interventions would have
reduced mosquito populations to negligible sizes and
blocked transmission (column 2 of Table 6). However,
the spread of resistance allowed mosquito population
sizes to recover sufficiently that disease transmission
would re-start in 2 of the 6 scenarios (columns 4 to 6 of
Table 6).

Discussion
Insecticides are used in many contexts to reduce
insect-borne disease transmission. We have combined
mosquito demographics, genetics and malaria epidemi-
ology to provide a methodology to simultaneously investi-
gate the impacts of insecticide deployments in reducing or
preventing the transmission of infections and the threat
posed by resistance. To our knowledge, this synthesis has
not been attempted prior to this study although many
previous studies have addressed individual aspects of these
requirements (space precludes a detailed discussion of this
previous work but access to the modelling literature can
be obtained, for example, from [16, 19, 21, 24, 25, 35, 41]
and recent reviews such as [42]). We have taken a

Fig. 5 The potential impact of resistance on single-insecticide control interventions. The legend on each panel gives the percentage of decreased
survival caused by the intervention for each genotype. The blue line shows the resistant allele frequency over time and the black line shows the
number of female adult mosquitoes. The rapid decline in adult population size post-intervention shows that the magnitude of the resistance
phenotype was not sufficient to prevent a population crash (although the smaller, resistant population were sufficient to allow malaria
transmission; see Table 5 and main text for details). Resistance was assumed to be dominant, interventions started with a resistance allele
frequency of 50% and the three genotypes in Hardy-Weinberg equilibrium. Abbreviations: IRS, indoor residual spraying; ITN, insecticide-treated net;
SS, the homozygous sensitive genotype; SR, the heterozygous sensitive/resistant genotype; RR, the homozygous resistant genotype
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standard demographic model and added three novel fac-
tors: the ability to track insecticide resistance spread
within the mosquito demography, derived an equation for
R0 of mosquitoes that predicts whether interventions will
drive local mosquitoes populations to extinction, and fi-
nally used the parameters of insect demography to derive

a Ross-Macdonald equation for R0 for malaria that indi-
cates whether it is likely that the reduction in mosquito
numbers and/or their longevity is sufficient to interrupt
malaria transmission. In summary, we have described a
transparent methodology that allows researchers to inves-
tigate specific scenarios, while being sufficiently flexible

Fig. 6 The potential impact of insecticide resistance on combined-insecticide control interventions. The legend in each panel shows the
percentage of decreased survival imposed by the intervention on each parameter for each of the three genotypes. The blue line shows the
resistant allele frequency over time and the black line shows the total number of female adult mosquitoes. As in Fig. 5, the magnitude of the
resistance phenotype was not sufficient to prevent a population crash although the smaller, resistant, populations may be sufficiently large to
allow malaria transmission (see Table 6 and main text for details). Resistance was assumed to be dominant, interventions started with a resistance
allele frequency of 50% and the three genotypes in Hardy-Weinberg equilibrium. Abbreviations: IRS, indoor residual spraying; ITN, insecticide-
treated net; SS, the homozygous sensitive genotype; SR, the heterozygous sensitive/resistant genotype; RR, the homozygous resistant genotype

Table 3 The impact of insecticide-based interventions that target one stage of the life-cycle

Reduction in
parameter value

Intervention [parameter affected]

Larviciding [ρl] Pupacide [ρp] IRS [ρn] ITN [ρs]

-10% 10,711 (877) 84,873 (877) 81,717 (3803) 92,760 (1328)

-30% 0 (877) 5483 (877) 0 (71,767) 28,909 (3163)

-40% 0 (877) 0 (877) 0 (373,954) 2502 (5113)

-80% 0 (877) 0 (877) 0 (~1010) 0 (97,845)

The table gives the equilibrium adult female population sizes achieved after the interventions plotted on Fig. 3. The associated critical values of the adult female
population size below which malaria transmission will cease, is given in parenthesis (M’, obtained from Eq. 22); note that the parameters ρl and ρp do not affect
adult mosquito mortality so the target population size is unaffected by their value). Note that male adult survival ρd has no impact on female population size so is
not included in this analysis
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that the genetic component can also be used to investigate
other systems such as sex-linked resistance and genetic
control mechanisms [18].
We developed a basal model as proof-of principle

which is sufficiently flexible to allow alternative control
strategies to be incorporated and evaluated. One such
example is the proposal to target male mating swarms to
reduce mosquito population size [43]. We assumed
above that males could effectively inseminate an infinite
number of females, hence, the number of males made
no difference to the population size (and hence male
survival was immaterial; lower panel of Fig. 3). This is a
simplifying assumption, often made in ecology/demog-
raphy, that recognises that female number is the usual
determinant of population size. We could relax this
assumption. For example, if males are believed to be
unable to inseminate more than ten females per night,
we could restrict the number of mated females per night
to less than ten times the adult male population size.
Similarly, for species where mating occurs in a male
swarm (such as An. gambiae) if a male population size is
reduced to the extent that females find it difficult to
locate a swarm then the female mating probability can
be reduced. We ignored these potential complications in
this manuscript to focus on the basic genetics and
demography but note that they can be included in mod-
elling directed at more specific intervention scenarios.

Similarly, we assume a single genetic locus encodes re-
sistance but the methodology could be extended, albeit
with a substantial increase in complexity, to include two
genetic loci which would allow users to investigate the
impact of joint-insecticide strategies such as the use of
mixtures (e.g. [18, 20, 44]). This assumption that one
gene encodes resistance to an insecticide has been
commonly made throughout the literature (e.g. [45–49]
and subsequent work). The results presented herein are
also valid if resistance is coded by polygenes (i.e. resist-
ance level is modulated by a large number of genes, each
with a very small effect). For example, Tables 5 and 6
and Figs. 5 and 6 show the impact of a reduction in
mortality on mosquito population size and disease
transmission caused by IR. The genetic basis of the
degree of IR is immaterial for this impact, e.g. a re-
duction in larval mortality by 10% has the same im-
pact irrespective of whether its genetic basis is a
single gene or many genes. The dynamics of spread
will be very different between single- and poly-genetic
resistance [50] but the impact of resistance on control
can be investigated in the same way. A final, strategic
application is to simulate interventions, quantify how
rapidly resistance spreads, and use these dynamics to
extract the selective advantage of resistance which is
a key input parameter for calibrating genetic models
of IR evolution.

Table 4 The impact of insecticide-based interventions that target two stages of the life-cycle

Reductions in
parameter
values

Intervention [parameters affected]

IRS and ITN [ρn and ρs] Larviciding and IRS [ρl, ρp and ρn] Larviciding and ITN [ρl, ρp and ρs]

-10% and -10% 50,432 (5329) 0 (3803) 0 (1328)

-30% and -10% 0 (94,683) 0 (3803) 0 (1328)

-10% and -30% 0 (11,307) 0 (71,767) 0 (3163)

The table gives the equilibrium adult female population sizes achieved after the interventions plotted on Fig. 4 with, in parenthesis, the critical value of adult
female population size below which malaria transmission will cease

Table 5 The impact of resistance on control interventions that target a single stage of the life-cycle. This is quantified by adult
mosquito population size

Intervention [parameter] Adult population size;
SS genotypes

Resistance calibration Adult population
size; RR genotypes

Population
re-established?

Transmission
restarts? (R0)

Larviciding [ρl] 0 (877) Top left panel of Fig. 5 10,711 (877) Yes Yes (12)

Pupacide [ρp] 0 (877) Top right panel of Fig. 5 5483 (877) Yes Yes (6.3)

IRS [ρn] 0 (71,767) Lower left panel of Fig. 5 29,636 (15,946) Yes Yes (1.8)

ITN [ρs] 0 (97,845) Lower right panel of Fig. 5 2502 (5113) Yes No (< 1)

The column “Adult population size; SS genotypes” shows the equilibrium female mosquito population sizes post-intervention assuming no resistance is present
(i.e. only SS genotypes) and, in brackets, the critical adult female population size required to block malaria transmission using the Ross-Macdonald approach
(i.e. M’, obtained from Eq. 22); all these interventions eradicated the local mosquito population and hence stopped malaria transmission. The column “Adult
population size; RR genotypes” gives the equivalent values of population size and M’ but assuming only RR genotypes are present. The parameterisations are as
shown in the panel captions of Fig. 5; for example, the first row of this Table is equivalent to the top left panel of Fig. 5, i.e. the values are calibrated by assuming
that the insecticide intervention reduces larval survival ρl of the SS genotype by 30% while the RR and RS genotypes are less affected by insecticide and their
larval survival during the intervention is 10% lower than in the absence of insecticide. Comparison of the “SS genotypes” with the “RR genotypes” column reveals
whether the spread of resistance during the interventions shown in Fig. 5 is sufficient for mosquito populations to become re-established (we define this as a
greater than 100-fold increase in adult female numbers) and, if so, whether they recover to the extent that malaria transmission restarts. If transmission does
restart, we give estimated R0 (from Eq. 19) to quantify the magnitude of this resurgence (baseline before control, was R0 = 155)
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Operationally, ITNs and IRS may have two additional
effects not captured in our model: repelling and possibly
diverting mosquitoes to alternative hosts due to insecti-
cide irritation (e.g. [19]) and/or the physical barrier of
the net, and lengthening the duration of the gonotrophic
cycle leading to a reduced oviposition rate [24]. The
methodology can also incorporate behavioural changes
that may evolve in response to insecticide resistance
[51–54], for example, a reduced tendency to rest indoors
after feeding, which will lower mortality rates during the
female gonadotrophic cycle. These factors can be
brought into insecticide resistance modelling but we
have ignored these possible effects for simplicity; in
particular, a formal sensitivity analysis (discussed later)
would reveal the extent to which behavioural changes
may affect the evolution of resistance and its impact on
disease transmission.
The Ross-Macdonald (R-M) approach is the easiest

algebraic method of predicting whether disease trans-
mission will cease (see [32] for an extensive review of
R-M). It is also flexible: for example, we assume a female
always finds a mate on the first day of emergence, and
that the adult female feeding cycle is as quantified as in
Eq. 21, but heterogeneity in such factors can be regarded
as occurring in different mosquito ‘species’ and the over-
all R0 calculated from the relative frequencies of these
different ‘species’. The two main criticisms of R-M, that
it does not allow super-infection or acquired human im-
munity, do not apply in our usage because cessation of
malaria transmission at R0 < 1 implies no infections and
hence no super-infection, and no acquired immunity.
The drawback of R-M is that it generates a simple yes/
no prediction of whether the mosquito population has
the capacity to sustain malaria transmission, but it is not
a robust method to quantitatively predict the intensity of
malaria transmission nor its epidemiological impact; the
latter depends on factors such as malaria super-infection
in humans, levels of human acquired immunity, malaria
importation rates and so on [32]. The methodology
developed here is focused on mosquito demography and,
if malaria transmission is identified as being viable, then
these details of mosquito demography need to be passed

to more sophisticated, individual-based simulations
models of malaria transmission that do incorporate the
human elements of malaria epidemiology (e.g. [55, 56])
to simulate the impact on human populations.
The results of the interventions targeting single stages

of the mosquitoes’ life-cycle (using the PRCC values in
Fig. 2 and examples in Fig. 3) indicate that the most ef-
fective method of controlling the mosquito population,
all other factors being equal, would be to target the lar-
val and the adult resting stages. These results reflect the
belief that larval survival has a great impact on the adult
population density although, as pointed out by White et
al. [24], it does not kill adult mosquitoes that are poten-
tially infectious so may have a smaller impact on disease
transmission (i.e. female adult death rate is not affected).
Alternatively, it may be better to target the host-seeking
female mosquitoes to reduce disease transmission; this
may make little difference to overall mosquito popula-
tion size but their reduced longevity makes a substantial
difference to malaria transmission. The strategy with the
most impact will also depend on individual species dem-
ography and local environmental conditions. In our par-
ameterisation, larvae were a good intervention target
because they spend ten days in this stage so mortality at
this stage operates over ten days. Conversely, we assume
a ten day extrinsic incubation period (EIP) so mortality
in resting females operates over nine days (Eq. 21). How-
ever, if temperature falls such that the EIP increases to
20 days then female mortality while resting will operate
over 18 days and this stage may become a far more ef-
fective point of control. In reality “all other factors” are
not equal as there are operational and financial differ-
ences associated with each strategy. An obvious example
from laviciding is how to identify a substantial propor-
tion of the breeding sites (e.g. [57]) because these de-
pend on local mosquito ecology that may vary widely
even within a species. Despite this requirement to iden-
tify breeding sites, larviding is likely to become increas-
ing important as the most plausible insecticide-based
method of targeting the outdoor-biting mosquito spe-
cies responsible for “residual” malaria transmission
once the primary indoor resting/biting species have

Table 6 The impact of resistance on control interventions that target two or more stages of the life-cycle

Intervention [parameters] Adult population
size; SS genotypes

Resistance calibration Adult population
size; RR genotypes

Population
re-established?

Transmission
restarts? (R0)

ITN and IRS [ρsand ρn] 0 (94,683) Top left panel of Fig. 6 8517 (21,515) Yes No (< 1)

Top right panel of Fig. 6 0 (71,767) No No (< 1)

Larviciding and IRS [ρl & ρpand ρn] 0 (3803) Middle left panel of Fig. 6 81,717 (3803) Yes Yes (21)

Middle right panel of Fig. 6 0 (877) No No (< 1)

Larviciding and ITN [ρl & ρp and ρs] 0 (1328) Lower left panel of Fig. 6 92,760 (1328) Yes Yes (70)

Lower right panel of Fig. 6 0 (877) No No (< 1)

The parameterisations are as shown in the panel captions of Fig. 6. See caption in Table 5 for further details
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been controlled. Our methodology is therefore cap-
able of providing insight into how control may be
optimised by balancing operational difficulty against
likely impact; for example, contrasting a low impact,
operationally simple and hence widespread interven-
tion, against an operationally complex, more focussed
approach with high local impact on mosquito popula-
tions. We emphasise that this manuscript primarily
describes methodological advances, tying together the
separate strands of insecticide deployment, insect
demography and bionomics, the evolution of resist-
ance and the impact of resistance on disease trans-
mission. The conclusions described above, for
example the high impact of larviciding, are correct
for the specific instances we investigated but could
not yet be used as a basis for general policy recom-
mendations. Such recommendations would need to be
based on a far more detailed sensitivity analysis than
the rather arbitrary one used here (Additional file 3).
Full exploration of plausible parameter space may
well conclude that no one strategy is universally su-
perior, but that the optimal strategy depends on local
conditions (as occurred, for example, in our recent
work on whether insecticides should be deployed se-
quentially or in mixtures [18]).
There is increasing emphasis on the need for rational,

co-ordinated efforts to control disease vectors, and inte-
grated vector management (IVM) schemes are now an
integral part of WHO policy [58]. Achieving the goals of
programmes such as Roll Back Malaria may require an
integrated approach combining disease treatment and
interventions against both adult and larval stages of the
vector [25]. IVM strategies often deploy combinations of
interventions targeting two or more stages of the
life-cycle. Combinations are intuitively likely to be more
effective than interventions targeting a single stage. In
reality, there are a number of important confounding
factors that can affect the effectiveness of combined in-
secticide interventions. A comprehensive review of these
factors can be found in [59] but they include, for
example, (i) whether the insecticides act independently
or may interfere or synergise with each other, (ii)
whether the durations of insecticide persistence are
matched or whether one decays more rapidly leaving the
other to act alone for extended periods, and (iii) the
behaviour of the vector, such as the extent to which it is
anthropophilic and/or endophilic. As a real example,
data from the Solomon Islands [60] suggested that house
spraying (with DDT) was more effective than ITNs but
that the amount of the insecticide required would be re-
duced if ITNs were also used. However, the same study
was not able to associate reduction in malaria cases with
larviciding (with temephos) in combination with other
interventions. In particular, the use of IRS and ITNs in

combination is thought to increase the probability of a
mosquito meeting an insecticide, and help to reach and
maintain high coverage levels that are often difficult to
attain with single deployment strategies [61, 62]. Simi-
larly, the addition of larviciding to ITN deployment has
been shown to be highly beneficial [63] as has larval
source management, although this depends on the
ability to identify a large proportion of breeding sites
[64]. The problem is that the more effective an interven-
tion, the greater the selection for resistance; trading
short-term benefits in reducing disease transmission,
against longer-term impacts of driving IR means that
both processes should ideally be combined in the same
model as was done here.
Resistance is a constant threat to interventions and

our results suggest that when deploying a single inter-
vention, even a small increase in survival due to insecti-
cide resistance may be sufficient to restore a mosquito
population to sustainable levels (Tables 5 and 6). The re-
sults presented above suggest that, in terms of reducing
adult female population size, the use of larviciding seems
an effective option either alone or in combination,
although unlike ITN and IRS, it will not reduce the
longevity of adult females. Importantly, it is likely that
resistance will spread faster if insecticides target the
larval stages rather than the adult stages. This occurs
for two reasons. First, because insecticides have a
bigger impact on larval survival: their effects are com-
pounded over the ten days of larval life, so selection
for resistance may be higher. Secondly, because larvi-
ciding applies selection pressure on both sexes; in
contrast, adulticides used in IRS or ITNs differentially
target females, leaving the exophilic males as a sort
of unexposed refugia shielded from selection pres-
sures [19, 65].
There are frequent calls to ‘model resistance’ (e.g.

[66]) and our modelling approach describes the parame-
ters required to fully calibrate the system, which consti-
tutes a type of ‘shopping list’ of variables that should be
collected in the field. It is important to note that we are
not attempting here to investigate and evaluate specific
insecticide-based interventions, but are concentrating on
developing the methodology by which this may be done.
The main impediment to investigating specific inter-
ventions is that many of the required parameter
values are largely unknown. As a specific example,
the number of male mosquitoes entering homes (and
hence potentially encountering insecticides on wall
and ITNs) is often unknown because many re-
searchers simply discard males from their collections
as they play no role in malaria transmission. We
therefore recognise that accurate calibration of indi-
vidual ecological/epidemiological settings is currently
impossible. We have focused on developing the

Barbosa et al. Parasites & Vectors  (2018) 11:482 Page 18 of 21



model, obtaining preliminary, illustrative results, and
anticipate that its main use will be in future sensitiv-
ity analyses. These analyses recognise that accurate
calibration is often impossible and instead explore a
single, plausible parameter space (e.g. [18]); the key
operational issue then is to identify what interven-
tions are best (however ‘best’ is defined, e.g. cost,
simplicity, short- or long-term impact on transmis-
sion) and whether the ‘best’ policy depends on local
vector bionomics and patterns of transmission. Our
results are, therefore, preliminary and serve the pur-
pose of demonstrating the potential of our computa-
tional approach. If one policy always performs better
irrespective of underlying parameters, then it is a ro-
bust conclusion to use that policy. If some policies
work better in certain situations and worse in others,
then analysis of the models can show under which
conditions (i.e. parameter combinations) each policy
works best (most obviously using classification trees,
e.g. [67]) and hence identify policies appropriate to
local conditions. The illustrative analyses we per-
formed explored the comparative impact of ITNs, IRS
and larvicides, and quantified the benefits that can be
achieved by combining these interventions.

Conclusions
We develop and describe a stand-alone model that sim-
ultaneously incorporates mosquito demography and the
genetics of resistance, to simulate the impact on disease
transmission and the extent to which this impact is
threatened by the spread of resistance. Future develop-
ment would be to link the model to one of health
economics to investigate the cost-effectiveness of each
intervention and the extent to which short-term gains
in control might be offset by longer-term losses due
to resistance. There is currently intense interest in
modelling malaria to underpin elimination efforts
[66], and models such as the one developed here link-
ing demography and the genetics of resistance have a
key role to play in designing sustainable control and
elimination strategies.
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