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Abstract

Background: The proportion of mosquitoes infected with malaria is an important entomological metric used to
assess the intensity of transmission and the impact of vector control interventions. Currently, the prevalence of
mosquitoes with salivary gland sporozoites is estimated by dissecting mosquitoes under a microscope or using
molecular methods. These techniques are laborious, subjective, and require either expensive equipment or training.
This study evaluates the potential of near-infrared spectroscopy (NIRS) to identify laboratory reared mosquitoes
infected with rodent malaria.

Methods: Anopheles stephensi mosquitoes were reared in the laboratory and fed on Plasmodium berghei infected
blood. After 12 and 21 days post-feeding mosquitoes were killed, scanned and analysed using NIRS and
immediately dissected by microscopy to determine the number of oocysts on the midgut wall or sporozoites in the
salivary glands. A predictive classification model was used to determine parasite prevalence and intensity status
from spectra.

Results: The predictive model correctly classifies infectious and uninfectious mosquitoes with an overall accuracy of
72%. The false negative and false positive rates were 30 and 26%, respectively. While NIRS was able to differentiate
between uninfectious and highly infectious mosquitoes, differentiating between mid-range infectious groups was
less accurate. Multiple scans of the same specimen, with repositioning the mosquito between scans, is shown to
improve accuracy. On a smaller dataset NIRS was unable to predict whether mosquitoes harboured oocysts.

Conclusions: To our knowledge, we provide the first evidence that NIRS can differentiate between infectious and
uninfectious mosquitoes. Currently, distinguishing between different intensities of infection is challenging. The
classification model provides a flexible framework and allows for different error rates to be optimised, enabling the
sensitivity and specificity of the technique to be varied according to requirements.

Keywords: Vector borne diseases, Vector control monitoring, Anopheles stephensi, Plasmodium berghei, Near-infrared
spectroscopy, Machine learning, Predictive modelling, Partial least squares

Background
The development and roll out of a simple to use rapid

using the entomological inoculation rate (EIR) which is cal-
culated from the human biting rate and the proportion of

diagnostic test for human malaria has substantially
improved monitoring of the disease [1]. There is an urgent
need for a similar entomological tool to enhance mosquito
surveillance and directly assess the impact of vector control
interventions. The human force of infection is assessed
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mosquitoes with salivary gland sporozoites. Sporozoite
prevalence is currently estimated either by manual dissec-
tion followed by visual observation using a microscope or
through molecular methods such as Plasmodium specific
PCR (polymerase chain reaction) or ELISA (enzyme-linked
immunosorbent assay) which detect the circumsporozoite
protein (CSP) [2, 3]. Dissection is laborious and requires
staff with specialised training. Similarly, PCR requires
well-equipped laboratories, expensive reagents, and
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technically trained staff. ELISA is more economic though
it still needs expensive laboratory equipment and is
thought to be unable to detect lightly infected mosquitoes
[4]. The cost and laborious nature of these methods is
compromising their systematic application as a large-scale
monitoring tool.

Near-infrared spectroscopy (NIRS) is a fast, non-de-
structive and reagent-free scanning technique which
has been shown to determine the age and species of
morphologically indistinguishable mosquitoes of the
Anopheles gambiae complex [5, 6], and to detect the
presence of Wolbachia bacteria infections in Aedes aegypti
[7]. The process involves scanning a mosquito at different
wavelengths in the near-infrared region of the electromag-
netic spectrum to obtain their absorbance spectra. Differ-
ences in absorbance are indicative of differences in the
molecular composition of the specimens scanned. Scans
take a few seconds to be completed so that hundreds of
mosquitoes can be scanned in the field each day by a sin-
gle person without the need of a laboratory or extensive
training. Following scanning, a calibration dataset is used
to develop a predictive model to convert spectra into esti-
mates of the characteristic under study (e.g. age, species
or bacterial infection). Informative components of the
spectrum are identified and used to predict the character-
istic from an unknown sample.

Sporozoites are the most epidemiologically important
Plasmodium life-stage, though there is utility in detect-
ing other stages of the life-cycle. In the field, sporozoite
prevalence is typically very low with ~0-5% of caught
mosquitoes being infectious [8—10]. This low prevalence
means that many mosquitoes must be scanned to accur-
ately estimate the percentage with the parasite. Being able
to detect earlier mosquito-based parasite life-cycle stages,
such as the presence of oocysts on the anopheline midgut
wall, would increase the prevalence of the parasite in
wild mosquito populations, meaning that sample sizes
could be lower. Laboratory experiments also typically
assess oocyst (as opposed to sporozoite) prevalence as
it reduces rearing time, is safer as mosquitoes are not
infectious and because most mosquitoes with oocysts
go on to develop sporozoites [11]. There is increasing
interest in quantifying the number/density of parasites
in a mosquito and not just whether it is infected or not. Evi-
dence indicates that highly infected mosquitoes are more
infectious [11], and that parasite intensity might influence
the efficacy of transmission blocking and pre-erythrocytic
vaccines [12, 13].

This study investigates the use of NIRS to detect
the presence of rodent malaria parasites in the Plasmo-
dium berghei-Anopheles stephensi model system. Statistical
methods for NIRS analyses are used to convert spectral
data into estimates of sporozoite and oocyst prevalence
and intensity while preventing model overfitting.
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Methods

Rearing

Colony mosquitoes were infected with rodent malaria as
described previously [14]. Briefly, 6 days prior to the mos-
quito feed, 6-week-old outbred female TO mice (6-8
weeks old, Harlan, UK) were treated with intraperitoneal
(ip.) injection of 200 ul phenylhydrazine (PH; 6 mg/ml in
PBS; ProLabo UK). Three days prior to the mosquito feed,
mice were infected i.p. with 10’-10°® parasitized RBC,
infected with P. berghei ANKA 2.34. On the day of the
mosquito feed, parasitemia, gametocytemia and presence of
exflagellation were recorded. Colony An. stephensi mosqui-
toes (line SD 500, previously starved for 24 h) were fed on
anesthetised, infected mice three days later. Twenty-four
hours after feeding, mosquitoes were briefly anesthetized
with CO,, and unfed mosquitoes were removed. Mos-
quitoes were maintained on 8% (w/v) fructose, 0.05%
(w/v) p-aminobenzoic acid at 19 °C and 80% relative
humidity. All female An. stephensi mosquitoes were 4
days post-emergence on time of feeding. Mosquitoes
were the same age across all 4 replicates. After 12 days,
a sub-sample of mosquitoes were killed using chloro-
form. Following killing, mosquitoes were kept cool by
placing them in a petri dish on ice. They were then
placed on the spectralon, scanned one by one, and im-
mediately dissected using a light microscope to deter-
mine the number of oocysts on the midgut wall. All
remaining mosquitoes were killed using chloroform 21
days post-feeding, scanned and the number of sporozoites
in the salivary glands categorised on a logarithmic scale: 0
(no sporozoites); 1 (1-10); 2 (11-100); 3 (101-1000); 4
(>1000) [12, 15, 16]. The microscopist was blinded to the
NIRS result. All oocyst data were collected from a single
feed on one cohort of mosquitoes whilst four replicates
were used to generate the sporozoite data. The number of
uninfected mosquitoes was augmented by adding mosqui-
toes fed on blood without the parasite, though identical in
every other way (same mosquito age, same cohort of mos-
quitoes from the same colony and fed on sister mice of
the same age).

Scanning

Mosquitoes were scanned using a LabSpec4 Standard-Res i
(standard resolution, integrated light source) near-infrared
spectrometer and a bifurcated reflectance probe mounted 2
mm from a spectralon white reference panel (ASD Inc,
Boulder, USA [17]). The machine records absorbance at
2151 wavelengths in the interval [350, 2500] nanometers of
the electromagnetic spectrum. All specimens were laid on
their side under the focus of the light probe and spectra
were recorded with RS3 spectral acquisition software (ASD
Inc., Boulder, USA [17]) which automatically records the
average spectra from 20 scans. After each scan, mosquitoes
were turned over onto their opposite side and rescanned to
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investigate whether multiple independent positioning and
scanning improved overall accuracy. The light probe was
centred on the head and thorax region of the mosquito
though those scanned 12 days post-feed were also scanned
centring on the abdomen region to investigate whether this
part of the insect was more informative of oocyst load.

Data analysis

A statistical machine learning approach is used to fit and
cross-validate the best model using a generalised linear
model (GLM) framework. A binomial logistic classifica-
tion model is used to determine presence/absence of the
parasite (two response classes: y = 1 for infectious/infected
and y = 0 for uninfectious/uninfected) whilst a multi-
nomial logistic classification model is used to investigate
sporozoite intensity (which contains five response classes:
y = {0, 1, 2, 3, 4} for uninfectious, low, medium, high and
very highly infectious).

Given that near-infrared (NIR) spectra are high-di-
mensional compared to the number of mosquitoes, we
use partial least squares (PLS) to achieve dimension re-
duction and feature selection simultaneously [18]. PLS
derives components which are used to transform the ori-
ginal spectra into PLS scores. The scores correspond to
the reduced data and are used as covariates in the GLM
to obtain the model parameter estimates. The number of
PLS components used is a tuning parameter and is
chosen by cross-validation to maximise predictive per-
formance, as detailed below. To predict the infection status
of a new sample from its spectra, we compute the linear
predictor for that sample (which combines its spectra with
the estimated GLM coefficients) and compare it to a
threshold value. In the binomial case, the optimal threshold
t, is chosen to minimise the misclassification rate, such that
the predicted class is then y = 1 if the linear predictor is
larger than t, and y = 0 otherwise; this is equivalent to
obtaining the predicted class probabilities via the logistic
transformation and determining an optimal threshold for
this probability. In the multinomial case the predicted
class is simply equal to the class with the highest predicted
probability.

The area under the receiver operating characteristic
(ROC) curve (AUC) is used to assess model accuracy and
predictive performance, with a value closer to 1 indicating
better performance. It gives the ability of a predictive
model to correctly predict the true positive rate (sensitiv-
ity) and the true negative rate (specificity). In the multi-
nomial case, when investigating sporozoite intensity, the
AUC is computed by averaging the AUCs of all possible
one-versus-all classification models, that is: dichotomising
the response class into y = ¢ versus y = ¢ and computing
the standard two-class AUC, repeating the process for
each class ¢, and averaging the results [19]. Misclassifica-
tion rates are computed as the proportion of test
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observations incorrectly classified, given the optimal clas-
sification threshold that assigns equal weight to false nega-
tives and false positives.

We use the standard three-step approach to build and
asses the quality of a predictive model: training, validation
and testing. Accordingly, the dataset is split into three
subsets, each used at a different stage: (i) the training set
is used to train a model with a given number of PLS com-
ponents K, the procedure being repeated for different
values of K; (ii) the validation set is used to evaluate each
trained model to choose the optimal number of compo-
nents (K,) which maximises the AUGC; (iii) the testing set
is used to evaluate the final model with K, components in
order to obtain an estimate of the generalisation error - an
unbiased estimate of the error rate when the final model
is used to predict a new (independent and identically dis-
tributed) observation. It is important that the final model
is tested using data not previously used in either training
or validation to avoid overfitting which inevitably leads to
poor predictive (out-of-sample) performance [20].

The cross-validation results were averaged over 100
randomisations of the training, validation and testing
datasets in order to average out sampling error. The op-
timal threshold for classification was chosen so as to
minimise the error rate, giving equal weight to false posi-
tives and false negatives. The proportions of observations
used in each subset were: 60% for training, 20% for valid-
ation and 20% for testing. When more scans were con-
ducted on an individual mosquito than were required for
the analysis, scans were chosen at random. A separate
model was fit to investigate whether NIRS could differen-
tiate between uninfectious mosquitoes fed on either infec-
tious or uninfectious blood. The majority of mosquitoes
fed on infectious blood developed sporozoites so the ana-
lysis was conducted on a subset of these data, randomly
selecting spectra from mosquitoes fed uninfectious blood
to generate a balanced dataset with the same number of
mosquitoes in each classification (68 mosquitoes in total).

The analysis was done using the R programming language
[21] and the following packages: glmnet for the statistical
models [22]; ROCR (for two-class problems) and pROC (for
multi-class problems) to produce the ROC curves [23, 24];
and pls to derive the partial least squares components [25].

Results

A total of 300 potentially infectious An. stephensi female
mosquitoes were scanned, 138 (46%) of which had salivary
gland sporozoites. Of the 172 mosquitoes fed on infected
blood, 138 became infectious with sporozoites while 34
did not. The remaining 128 mosquitoes were fed on un-
infected blood and therefore did not become infectious. A
further 79 mosquitoes were scanned for oocyst detection,
out of which 50 (63%) were confirmed to be infected with
oocysts upon dissection. All were fed on infected blood.
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The sample sizes by infection levels and numbers of
replicate scans are summarised in Table 1 and a sample
of 30 spectra is depicted in Fig. 1.

Some specimens were scanned multiple times (with re-
positioning between replications) and their spectra aver-
aged. Below we will show that this improves classification
accuracy. Unless otherwise stated, the results presented
include averaging of replicate scans.

Sporozoite prevalence

The best fit model had 8 PLS components and an AUC
of 0.81 (Fig. 2a). Information provided by different re-
gions of the spectrum can be visualised in the coefficient
function (Fig. 2b), with wavelength regions having larger
magnitude being more important for the classification
model. The distribution of the linear predictors for the
test observations (Fig. 2c) depicts the model’s capacity to
separate infectious from uninfectious samples. The average
classification accuracy was 72%, well above the frequency of
the predominant class (54%; see Table 1) (i.e. if spectra are
predictive of sporozoite prevalence, the model’s average ac-
curacy rate must exceed the frequency of the predominant
class). A detailed analysis of the classification results for test
observations shows a true positive rate (sensitivity) of 74%
and a true negative rate (specificity) of 70%, implying false
positive and false negative misclassification rates of 26 and
30%, respectively.

Only 34 mosquitoes fed on infected blood did not de-
velop sporozoites. NIRS could differentiate between unin-
fectious mosquitoes fed on infectious and uninfectious
blood with relatively high accuracy (misclassification rate
< 15%) though further work is needed to verify this with a
larger dataset.

A number of peaks were identified in the spectra at
wavelengths 550, 1690 and 2370 nm, which are not typically
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seen when mosquitoes are scanned. These peaks are in the
region of the spectra consistent with samples contaminated
with chloroform [26] and are present in some of the sam-
ples of all replicates. It is hypothesised that this may have
resulted from chloroform condensing over time in the petri
dish when it was placed on ice.

Sporozoite intensity
The average AUC among all one-versus-all models was
0.69 with the best-fit model having varying success in
categorising different infection groups, with AUC ran-
ging from 0.56 for lowly infected to 0.80 for uninfected
mosquitoes (Fig. 3a).

The model’s average predicted class probabilities for
the extreme classes (uninfectious and very highly infec-
tious) were consistent with the actual classes (y = {0, 4},
respectively; Fig. 3b). That is, on average, the model esti-
mates a high probability that a mosquito is uninfectious
when it is in fact uninfectious, when compared to the
probabilities that it belongs to other infection groups. This
probability decreased for more infectious mosquitoes as
expected, that is, the more infectious a mosquito is, the
lower is its estimated probability of being uninfectious. A
similarly pattern can be observed for highly infectious
mosquitoes.

However, distinguishing between the mid-range levels
of infectiousness (low, medium and high) was less accur-
ate (y = {1, 2, 3}, respectively; Fig. 3b, c). The estimated
probabilities for the low infection class (y = 1) were uniform
across all five levels of infection (difference between highest
and lowest predicted probability equals 0.06), suggesting
great uncertainty in predicting mosquitoes with low levels of
infection (Fig. 3b). The predicted classes for test observa-
tions suggest the same difficulty in predicting the middle in-
fection groups, with misclassification rates between 77-96%.

Table 1 Sample sizes and replicate scans. Summary of the number of spectra collected by experiment (sporozoites or oocysts), the
number of parasites in the mosquitoes (intensity of infection) and number of times the same mosquito was scanned in different
positions (replications). Values in parentheses indicate the percentage of the total samples with that intensity of infection or sample

repetition
Intensity of infection Replications
No. of sporosoites/oocysts No. of samples (%) No. of replications No. of samples (%)
Sporozoites 0 162 (54) 1 99 (33)
1-10 24 (8) 2 82 (27)
11-100 35(12) 3 39 (13)
101-1000 35(12) 4 80 (27)
> 1000 44 (14) total: 300
total: 300
Oocysts 0 29 37) 1 (M)
>0 50 (63) 2 1(1)
total: 79 3 77 (98)

total: 79
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For uninfectious and very highly infectious mosquitoes, the
misclassification rates were 32 and 57%, respectively (Fig. 3c).
Overall, the average misclassification rate was 53%, reflecting
the difficulty in distinguishing mosquitoes with different in-
fectiousness levels.

Averaging the results from multiple spectra

Scanning the same mosquito multiple times with reposi-
tioning of the mosquitoes before each replication im-
proved the accuracy of the method. Table 1 indicates the
number of repetitions for each experiment whilst Table 2
summarises the results of the effect on AUC and mis-
classification rate of averaging scans for each specimen.
For sporozoites, averaging the spectra from two scans,
chosen at random, for mosquitoes for which at least two
scans were available (n = 201) substantially improved accur-
acy, with AUC increasing compared to single scans by 0.03
(a 4% improvement). Averaging all available scans for each
mosquito (# = 300) resulted in an increase of 0.09 in the
average AUC (a 12.5% improvement); and a decrease of 13
percentage points in the average misclassification rate.

Oocyst prevalence
The NIR spectra provided very little information on
whether the mosquito was infected with oocysts. After
averaging of mosquito spectra, the best-fit model had an
AUC of 0.69 and error rate very similar to oocyst preva-
lence; the average error rate was equal to 38% whereas the
proportion of uninfected mosquitoes was 37%, indicating
little information in the spectra for predicting oocyst
prevalence. Effectively, the best cross-validation model se-
lected only two PLS components (the minimum possible
value in our setup) which produces a very flat coefficient
function, further supporting to this claim. Sample size was
too low to investigate whether NIRS would be able to de-
termine oocyst intensity.

For oocysts, averaging the spectra does not improve
results, further supporting the previous results that the

spectra are not predictive of oocyst load in this small
sample (Table 2).

Discussion

NIRS can differentiate between infectious and uninfec-
tious mosquitoes with an overall accuracy of 72%. This
is the first demonstration that NIRS can detect a malaria
parasite in mosquitoes, but further work is needed to refine
the technique using independent datasets (generated at dif-
ferent times in different laboratories) before its measure-
ment error and use can be fully understood. The accuracy is
less than from the optimum recorded with PCR (the current
accepted standard) though this technique has reproducibility
issues in some laboratories, and the practicalities and ex-
pense of this technique preclude its current widespread use
in many settings. ELISA is more economical though its sen-
sitivity has been shown to perform with variable sensitivity
in real world settings [27, 28].

The statistical machine learning approach to classification
of NIR spectra provides a flexible framework and allows for
different error rates to be optimised, enabling the sensitivity
(true positive rate) and specificity (true negative rate) to be
varied according to individual experimental requirements.
In this study, we assigned equal weights to sensitivity (false
positives) and specificity (false negatives), but one may wish
to bias this criterion according to the question under inves-
tigation. For example, as an area nears malaria elimination,
entomological surveillance becomes increasingly difficult as
many thousands of mosquitoes need to be examined to ac-
curately estimate the sporozoite rate. In this situation the
classification threshold could be changed to minimise the
false negative rate to ensure that all mosquitoes classified as
negative were truly uninfectious. This would allow the pro-
portion of mosquitoes with sporozoites to be estimated in a
two-step process: (i) mosquitoes are quickly scanned to re-
move those known to be negative; and (ii) those remaining
would be analysed by PCR to ensure all positive samples
are identified. Such a method could substantially reduce



Esperanca et al. Parasites & Vectors (2018) 11:377

Page 6 of 9

true positive rate

average AUC = 0.81
I T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

0.0
|

0.30

predicted uninfectious

15
|

10
|

coefficient function

-5
|

-10

[ T T T T T 1
200 600 1000 1400 1800 2200 2600

wavelength (nm)

25

— predicted uninfectious

0.

tnr=0.74

density
0.15 0.20

observed infectious

0.10
|
observed uninfectious

0.05

predicted infectious

o :E::_:LDULH._-.

0.00
L

[ T T T
-12 -10 -8 -6 -4

predicted infectious
— optimal cutoff
' observed uninfectious
| = observed infectious
II‘ |I|II | .
I

-2 4 6 8

linear predictor
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respectively; and the black line inside the box showing the median/50th-percentile). b The best fit coefficient functions for each of the 100
dataset randomisations (grey lines) and the corresponding average (black line). ¢ The histogram of the estimated linear predictor for the test
observations, colour-coded by the true class, shows the model’s ability to separate the two infection groups. The vertical black line indicates the
optimum threshold for classifying mosquitoes as infectious or not. The shaded area where the two distributions overlap corresponds to
misclassified test observations - false negatives to the left and false positives to the right of the optimal classification threshold. The confusion
matrix (inset) shows the different error rates: tnr, true negative rate; fnr, false negative rate (specificity); fpr, false positive rate; and tpr, true positive

entomological surveillance costs without compromising
accuracy.

This work demonstrates the ability of NIRS to detect
malaria in a laboratory rodent model system and the
study needs to be repeated in natural parasite-vector
combinations of medical importance. Nevertheless the
An. stephensi-P. berghei system is widely used to under-
stand the biology of the passage of the parasite through the
mosquito and in the development of anti-malarial
transmission-blocking drugs and vaccines so this work has
direct biological relevance. These experiments require use
of the standard membrane feeding assay where mosquitoes

are fed on infectious blood before being individually dis-
sected by hand under a microscope [29]. Dissection is slow,
laborious, and inherently subjective so the use of NIRS may
make it easier to screen large libraries of drug and vaccine
candidates.

In this study, there is a chance that very lightly in-
fected mosquitoes might have been falsely labelled unin-
fected. Previous experimentation with the same model
system and procedures demonstrated reasonably high
accuracy [12]. In this larger study 291 naive mice were
bitten by mosquitoes with no detectable salivary gland
sporozoites following blood-feeding and only 13 (4.5%)
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went on to develop a blood stage infection. To overcome
this, future work could confirm the microscopy result by
ELISA or PCR; however, any partner assay to detect re-
sidual sporozoites must be carefully selected to demon-
strate high sensitivity at low (1-10) sporozoite numbers.
Procedural refinements may be able to further improve
the accuracy of the method. In this study, mosquitoes
were killed by chloroform and kept cool on ice until they
were scanned. Moisture could have condensed onto
samples after removing them from the cool temperature,
immediately before scanning, and thus affected spectra
and classification accuracies. Thus, the importance of
preservation method on the ability of NIRS to detect the
malaria parasite needs further investigation. Also, some

Table 2 Improvements to the accuracy of NIRS in detecting
presence of sporozoites and oocysts according to the number
of times the mosquito was scanned. Mosquitoes are
repositioned after each scan. Area under ROC curve (AUC) and
misclassification rate (MR) when averaging one (no averaging),
two and all available scans; see Table 1 for the number of
replicates available. Improvements in performance, from one to
all scans, are given in level for AUC and in percentage points for
misclassification rate. Values in brackets indicate the percentage
improvement in accuracy. Results are for a binomial GLM with 8
PLS components in both sporozoites and oocysts models

No. of scans averaged

One Two All Change

Sporosoites AUC 0.72 0.75 0.81 +0.09 (112.5%)
MR 41% 33% 28% -13 pp.

Oocysts AUC 0.70 0.68 0.69 -0.01 (11.43%)
MR 36% 34% 38% +2 pp.

samples were contaminated with chloroform which may
have added noise to our models.

Distinguishing between different levels of infection in
mosquitoes using NIRS is a challenging task. The differ-
ences in the spectra of these infection groups are subtle
and there is considerable uncertainty in the classification
of test observations (Fig. 3). This uncertainty is likely to
be due, at least in part, to the small sample sizes available
(m = 300 for the sporozoite data), the contamination of
some samples with chloroform, and possible variability in-
troduced in samples fed on uninfected blood. For instance,
there are only 24 samples from the low infection group,
corresponding to 8% of the total. Additionally, the dataset
is highly unbalanced towards uninfected mosquitoes,
which are the most accurately predicted of all infection
groups (Table 1 and Fig. 3). Larger sample sizes will be re-
quired to calibrate a more robust predictive model that
can be used in real-life situations, and models should be
verified on independent test sets. A larger study will also
be required to confirm that NIRS is unable to detect P.
berghei oocysts as only 79 mosquitoes were available for
analysis here.

The mechanisms by which NIRS detects the malaria
parasite remain unknown and it is unclear whether the
regions of the spectra identified as important are detect-
ing parasite biomass, a mosquito response to the para-
site, or some other artefact. Given the relative masses of
the parasite to the insect, it is likely that NIRS is detect-
ing a mosquito response though further work is needed
to clarify the mechanisms involved. In this study, a high
proportion of mosquitoes fed infected blood developed
oocysts so the number of uninfected mosquitoes was
augmented using vectors fed on uninfected blood. A
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difference in spectra between uninfected mosquitoes fed
infected and uninfected blood could indicate NIRS is de-
tecting a mosquito immune response against an early
stage of the parasite. There was some indication that
NIRS could differentiate these two different types of unin-
fected mosquitoes though there were only 68 samples so
this needs to be repeated with a larger dataset. This may
explain some of the sporozoite-negative mosquitoes that
the model falsely predicted as positive. If this were the
case, then it would be important to determine whether
the mosquito immunity was either Plasmodium-specific
or a more general anti-infection immune response which
could lessen the utility of the method.

Conclusions

To our knowledge, we provide the first evidence that
NIRS can be used to distinguish mosquitoes infectious
with malaria from those which were not. The experi-
ment must be repeated with wild natural parasite-vector
combinations before its practical use as a tool for moni-
toring of vector control interventions can be assessed.
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