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Abstract

Background: Toxoplasma gondii, a single-celled parasite commonly found in mammals, has been shown to induce
trophoblast cell apoptosis and subsequently cause fetal damage and abortion. Although dense granule protein 15
(GRA15) has been identified as a key component in innate immunity to T. gondii infection and its pathogenesis, its
role in host cell apoptosis remains unclarified.

Methods: Type II GRA15 (GRA15II) cDNA was inserted into a plasmid encoding enhanced green fluorescent protein
(pEGFP). Choriocarcinoma JEG-3 cells were transfected with either pEGFP or pEGFP-GRA15II and cultured for 24 h.
Cell apoptosis and endoplasmic reticulum stress (ERS) responses were assessed. Inhibitors targeting inositol-
requiring kinase 1α (IRE1α; 4μ8C, 100 nM) or c-Jun N-terminal kinase (JNK; SP6000125, 20 μM) were added 12 h
after plasmid transfection, followed by testing the effect of GRA15II on ERS.

Results: When compared to pEGFP, pEGFP-GRA15II transfection facilitated cell apoptosis (P < 0.05), increased mRNA
expression of caspase-3, caspase-4, 78-kDa glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP)
and X-box binding protein-1 (XBP1) (all P < 0.05), and promoted protein expression of cleaved caspase-3, cleaved
poly(ADP-ribose) polymerase, Bax, CHOP, GRP78, phospho-JNK, and phospho-IRE1α (all P < 0.05). The 4μ8C and
SP6000125 decreased apoptosis and protein expression of XBP1s, CHOP, TNF receptor-associated factor 2 (TRAF2),
phosphorylated apoptosis signal-regulating kinase 1 (ASK1), cleaved caspase-3, phospho-JNK, and Bax (all P < 0.05)
in pEGFP-GRA15II transfected cells.

Conclusions: Toxoplasma GRA15II induced ERS and subsequently caused apoptosis of choriocarcinoma JEG-3 cells.
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Background
Toxoplasma gondii is an obligate intracellular single-
celled parasite that can invade all warm-blooded animals
worldwide [1]. The strains of T. gondii circulating in
Europe and North America can be grouped into three
distinct genotypes, strains of Type I, Type II and Type
III, according to the population structure [2–5]. During
invasion, proteins from parasite organelles such as

rhoptry proteins (ROPs) and dense granule proteins
(GRAs) are released into host cells and are able to cause
significant host damage [6, 7]. The genotype/strain poly-
morphism of ROP16 and GRA15 have both been widely
observed in the literature [8]. It has been reported that
ROP16 from type I RH stain (ROP16I), but not from
type II ME49 stain (ROP16II), could directly phosphoryl-
ate the signal transducer and activator of transcription
STAT3 and STAT6, and subsequently polarize macro-
phages to an M2 phenotype. In addition, GRA15 from
type II ME49 strain (GRA15II), but not from type I RH
strain (GRA15I), could phosphorylate nuclear factor-
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kappa B (NF-κB), and subsequently drive macrophages
to an M1 phenotype [9]. We have previously shown that
both ROP16I and GRA15II were present in the majority
of T. gondii Chinese 1 strains found in China [10–14].
Toxoplasma gondii can hijack host cell apoptotic ma-

chinery and promote either an anti- or pro-apoptotic pro-
gram depending on the parasite virulence and load, as well
as the host cell type [15]. In the literature, increased apop-
tosis following Toxoplasma infection has been observed in
spleen cells [16], neuronal cells [17] and choriocarcinoma
cells [18]. Previously, we found that endoplasmic reticulum
stress (ERS) is involved in T. gondii-induced apoptosis [19,
20], and that ROPs could trigger ERS-mediated apoptosis
[21, 22]. However, the effect of GRAs (e.g. GRA15) on host
cell apoptosis remains unclear.

Importantly, maternal Toxoplasma infection may give
rise to congenital transmission of the parasite to the fetus
through the placenta [23–26] and/or via interfering with
the immune tolerance on maternal-fetal interface. Our
previous studies indicated that infection with TgCwh3 (a
virulent strain of Chinese 1) induced apoptosis of tropho-
blast cells, and subsequently caused adverse pregnancy
outcomes in mice [27]. Angeloni et al. [18] observed that
ME49 (type II)-infected BeWo cells become more suscep-
tible to apoptosis than RH (type I)-infected BeWo cells. In
view of the M1 bias induced by GRA15II, we postulated
that a GRA15II-induced NF-κB-dependent proinflamma-
tory cytokine profile is more likely to cause cell apoptosis
when compared to a ROP16I-induced STAT3/STAT6-
dependent proinflammatory cytokines [18, 28]. Here, we

Table 1 Sequences of oligonucleotide primers used for real-time PCR

Target Forward primer (5'-3') Reverse primer (5'-3') Product size (bp)

Caspase 3 GACAGACAGTGGTGTTGATG TGGATGAACCAGGAGCCATC 132

Caspase 8 AACCTGGTACATCCAGTCAC AAAGTAGGCTGAGGCATCTG 150

Caspase 9 AAGGTTTGAGGACCTTCGAC GACTGCAGGTCTTCAGAGTG 184

Caspase 4 GTGGAGAAGGACTTCATTGC CTGGAAGCATGTGATGAGTTG 108

ATF4 CAGCTACCACCCATAACAAG GTGTCCATCACCTGACAGTC 138

ATF6 CAGCTACCACCCATAACAAG GTGTCCATCACCTGACAGTC 133

GRP78 GTCCTTCTATGAAGGAGAAG GAATCTTCCAACACTTTCTGG 117

CHOP TGCAAGAGGTCCTGTCTTCAG GCACTGACTCCTCGGAAC 106

XBP1 AAGGCGCTGAGGAGGAAAC GGTTCTCAACTACAAGGCC 178

GAPDH CTTCATTGACCTCAACTACATGG CTCGCTCCTGGAAGATGGTGAT 134

Abbreviations: ATF activating transcription factor, GRP78 78-kDa glucose-regulated protein, CHOP C/EBP homologous protein, XBP1 X-box binding protein-1, GAPDH
glyceraldehyde-3-phosphate dehydrogenase

Fig. 1 The presence of dense granule protein 15 (GRA15II). Choriocarcinoma JEG-3 cells were transfected with either an empty vector (pEGFP, encoding
enhanced green fluorescent protein) or pEGFP-GRA15II for 24 h. Untransfected cells served as the control. a The expression of green fluorescent protein
(GFP) was captured using fluorescent microscopy. Scale-bar: 100 μm. b The expression of GRA15II was confirmed by western blotting
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demonstrated that GRA15II increased apoptosis in chorio-
carcinoma JEG-3 cells partially mediated by ERS.

Methods
Cell culture
JEG-3 cells (human choriocarcinoma cell line, ATCC, lot
number HTB-36) were cultured in a humidified incuba-
tor (37 °C and 5% CO2) in minimum essential medium
(MEM; Gibco, Carlsbad, CA, USA), supplemented with
sodium bicarbonate (1.5 g/l; Gibco), sodium pyruvate (0.
11 g/l; Gibco), penicillin (100 U/ml; Sigma-Aldrich, St
Louis, MO, USA), streptomycin (100 mg/ml; Sigma-
Aldrich) and fetal bovine serum (10%; Gibco).

Plasmid construction and transfection
A plasmid encoding enhanced green fluorescent protein-
C2 (pEGFP-C2) was purchased from BD Biosciences

(Franklin Lakes, NJ, USA). The open reading frame en-
coding TgGRA15II (omitted signal peptide of 1500 bp;
http://toxodb.org) cDNA was reconstituted by RT-PCR
using total RNA isolated from TgCtwh3 tachyzoites. The
pEGFP-GRA15II plasmid was constructed by inserting
TgGRA15II cDNA into the pEGFP plasmid as previously
described [29]. JEG-3 cells were plated in 96-well plates
(Corning, Corning, NY, USA) at a density of 104 cells/
ml, cultured for 24 h, then transfected with either
pEGFP or pEGFP-GRA15II using Lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions.

The presence of GRA15II
The expression of green fluorescent protein (GFP) was
recorded using fluorescent microscopy (Olympus BX60,
Tokyo, Japan) 24 h after transfection. The presence of

Fig. 2 Dense granule protein 15 (GRA15II)-induced loss of cell viability and apoptosis. Choriocarcinoma JEG-3 cells were transfected with either empty vector
(pEGFP, encoding enhanced green fluorescent protein) or pEGFP-GRA15II for 24 h. Untransfected cells served as the negative control, and staurosporine (STS)
treated cells (1 μM, 6 h) served as the positive control. a Cell viability was measured using the MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-
[4-sulfophenyl]-2H-tetrazolium) assay. b Cell apoptosis was determined by the phycoerythrin-annexin V/7-AAD flow cytometry assay. *P < 0.05, **P < 0.01
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GRA15II protein in either pEGFP- or pEGFP-GRA15II-
transfected JEG-3 cells was determined by Western blot-
ting (24 h after transfection). Untransfected JEG-3 cells
served as a control.

Cell viability and apoptosis
Twenty-four hours following transfection, JEG-3 cell viabil-
ity was measured using the Cell Titer 96 Aqueous One So-
lution Cell Proliferation assay kit (MTS, Promega, Madison,
WI, USA) according to the manufacturer’s instructions. A
phycoerythrin-annexin V apoptosis detection kit (flow cy-
tometry based assay, BD Biosciences, Franklin Lakes, NJ,

USA) was used to determine cell apoptosis. Briefly, cells
were washed twice using cold phosphate buffered saline
(PBS) and suspended in binding buffer (100 μl).
Phycoerythrin-annexin V (5 μl) and 7-aminoactinomycin
D (7-AAD, 5 μl) were added to the suspension and incu-
bated for 15 min at room temperature, followed by
addition of binding buffer (400μl). A flow cytometry assay
was conducted within 1 h using FACSVerse (BD Biosci-
ences) with FCS Express 4.0. Annexin V+/7-AAD-

represented early apoptotic cells and annexin V+/7-AAD+

represented late apoptotic cells. Untransfected cells served
as a negative control. Cells treated with staurosporine

Fig. 3 Effects of IRE1α inhibitor 4μ8C and JNK inhibitor SP6000125 on loss of cell viability and apoptosis of pEGFP-GRA15II-transfected cells.
Choriocarcinoma JEG-3 cells were transfected with either the empty vector (pEGFP, encoding enhanced green fluorescent protein) or pEGFP-
GRA15II for 24 h. Tunicamycin (TM) treated (1 μM, 24 h) cells served as the control. Cells were treated with either 4μ8C (100 nM, 12 h) or SP6000125 (20
μM, 12 h) 12 h after pEGFP-GRA15II transfection. a Cell viability was measured using the MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-
sulfophenyl]-2H-tetrazolium) assay. b Cell apoptosis was determined by the phycoerythrin-annexin V/7-AAD flow cytometry assay. *P < 0.05, **P < 0.01
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(STS, 1 μM, 6 h; Sigma-Aldrich) and/or tunicamycin (TM,
1 μM, 24 h; Sigma) served as positive controls. Cells were
also treated with 4μ8C, the inositol-requiring kinase 1α
(IRE1α) inhibitor (100 nM, added 12 h after transfection,
for 12 h; Selleck, Houston, TX, USA) and/or SP6000125,
the c-Jun N-terminal kinase (JNK) inhibitor (20 μM,
added 12 h after transfection, for 12 h; Selleck) to demon-
strate the effect of GRA15II on ERS in JEG-3 cells.

Real-time PCR
Cells were harvested 24 h after transfection. Total
RNAs were extracted, and cDNA was synthesized
using the Thermo Fisher Scientific RevertAid First
Strand cDNA Synthesis Kit (lot number K1621,
Thermo Fisher Scientific, San Diego, CA, USA).
Quantitative real-time PCR was performed using the
SYBR-Green kit (Takara, Tokyo, Japan) with the
ABI7500 system (Applied Biosystems, Carlsbad, CA,
USA). Primers listed in Table 1 were synthesized by
Shenggong Biotechnology (Shanghai, China). Gene ex-
pression levels were normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) levels and data
was analyzed using the 2-ΔΔCt method.

Western blotting
Cells were harvested 24 h after transfection, washed
with cold PBS, and lysed on ice using lysis buffer [50
mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton X-
100, 1% sodium deoxycholate, and 0.1% sodium dode-
cyl sulfate (SDS), supplemented with protease inhibi-
tors cocktail (1%) and 1 mM phenylmethanesulfonyl
fluoride]. The whole cell lysate was centrifuged
(12,000× g, 10 min, 4 °C), and the supernatant was
collected. Protein content was analyzed using a
bicinchoninic acid (BCA) assay kit (Beyotime, Shang-
hai, China). Protein (20 μg) was electrophoresed on
10% SDS-polyacrylamide gels, and transferred to
nitrocellulose membranes (Millipore, Billerica, MA,
USA). The membranes were blocked using 5% fat-free
milk powder (in PBS) and incubated with primary
antibody (1:1000 dilution) for 12 h at 4 °C. Horserad-
ish peroxidase-conjugated secondary antibody (1:5000
dilution) was then applied at room temperature for 2
h. The membranes were washed and probed using an
enhanced chemiluminescence (ECL) kit (Thermo
Scientific, Barrington, IL, USA). ImageJ (Version 1.48,
National Institute of Health) was used to quantify
band density. Antibodies against GFP, C/EBP homolo-
gous protein (CHOP), 78-kDa glucose-regulated pro-
tein (GRP78), JNK, phospho-JNK, protein kinase R
(PKR)-like ER kinase (PERK) and phospho-PERK and
GAPDH were purchased from Santa Cruz Biote-
chnology (Dallas, TX, USA) and were diluted to 1:
1000. Antibodies against cleaved poly (ADP-ribose)

polymerase (PARP), cleaved caspase-3, IRE1α, apop-
tosis signal-regulating kinase 1 (ASK1), phospho-
ASK1, p38 (a mitogen-activated protein kinase),
phospho-p38, X-box binding protein-1 (XBP-1) and
TNF receptor-associated factor 2 (TRAF2) were pro-
vided by Cell Signaling Technology (Danvers, MA,
USA) and were diluted to 1:1000. The antibody to
phospho-IRE1 was obtained from Abcam (Cambridge,
UK) and was diluted to 1:1000. The antibody to Bax
(diluted to 1:1000), and the goat anti-rabbit and goat
anti-mouse secondary antibodies (diluted to 1:5000)
were purchased from ZSGB-Bio (Beijing, China).
Untransfected cells served as a negative control. Cells
treated with STS (1 μM, 6 h) and/or TM (1 μM, 24 h)
served as positive controls. Cells treated with 4μ8C
(100 nM, added 12 h after transfection, for 12 h)
and/or SP6000125 (20 μM, added 12 h after transfec-
tion, for 12 h) were used to demonstrate the effect of
GRA15II on ERS in JEG-3 cells.

Statistical analysis
A two-tailed independent Student’s t-test (GraphPad
Prism 5.0 software, GraphPad Prism, San Diego, CA,
USA) was used to determine the differences between
control and pEGFP-GRA15II-transfected JEG-3 cells.
Data are presented as the mean ± standard error
(SE). All statistical tests were considered as significant
at P < 0.05.

Fig. 4 Transcription levels of apoptosis-associated genes. Choriocarcinoma
JEG-3 cells were transfected with either the empty vector (pEGFP,
encoding enhanced green fluorescent protein) or pEGFP-GRA15II
for 24 h. Abbreviations: ATF, activating transcription factor; GRP78, 78-
kDa glucose-regulated protein; CHOP, C/EBP homologous protein;
XBP1, X-box binding protein-1. *P < 0.05, **P < 0.01, when compared
to the pEGFP-transfected cells
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Results
The presence of GRA15II
To investigate whether the pEGFP-GRA15II construct
could be expressed in JEG-3 cells, the expression of
GRA15II protein was determined in both pEGFP-
GRA15II- and pEGFP-transfected JEG-3 cells. GFP fluor-
escence was detected in both pEGFP and pEGFP-
GRA15II-transfected JEG-3 cells at 24 h (Fig. 1a).
pEGFP-transfected cells had an increased fluorescence
signal when compared to pEGFP-GRA15II-transfected
cells. The GFP protein (28 kDa) and the GFP-GRA15II
fusion protein (85 kDa) were expressed in JEG-3 cells,
24 h after transfection (Fig. 1b).

Loss of cell viability and apoptosis
Viability and apoptosis, that may directly reflect the
functional status of the cells, were analyzed in both
pEGFP-GRA15II- and pEGFP-transfected JEG-3 cells.
Untransfected JEG-3 cells exhibited 100% viability and 7.
5% apoptosis (Fig. 2). STS treatment decreased cell via-
bility to 39.4% and increased apoptosis to 27.8%. The
pEGFP-GRA15II-transfected cells showed decreased cell
viability (t(2) = 5.611, P = 0.0303, 47.0 vs 74.5%) and in-
creased cell apoptosis (t(2) = 10.74, P = 0.0086, 23.9 vs 8.
9%) when compared to pEGFP-transfected cells. Inter-
estingly, while pEGFP-GRA15II transfection decreased
viability (t(2) = 10.23, P = 0.0094) and increased

Fig. 5 Expression of apoptosis-associated proteins and endoplasmic reticulum stress (ERS) proteins. Choriocarcinoma JEG-3 cells were transfected with
either the empty vector (pEGFP, encoding enhanced green fluorescent protein) or pEGFP-GRA15II for 24 h. Untransfected cells served as the negative
control. a Expression of apoptosis-associated proteins. Staurosporine (STS) treated cells (1 μM, 6 h) served as the positive control. b Expression of ERS
proteins. Tunicamycin (TM) treated cells (1 μM, 24 h) served as the positive control. Abbreviations: PARP, poly (ADP-ribose) polymerase;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CHOP, C/EBP homologous protein; GRP78, 78-kDa glucose-regulated protein; JNK, c-
Jun N-terminal kinase; P-JNK, phosphorylated JNK; P38, a mitogen-activated protein kinase; P-p38, phosphorylated p38; PERK, PRK-like ER kinase; P-
PERK, phosphorylated PERK; IRE1α, inositol requiring kinase 1; P-IRE1α, phosphorylated IRE1α. *P < 0.05, **P < 0.01, when compared to the
pEGFP-transfected cells
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apoptosis (t(2) = 4.851, P = 0.04) of JEG-3 cells, treat-
ment with either 4μ8C (IRE1α inhibitor) or SP6000125
(JNK inhibitor) increased viability (t(2) = 9,165, P = 0.
0117) and decreased apoptosis (t(2) = 6,963, P = 0.02) in
pEGFP-GRA15II-transfected JEG-3 cells (Fig. 3).

Transcription levels of apoptosis-associated genes and
ERS genes
The transcription levels of apoptosis-associated genes
and ERS genes were measured in both pEGFP-
GRA15II- and pEGFP-transfected JEG-3 cells so as to

reveal the signal pathway of the cell apoptosis. The
pEGFP-GRA15II-transfected JEG-3 cells demonstrated
increased mRNA expression levels of caspase-3 (t(2) =
6.229, P = 0.0248), caspase-4 (t(2) = 5.819, P = 0.0283),
GRP78 (t(2) = 11.632, P = 0.0073), CHOP (t(2) = 18.298,
P = 0.003) and XBP1 (t(2) = 7.589, P = 0.0169) when
compared to pEGFP-transfected JEG-3 cells (Fig. 4).

Expression of apoptosis-associated proteins and ERS
proteins
Accordingly, the expression levels of apoptosis-associated
proteins and ERS proteins were measured in both pEGFP-

Fig. 6 Effects of IRE1α inhibitor 4μ8C and JNK inhibitor SP6000125 on pEGFP-GRA15II transfected cells. Choriocarcinoma JEG-3 cells were transfected with
either the empty vector (pEGFP, encoding enhanced green fluorescent protein) or pEGFP-GRA15II for 24 h. Tunicamycin (TM) treated cells (1 μM, 24 h)
served as a control. a Cells were treated with 4μ8C (100 nM, 12 h) 12 h after pEGFP-GRA15II transfection. *P < 0.05, when compared to pEGFP transfected
cells; #P < 0.05, when compared with pEGFP-GRA15II-transfected cells. b Cells were treated with either 4μ8C (100 nM, 12 h) or SP6000125 (20 μM, 12 h) 12
h after pEGFP-GRA15II transfection. *P < 0.05, **P < 0.01, when compared to pEGFP transfected cells; #P < 0.05, ##P < 0.01, when compared to pEGFP-
GRA15II-transfected cells. Abbreviations: XBP1, X-box binding protein-1; CHOP, C/EBP homologous protein; TRAF2, TNF receptor-associated factor 2; ASK1,
apoptosis signal-regulating kinase 1; P-ASK1, phosphorylated ASK1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; JNK, c-Jun N-terminal kinase; P-
JNK, phosphorylated JNK

Wei et al. Parasites & Vectors  (2018) 11:251 Page 7 of 10



GRA15II- and pEGFP-transfected JEG-3 cells. When com-
pared to pEGFP-transfected cells, the pEGFP-GRA15II
transfected cells showed increased expression levels of
apoptosis-associated proteins (Fig. 5a) such as cleaved
caspase-3 (t(2) = 4.797, P = 0.0408), cleaved PARP (t(2) = 4.
728, P = 0.0419) and Bax (t(2) = 24.489, P = 0.0017), as well
as increased expression levels of ERS proteins (Fig. 5b),
such as CHOP, GRP78, phospho-JNK and phospho-IRE1α
(all P < 0.05). Interestingly, 4μ8C treatment decreased the
expression levels of XBP1s, CHOP, TRAF2 and phospho-
ASK1 in pEGFP-GRA15II-transfected JEG-3 cells (all P < 0.
05, Fig. 6a). In addition, treatment with either 4μ8C or
SP6000125 decreased the expression levels of cleaved
caspase-3, phospho-JNK, and Bax in pEGFP-GRA15II-
transfected JEG-3 cells (all P < 0.05, Fig. 6b).

Discussion
Toxoplasma gondii infection can cause abortion, preterm
delivery, stillbirth and fetal abnormalities in pregnant ani-
mals and humans [30, 31] through three possible mecha-
nisms. First,Toxoplasma gondii can be directly transferred
to the fetus through the placenta and cause a congenital
infection [25]; secondly, maternal physiological and im-
munological disorders caused by Toxoplasma gondii infec-
tion can adversely affect fetal development [26]; and
thirdly, Toxoplasma gondii can induce apoptosis in pla-
cental cells [27]. It has been found that the majority of
host cells act as bystanders during an acute infection, and
apoptosis of these host cells may result from the secretion
of certain soluble factors by parasite-infected cells [32, 33].
The composition of the T. gondii excreted-secreted anti-
gens (ESAs) is surprisingly complex and only a few micro-
neme proteins, ROPs and GRAs, have been identified [34,
35]. ROP16- and ROP18-induced host cell apoptosis has
been previously reported [21, 22]. In this study, GRA15II
transfection significantly increased apoptosis and
decreased cell viability in choriocarcinoma JEG-3 cells as
early as 24 hours post-transfection. These results suggest
that GRA15II, which exists in Toxoplasma gondii strains
such as ME49 (type II Toxoplasma gondii) and ToxoDB#9
(major Toxoplasma gondii strain in China), is a virulence
antigen.
The GRA15II-induced apoptosis was accompanied

with ERS in choriocarcinoma JEG-3 cells. The mRNA
transcription and protein expression level of GRP78, a
key ERS sensor protein, were significantly increased by
GRA15II transfection at 24 hours. The finding indicates
that GRA15II-induced apoptosis at least partially re-
sulted from ERS. In other studies, PERK, activating
transcription factor (ATF) 6, and IRE1α have been pro-
posed as three major proteins downstream of GRP78
signaling during ERS [36, 37]. In the current study, the
expression level of phospho-IRE1α, but not PERK or
ATF6, was increased by GRA15II transfection. In line

with this, the GRA15II-related ERS/apoptosis was
mainly induced by the GRP78-IRE1α signaling pathway.
It has been reported that the activation (phosphoryl-
ation) of IRE1α could lead to apoptosis by either medi-
ating the splicing of XBP1 to XBP1s, and subsequently
increasing the expression of CHOP [38], or recruiting
TRAF2, activating ASK1, and stimulating JNK [39]. In
the current work, we found the expression of proteins
in both of these pathways was significantly increased by
GRA15II transfection. Thus, the result clearly demon-
strates that both the IRE1α-XBP1-CHOP and IRElα-
TRAF2-ASK1-JNK pathways contributed in GRA15II-
induced apoptosis as proposed schematically in Fig. 7.
We further illustrated this hypothesis by treating the
GRA15II-transfected choriocarcinoma JEG-3 cells with
4μ8C (IRElα inhibitor) and SP6000125 (JNK inhi-
bitor); both 4μ8C and SP6000125 suppressed the ex-
pression levels of apoptosis-associated proteins in
GRA15II-transfected choriocarcinoma JEG-3 cells, and
subsequently decreased apoptosis and increased cell
viability.

Fig. 7 Schematic diagram of the signaling pathways involved in
GRA15II-induced apoptosis in choriocarcinoma JEG-3 cells. Abbrevia-
tions: GRA15, dense granule protein 15; ERS, endoplasmic reticulum
stress; IRE1α, inositol requiring kinase 1; XBP1, X-box binding protein-
1; CHOP, C/EBP homologous protein; TRAF2, TNF receptor-associated
factor 2; ASK1, apoptosis signal-regulating kinase 1; JNK, c-Jun
N-terminal kinase
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During pregnancy, fetal development is directly related
to the proliferation, differentiation, and apoptosis of
trophoblast cells [23, 24]. Increased trophoblast cell
apoptosis could be damaging to fetal health and even
cause adverse pregnancy outcomes [40, 41]. The above
finding contributes novel knowledge to our current un-
derstanding in regards to Toxoplasma gondii-induced
apoptosis, and may help to illustrate the underlying
mechanism of Toxoplasma gondii-induced pregnancy
failure. The objective of the current study was to deter-
mine whether ERS was involved in GRA15II-induced
apoptosis in choriocarcinoma JEG-3 cells. It was not in-
vestigated whether ERS was the only (or the major) fac-
tor that caused apoptosis in GRA15II-transfected
choriocarcinoma JEG-3 cells. It is possible that other
pathways (e.g. mitochondrial pathway, death receptor
pathway) may also contribute to GRA15II-induced cell
apoptosis, and this will need to be investigated in future
studies. Additionally, the host target protein of GRA15II
remains unknown. There may be some differences in
“normal” in vivo cells when compared to the choriocar-
cinoma JEG-3 cells that were used in the current study.

Conclusions
Toxoplasma-derived GRA15II increased the expression
of ERS- and apoptosis-associated proteins in choriocar-
cinoma JEG-3 cells. GRA15II-induced ERS and apoptosis
were alleviated by treatment with 4μ8C and SP6000125.
GRA15II induces apoptosis at least partially through
endoplasmic reticulum stress.
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