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Abstract

Background: Chemical control with pyrethroid insecticides has been effective in reducing endemic areas of distribution
of Triatoma infestans in the Southern Cone, as well as Bolivia; this had considerably reduced the infestation of households
in a large part of the territory. Nowadays, areas such as the Chaco and the Inter-Andean Valleys are regions where the
reach of vector control strategies is becoming limited, and infestations of insecticide-treated households are reported
more often. The objective of this study was to determine if the persistence of T. infestans stems from changes in the
susceptibility of its toxicological profile in four communities in the municipality of Toro Toro, Potosi, Bolivia.

Methods: Susceptibility to deltamethrin of wild and domestic populations of T. infestans was evaluated in two stages (16
populations before and 13 populations after spraying) among DUs (structures in the intra- and peridomicile) and wild
ecotopes, in four communities. Serial dilutions of deltamethrin in acetone (0.2 μl) were applied topically on standardized
first-stage nymphs. Dose-response results were analyzed with the software PoloPlus and the relationships between lethal
doses (LD) and resistance ratios (RR50) were determined.

Results: Different degrees of RR50 were detected among the populations before and after spraying (25.66–54.70 and 21.
91–40.67, respectively), as well as in different ecotopes within a DU (DU JC 3, 28.06–36.13, in mixed structures of corrals
and chicken coops; and DU JG 3, 46.27–25.70, in kitchen roofs), or in the wild environment of the community JG Sil (29.
21–40.67). The mortality of insects undergoing diagnostic dose (DD) was never higher than 34%.

Conclusion: The results obtained in this study showed resistance of T. infestans to deltamethrin in four communities,
hence the complexity of this phenomenon is not only limited to the level of communities, but also applies to the
microgeographical level, as in different ecotopes present within the DUs. This phenomenon should be considered while
planning the activities of control programs.
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Background
Chagas disease is an important parasitic infection in Latin
America, caused by the parasite Trypanosoma cruzi,
mainly transmitted to humans and mammals by blood-
sucking triatomine insects [1, 2]. Triatoma infestans Klug
(Hemiptera: Reduviidae) is widely distributed in South
America [3] and is the main vector species within the

endemic area of Bolivia [4–6]. Insecticides play a central
role in controlling major vectors of diseases [7]; control
programs in Southern Cone countries focus on the inter-
ruption of human T. cruzi transmission by T. infestans,
with the application of residual insecticides [8, 9], mainly
pyrethroids (particularly deltamethrin) [10–12], because
of their efficacy, persistence and low environmental
impact [1, 13]. But, chemical control was only partially
successful in eliminating domestic triatomine infestation.
Resistance to pyrethroids in triatomines has been

detected in South America since the 90s [14–16]. High
levels of resistance to pyrethroids, detected in T. infestans
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in certain areas of Argentina and Bolivia, were attributed
to possible failures of control programs [17–21]. In the
Chaco region, the success of insecticide control campaigns
in rural communities is limited by early reinfestation, ap-
parently originating from residual peridomestic foci [5, 22].
Peridomestic sites are the first to be recolonized, sustain
dense populations of T. infestans, and increase the risk of
domestic reinfestation in rural northern Argentina [22, 23].
The municipality of Toro Toro (Department of Potosi)

is situated in the Bolivia Inter-Andean Valleys. Before
the beginning of the Chagas programme in this depart-
ment, high infestation rates of T. infestans were present.
After approximately 15 years of chemical control, the
density of T. infestans decreased and achieved a compat-
ible level with the vigilance phase [6]. Nevertheless, T.
infestans persists, and it was not known if this was due
to operational failures or to susceptible alterations.
Considering previous reports on the different levels of

T. infestans resistance in different geographical areas of
Bolivia [18, 20, 24–27], the objective of this study was to
determine if the origin of T. infestans persistence was due
to alterations of susceptibility in four communities of the
municipality of Toro Toro. Response to insecticide was
measured and compared among the different environ-
ments (intra, peridomestic and wild environment).

Methods
Study area
The study was carried out in the communities of Taqó
Taqó (TQ), Julo Chico (JC), Julo Grande (JG) and Calahuta
(CA) of the municipality of Toro Toro (Charcas Province),
north of Potosi Department, Bolivia. This area is part of
the Bolivian-Tucuman biogeographical province [28, 29].
These communities were historically characterized by high
rates of house infestation and high triatomine densities.
Since 1995, the infestation has decreased and the area has
been under vigilance with irregular control activities using
alphacypermethrin. The last insecticide spraying campaign
occurred the first quarter of 2013 [30].
In these communities farming is the main form of sus-

tenance, especially guava, lemon and also sweet potato
production and animal husbandry (cattle, goats, sheep
and poultry). The cultivated areas are restricted and very
close to the houses, with a very limited production.
Housings are frequently precarious and are built with
adobe, stone and the majority of houses have some peri-
domestic structure to protect the domestic animals (i.e.
goat corrals and chicken coops).
A domiciliary unit (DU) was defined as the house (i.e.

domestic sites) and structures included within the
peridomestic area (e.g. kitchens, corrals, chicken coops);
all 95 DU existing were georeferenced and numbered in
the four communities TQ (10), JC (25), JG (28) and CA

(32). The distances among the communities are between
3–7 km.
The capture of triatomines was carried out in two

periods in 2014, January and October (8 months after
chemical intervention) by a team composed by two techni-
cians, searching inside houses (intradomicile and perido-
mestic structures), according to standardized procedures of
the Pan American Health Organization [31, 32]. The
triatomines were separated in plastic bottles by DUs and
ecotopes, and subsequently reared in the laboratory for
future analysis.
After the entomological evaluation in the four com-

munities of municipality of Toro Toro, all infested DUs
were sprayed with alphacypermethrin at nominal doses
of 50 mg a.i./m2, using Hudson X-pertTM manual
sprayers, as indicated by the Pan American Health
Organization protocol [33].
In parallel to the capture of domestic triatomines, wild

populations were collected using traps described by
Noireau et al. [34, 35] in ecotopes where the presence of
wild triatomines was suspected, in parallel with the
capture in the houses. The distance of the sylvatic
ecotopes and the nearest houses was between 50–100 m
for JC and JG, respectively. The number of traps varied
depending on the available sampling area. A total of 30
traps (15 per evaluation) and 100 traps (50 per evaluation)
were placed in Julo Chico and Julo Grande, respectively.
All insects collected were identified by using the taxo-

nomic key of Lent & Wygodzinsky [3] and maintained
under controlled conditions of temperature and humid-
ity (25 °C ± 1 °C; 60% ± 10% RH).

Chemicals
Deltamethrin technical grade (99.1%), obtained from
Bayer CropScience (Brazil), was used for the bioassay,
following the routine of “Monitoring Network for
Triatominae Insecticide Resistance”, FIOCRUZ [36]. The
acetone analytical grade used for dilutions was pur-
chased from Merck, Germany. To test the susceptibility
to insecticide, the triatomine colonies were founded after
each phase of the work from a minimum of five insects
[37] captured in the two phases of the work described in
Table 1.

Bioassays
Although the chemical control in the municipality of
Toro Toro is performed with alphacypermethrin, in the
present work bioassays were realized using deltamethrin
as reference insecticide, following the routine of the La-
boratory of Reference in Triatomines and Epidemiology
of Chagas Disease, FIOCRUZ, Belo Horizonte. Reference
Center in Triatomine Resistance Studies for the Brazilian
Ministry of Health and is recognized as a Collaborator
Center for WHOPES.
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The susceptible reference lineage (SRL) CIPEIN came
from Centro de Investigaciones de Plagas e Insecticidas
(CIPEIN) [38]. The baseline of susceptibility to deltameth-
rin of this lineage was determined by Gomez et al. [25] in
Laboratory of Reference in Triatomines and Epidemiology
of Chagas Disease, FIOCRUZ, Belo Horizonte.
Tests to determine insecticide susceptibility were

conducted for each population; where a minimum of eight
and a maximum thirteen doses by populations of active
ingredient (a.i.), were applied ranging from 0.42 to 55 ng.
For each insecticide dose, three replicates were performed
with 10 instar F1 generation nymphs (five days, fasting,
weight of 1.2 ± 0.2 mg). The topical application was
through 0.2 μl of insecticide dilution in the dorsal
abdomen, according to the procedures of the World
Health Organization [39] and Pessoa et al. [40]. After
treatment, mortality was assessed 72 h post-application
and determined by the inability or lack of coordination of
the nymphs to move from center to the edge of the filter
paper (7 cm diameter). Signs of paralysis and lack of
response to external stimuli were also considered. During
and after the experiment, insects were kept under con-
trolled conditions of temperature and relative humidity
(25 °C ± 1 °C; 60% ± 10% RH).

Diagnostic dose
The diagnostic doses (DD) applied was twice the mini-
mum of the insecticide that causes 99% of mortality in
the susceptible laboratory strain [20, 25, 41]. According
to Gomez et al. [25] the LD99 to deltamethrin of the
SRL was determined (5.50 ng a.i per insect) and the DD
was estimated. According to Brown & Pal [42], mortality
> 80% (DD) detects the presence of resistant individuals
in a population. Values of RR50 > 5, according to the
criteria established by PAHO [43], were considered as
resistant to deltamethrin.

Data analysis
The dose data/mortality was analyzed using the program
PoloPlus version 2.0 [44]. The lethal doses required to
kill 50% of treated individuals (LD50) was estimated and
the resistance ratio (RR50), with their respective confi-
dence intervals (95% CI).

Results
In the four communities, 305 and 221 triatomines were
captured before and after spraying, respectively. All cap-
tured triatomines were identified as T. infestans. Nineteen
DUs were infested in the first phase and 11 in the second
phase of the study (7 DUs were recurrent of the first
phase). Two sylvatic foci were found, one in the commu-
nities of JC and another in JG; after eight months, only JG
was positive in the second phase (Table 1).
Sixteen samples were obtained in the first capture, de-

fined by the different domestic structures in the intra
and peridomestic environments, and two in the sylvatic
environments. All populations were resistant to delta-
methrin (Table 2). The values of RR50 were 28.90 in the
intradomicile to 54.7 for the peridomicile, and the wild
population showed RR50 of 29.21–38.21. In the second
capture of 13 populations of T. infestans from domestic
and wild environments, all were resistant to deltameth-
rin (Table 3), with values RR50 of 21.91–40.67.
All populations evaluated before and after spraying

showed mortality lower than 33% for the diagnostic dose
(DD). Comparing before and after spraying at the micro-
geographical level, the toxic response was different for
triatomines within the same DU in the different commu-
nities. Of the seven DU positives (before and after fumi-
gation), four had similar values of (JC2, JG4a, JG6,
CA5a) and in three DUs, lower resistance after spraying
(JC3b, JG3, CA2) was observed (Tables 2 and 3).

Discussion
This study shows the high resistance to deltamethrin by
domestic and wild T. infestans populations in four com-
munities of the municipality of Toro Toro, Bolivia, before
and eight months after spraying. Of particular importance
are the results at the microgeographical level, demonstrat-
ing different resistance values in structures of the same
DU. The calculation of RR50 is an important and frequent
indicator of triatomine resistance to insecticides besides
the diagnostic dose DD [17, 20, 25, 45], as it provides in-
formation about the mortality of a population in contact
with different doses of insecticide, and can be employed to
detect the presence of resistant individuals in a population
[42]. How these indicators vary was evidenced in our

Table 1 Number of T. infestans captured in the domestic and sylvatic ecotopes, in four communities of Toro Toro, Potosi, Bolivia,
before and after spraying (January and October 2014)

Community Houses Before spraying After spraying

No. visited No. positive Intra (n) Peri (n) Wild (n) Intra (n) Peri (n) Wild (n)

Taqó Taqó 10 1 0 48 0 0 3 0

Julo Chico 25 7 24 46 12 0 106 0

Julo Grande 28 6 31 10 11 57 27 5

Calahuta 32 5 3 123 0 0 26 0

Abbreviations: Intra intradomestic, Peri peridomestic, n number of individuals
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Table 3 Toxicological profile of T. infestans populations of domestic and sylvatic ecotopes, evaluated in the communities of Julo
Chico, Julo Grande and Calahuta, Potosi, Bolivia, after spraying with alphacypermethrin 50 mg a.i./m2 (October 2014)

CD Ecotope (I, P, S) After spraying

LD50 (95% CI) (n) Slope ± SE RR50 (95% CI) (n) DD%

CIPEIN (SRL) 0.47 (0.32–0.51) (210) 3.03 ± 0.37

JC 2 Kitchen wall (P) 12.11 (10.40–13.81) (270) 3.17 ± 0.34 29.72 (23.81–37.08) (30) 6.7

JC 3(b) Goat corral and chicken coop (P)a 14.72 (11.95–17.37) (240) 3.55 ± 0.42 36.13 (29.07–44.90) (30) 13.3

JC 8 Goat corral (P) 11.10 (9.38–12.68) (270) 3.40 ± 0.39 27.26 (21.74–34.18) (30) 10

JG 3 Kitchen roof (P) 10.47 (6.66–13.75) (180) 2.89 ± 0.44 25.70 (19.93–33.15) (30) 30

JG 4(a) Bedroom (I) 14.44 (10.72–17.94) (270) 2.51 ± 0.30 35.45 (27.66–45.43) (30) 13.3

JG 4(b) Tree with chickens (P) 12.71 (10.32–14.90) (270) 2.72 ± 0.33 31.19 (24.34–39.96) (30) 13.3

JG 4(c) Chicken coop (P) 10.22 (8.47–11.84) (180) 3.59 ± 0.48 25.10 (19.82–31.78) (30) 16.7

JG 5 Bedroom wall (P) 11.03 (7.80–13.93) (210) 3.49 ± 0.43 27.08 (21.49–34.12) (30) 23.3

JG 6 Bedroom (I) 11.34 (9.19–13.32) (210) 2.92 ± 0.40 27.84 (21.72–35.68) (30) 13.3

JG Sil Rock cliff (S) 16.57 (10.86–22.19) (270) 2.45 ± 0.32 40.67 (32.04–51.64) (30) 20.0

CA 2 Living room wall (P) 11.34 (9.12–13.37) (210) 3.80 ± 0.39 27.83 (21.63–35.80) (30) 23.3

CA 3 Goat corral (P) 8.92 (5.09–11.67) (180) 3.41 ± 0.54 21.91 (17.23–27.85) (30) 33.3

CA 5(a) Goat corral (P) 16.51 (12.55–19.97) (210) 5.88 ± 0.72 40.52 (33.41–49.15) (30) 3.3

Abbreviations: CD code triatomine population, SRL susceptible reference lineage, I intradomestic, P peridomestic, S sylvatic, n number of individuals used, LD50

lethal dose that killed 50% of the population (ng.a.i./insect), CI confidence interval, RR50 resistance ratio, DD % mortality of the diagnostic dose
aMixed structure of goat corral and chicken coop

Table 2 Toxicological profile of T. infestans populations of domestic and sylvatic ecotopes, evaluated in the communities of Taqó
Taqó, Julo Chico, Julo Grande and Calahuta, Potosi, Bolivia, before spraying with alphacypermethrin 50 mg a.i./m2 (January 2014)

CD Ecotope (I, P, S) Before spraying

LD50 (95% CI) (n) Slope ± SE RR50 (95% CI) (n) DD%

CIPEIN (SRL) 0.47 (0.32–0.51) (210) 3.03 ± 0.37

TQ 1 Goat corral (P) 12.78 (10.88–14.59) (216) 3.80 ± 0.44 31.37 (25.08–39.25) (30)14.8

JC 2 Kitchen wall (P) 12.33 (9.9–14.6) (270) 2.57 ± 0.32 30.26 (23.46–39.03) (30) 23.3

JC 3(a) Deposit (P) 11.43 (10.01–12.81) (270) 3.57 ± 0.39 28.06 (22.75–34.61) (30) 13.3

JC 3(b) Goat corral and chicken coop (P)a 22.29 (20.04–24.59) (300) 4.06 ± 0.40 54.70 (44.83–66.73) (30) 0

JC 4 Goat corral (P) 12.41 (8.37–16.98) (240) 2.73 ± 0.32 30.47 (24.06–38.60) (30) 23.3

JC 7 Chicken coop (P) 13.06 (10.734–15.26) (240) 2.74 ± 0.35 32.06 (25.15–40.87) (30) 23.3

JC Sil Rocky outcrop (S) 15.57 (14.09–17.07) (300) 4.54 ± 0.43 38.21 (31.42–46.47) (30) 3.3

JG 1 Goat corral (P) 10.45 (9.11–11.84) (300) 3.09 ± 0.31 25.66 (20.69–31.81) (30) 16.7

JG 3 Kitchen roof (P) 18.85 (16.79–20.84) (240) 4.02 ± 0.53 46.27 (37.85–56.57) (30) 0

JG 4(a) Bedroom (I) 14.72 (13.28–16.24) (300) 3.98 ± 0.38 36.12 (29.63–44.04) (30) 0

JG 6 Bedroom (I) 11.77 (10.55–12.99) (240) 4.76 ± 0.49 28.90 (23.67–35.28) (30) 6.6

JG Sil Rock cliff (S) 11.90 (10.55–13.25) (270) 4.14 ±0.41 29.21 (23.80–35.86) (30) 6.6

CA 1 Living room wall (P) 13.27 (11.64–14.90) (390) 3.00 ± 0.27 32.57 (26.38–40.22) (30) 6.6

CA 2 Living room wall (P) 22.28 (17.97–27.34) (270) 3.36 ± 0.38- 54.67 (44.42–67.29) (30) 0

CA 5(a) Goat corral (P) 15.63 (13.99–17.23) (300) 4.36 ± 0.43 38.35 (31.41–46.82) (30) 3.3

CA 5(b) Dog house (P) 15.99 (14.64–17.39) (240) 5.53 ±0.57 39.25 (32.43–47.50) (30) 0

Abbreviations: CD code triatomine population, SRL susceptible reference lineage, I intradomestic, P peridomestic, S sylvatic, n number of individuals used, LD50

lethal dose that killed 50% of the population (ng.a.i./insect), CI confidence interval, RR50 resistance ratio, DD % mortality at the diagnostic dose
aMixed structure of goat corral and chicken coop
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measurements in an artificial environment (a mixed struc-
ture used as goat corral and chicken coop) before and
after spraying: housing 3(b) of Julo Chico had a RR50 of
54.7 and RR50 of 36.13, contrary to what was observed in
environments intradomicile of the house 4(a) of Julo
Grande (RR50 of 36.12 to RR50 of 35.45). The variation in
the wild environment of Julo Chico (RR50 of 38.21) and
Julo Grande (RR50 of 29.21 to RR50 of 40.67) was also
variable.
There was also variation in the values observed inside

the same house (house 3 of Julo Chico), among the in-
sects captured in different ecotypes and in the same
period: deposit with RR50 of 28.6 and goat corral and
chicken coop with RR50 of 54.7.
These different resistance profiles in different DUs from

the same communities show the different geographical
structuring of the resistance phenotype among the com-
munities and ecotypes within sites at the microgeographi-
cal level. Already among the wild populations these
showed profiles of high insecticide resistance. Thus, the
persistence of these residual foci is probably related to the
low efficiency of the insecticide applied in these communi-
ties. According to what was observed in areas of the Gran
Chaco, both environmental factors [22, 46, 47] and existing
surface characteristics would have different effects on the
applied insecticide, conditioning or limiting its insecticidal
action. In this situation, the insects would be exposed to
sublethal doses, selecting resistant insects [13, 48, 49].
On the other hand, studies of T. infestans wild popula-

tions indicate that diverse regions of Bolivia [25, 26, 49]
present different resistance profiles to insecticides. Wild
populations from the Inter-Andean Valleys (Andean
region) and the Gran Chaco (non-Andean region) resulted
in resistance to deltamethrin with values ranging between
6.8 and 11.9 [26, 48]. Fipronil resistance varies between
5.5–45.6 [26], although this insecticide has never been used
to triatomine control. In parallel, in these regions other wild
T. infestans populations were reported susceptible [25].
Our results of wild T. infestans population showed

high rates of resistance, ranging between 29.21–40.67.
According to our observations and information from
local authorities, the sylvatic area studied has never pre-
sented anthropogenic changes (such as agriculture or
pasture), due its topography with predominance of rocky
hills. As described in other regions, it seems that this
deltamethrin resistance could be autochthonous, and the
origin of the resistant domiciliary insects. The other
way, from the houses to the sylvatic environment, had
never been described for T. infestans. Nonetheless, it
must be investigated using molecular markers.
Conversely, the presence of different profiles of residual

foci of T. infestans in Bolivia indicates the occurrence of
independent evolutionary processes of resistance to insec-
ticides in the different regions. The high genetic variability

described for T. infestans by Torres-Perez et al. [50] and
Panzera et al. [51] justifies Bolivia as the center of origin
and dispersion of the species, which could explain the
reason why natural insecticides resistance have risen in
this country [52].

Conclusions
The results of the present study demonstrated high resist-
ance to deltamethrin of domestic and sylvatic T. infestans
of Toro Toro, Potosi, Bolivia, varying at the macro- and
microgeographical levels; this is more complex when con-
sidering the importance of many factors that act over the
biological performance of a population, e. g. reproductive
capacity, viable offspring, obtaining blood capacity, disper-
sion capacity, and others, that should be investigated.

Abbreviations
a.i.: active ingredient; RH: relative humidity
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