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Abstract

Background: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including

dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito’s
geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting
these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication
of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called
wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans.
The mechanism that underpins the virus blocking effect, however, remains elusive.

Methods: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and
wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days
of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads.

Results: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation
may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on
Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several

insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2).

Conclusions: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from
genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-
mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The
long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism
of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or

variation in its expression under diverse field conditions.
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Background

Wolbachia pipientis is an insect endosymbiont capable of
manipulating host reproductive success via different mech-
anisms, the primary and most studied being cytoplasmic
incompatibility (CI) [1]. CI gives Wolbachia-infected
females a reproductive advantage and because the
symbiont is maternally transmitted, the bacterium spreads
rapidly through uninfected populations. Wolbachia also
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reduces susceptibility of their hosts to a range of patho-
gens, including viruses, other bacteria, nematodes, fungi
and the malaria parasite [2-6]. The traits of CI and Wol-
bachia-mediated pathogen blocking together form the
basis of emerging strategies to use Wolbachia as an agent
of biocontrol against vector-borne diseases [7]. Though
present in an estimated 40% of all insect species [8],
Wolbachia is naturally absent in the main dengue
vector, Ae. aegypti. However, stably inherited Wolbachia
infections with a range of strains (wMel & wMelPop
originally from Drosophila melanogaster and wAlbB from
Aedes albopictus) have been created in the mosquito using
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microinjection techniques [9-11]. Adult Ae. aegypti
mosquitoes infected with wMel [12] and wAIB [9] are
currently being released into the wild to test the
ability of Wolbachia to spread and to limit human
disease [13].

Natural Ae. aegypti populations vary in their susceptibil-
ities to dengue virus (DENV) [14-18] and laboratory-
based breeding experiments have demonstrated substantial
contribution of the mosquito genome to variation in sus-
ceptibility often through the innate immune response [17,
19-21]. When Wolbachia infection is present, pathogen
blocking is exhibited by reductions in viral infection rates,
loads and transmissibility [5, 22—-25] beyond the wildtype
host’s natural antiviral mechanisms. Wolbachia’s presence
throughout the body of the mosquito [5, 11] provides nu-
merous opportunities for the symbiont to interfere with
the successful colonization and replication of viruses. In-
side cells, Wolbachia lives within a vacuole of host origin
[26, 27] utilizing transporters to feed off host resources like
amino acids that its incomplete genome cannot synthesize
[28, 29], and communicating with the extracellular
environment using a Type IV secretion system [30, 31].
Wolbachia-mediated phenotypes including pathogen
blocking must therefore, by necessity, be enacted via host
physiologies and across host membranes. We would there-
fore predict that variation in the mosquito genome is likely
to play a role in Wolbachia-mediated blocking.

It is unclear whether the Wolbachia genome evolves
fast enough to be a substantial contributor to variation
in the trait. Each generation the population of inherited
symbiont experiences a bottleneck at the point of trans-
mission via the embryo [32, 33] and there is little oppor-
tunity to exchange genes with diverse Wolbachia strains
in the intracellular environment [34]. In the case of
stable transinfection of the wMelPop strain into Ae.
aegypti no new substitutions were witnessed in the sym-
biont genome in the 4-year period post-introduction
[35]. Changes have been demonstrated however in a
Wolbachia strain’s effects on Drosophila simulans over a
longer timeframe [36, 37].

Understanding the mechanistic underpinning of the
blocking trait, and in particular its complexity, is neces-
sary to assess the role that genetic variation and evolu-
tion may play in shaping the trait’s expression in the
field. Various theories have arisen with regard to mech-
anism [38]. The first theory suggested that Wolbachia
may “prime” or activate the host immune response,
leading to a heightened ability to limit the growth and
replication of subsequent infections with pathogens [4,
22, 39-41]. While there is growing evidence that im-
mune priming may provide blocking against bacterial
pathogens [42], innate immunity may only offer a small
boost in viral blocking [43, 44]. A second set of theories
relate to competition for resources between Wolbachia
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and incoming pathogens. The resources have included
intracellular space [5, 45], lipids [26, 46, 47] and nitrogen
[48]. Nitrogen may serve as a primary source of energy
for Wolbachia [48] and Wolbachia’s modulation of lipid
profiles in insect cells may create an environment that is
antagonistic toward viral replication [47]. A third set of
studies suggests that Wolbachia may manipulate expres-
sion of host genes that control viruses via microRNAs
[49-51]. Most recently, several studies have indicated
that Wolbachia infection may alter fundamental struc-
tures [52] or environments in the host cell [53] that pre-
vent viral replication immediately after entry into cells.
A trend that is compatible with all of the above mechan-
istic explanations for blocking is that higher Wolbachia
loads are associated with stronger blocking [11, 54—56].

As the Wolbachia genome is intimately tied to that of
the host through maternal inheritance, it is difficult to
tease apart the independent genetic contributions of the
partners to the trait [43]. In the ideal experimental sce-
nario, we could partition the relative contribution of the
mosquito and Wolbachia genomes as well as the role of
the environment in determining variation in DENV
blocking. Such traditional quantitative breeding ap-
proaches would require the same mosquito families to
be studied with and without Wolbachia infection. As
transinfection of mosquitoes often requires injection of
thousands of individuals to achieve success [10] and
removal of Wolbachia by antibiotic treatment takes mul-
tiple generations [57], the ideal experiment cannot be
done. Instead, we have used a modified full-sib breeding
design approach to assess family level variation in
Wolbachia-mediated blocking in a population of Austra-
lian Ae. aegypti. By examining the same trait in parallel
in Wolbachia-free mosquito families we were also able
to demonstrate the additional contribution (both geno-
typic and environmental) of Wolbachia infection to the
variance of dengue virus load. We then used families
exhibiting the phenotypic extremes in DENV blocking
to screen four candidate mosquito genes for correlations
in expression that would be suggestive of a functional
role in blocking. We used qPCR gene screening as a
proof of principle to see whether we could detect rela-
tionships between gene expression behavior and strength
of Wolbachia-mediated blocking. The candidates tested
were selected because they had previously been shown
to be modulated by Wolbachia and also play a role in
DENV infections.

Results

DENV load in head tissue by family

Breeding in a modified full-sib [58, 59] framework
yielded 25 wildtype and 33 wMel-infected Ae. aegypti
families with sufficient offspring for injections. For each
family 5 to 30 females were injected with DENV-2 and
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then their midgut, head and carcass (representing the
rest of the body) were dissected at 7-8 days post-
infection (dpi). After RNA extraction of 5+ individual
heads per family, DENV-2 load was quantified via RT-
qPCR. Head DENV loads have been commonly used as
a proxy for dissemination of the virus [11, 60, 61] and so
we used them to rank families (Fig. 1). Carcasses from
the selected individuals were then used to test for
Wolbachia loads and gene expression analyses. All indi-
viduals for both WT and wMel lines were infected given
the use of intrathoracic injection that bypasses the mid-
gut infection barrier and allows the virus to disseminate
freely. As expected, due to the action of blocking, DENV
loads were lower in wMel families compared to WT
(t = 3194, df = 340, P < 0.0001). Heritabililties for
DENV load were high and significantly greater than zero
for each line; WT [H? = 0.95 (0.54—1.29), LRT: y* = 38.4,
P =576 x 10" and wMel [H? = 0.85 (0.51-1.23), LRT:
X’ =700, P = 1.11 x 10°]. Given the maternal inherit-
ance of Wolbachia, the latter estimate will be highly
inflated, suggesting greater similarity across families due
to shared environmental variation and linkage of host
and Wolbachia genomes. The slightly lower heritability
may suggest that Wolbachia infection and its interaction
with the host is introducing additional variation
compared to the simple system involving the vector and
virus alone.

DENV load in carcass tissue by family

To determine if the differences seen in DENV loads for
the heads correspond to similar differences in carcasses,
RNA extractions were performed on carcasses from in-
dividuals previously classified as extreme families (Low
and High, Fig. 1). Carcass DENV loads mostly recapitu-
lated the patterns seen in heads (Fig. 2, Additional file 1:
Figure S1) and for each treatment we selected 6 families
that were most concordant for subsequent analysis
(Fig. 2). A generalized nested mixed model was used to
test for differences between low and high clusters.
Wolbachia infection status (Fy, = 15.32, P = 0.001),
DENV load (F(;) = 26.39, P < 0.001) as well as the inter-
action between these two main factors and family
(F21) = 947, P < 0.001) were significant. The significant
interaction is due to the higher range of DENV loads in
WT families, given pathogen blocking in the wMel line.

Wolbachia correlation to DENV titres

To assess the variability of Wolbachia densities amongst
families as well as a possible Wolbachia-based determin-
ation of DENV loads, gDNA was extracted from 3 indi-
vidual carcasses per family and Wolbachia levels were
checked using qPCR. As mean Wolbachia densities rise
in families, DENV loads decline (Fig. 3). This negative
correlation was significant (Additional file 1: Figure S2;
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r = 0.546, P < 0.0001) and may indicate greater protec-
tion against DENV dissemination in the carcass in re-
sponse to Wolbachia. Virus infection did not have an
effect on Wolbachia loads (Additional file 1: Figure S3,
P = 0.16).

Candidate gene expression: immunity

Having confirmed that the wMel strain reduces DENV
replication at an individual and population level, we then
used our families with extreme blocking phenotypes to
test for associations with expression of immunity genes
with potential roles in blocking (Figs. 4 and 5). We fo-
cused on vir-1 and AGO2, genes that represent the two
major antiviral pathways in mosquitoes, JAK/STAT and
RNA|, respectively [62]. The latter gene has been shown
to play a minor role in DENV blocking in mosquito cells
[44]. Gene expression was analyzed using a generalized
mixed model with the random variable ‘Family’ nested
with Wolbachia x DENV load, with Wolbachia and
DENV load as fixed factors. The effect of Wolbachia in-
fection was significant (Fig. 4; Fy) = 12.83, P = 0.002),
causing upregulation in the expression of vir-1. How-
ever, vir-1 expression was not associated with DENV
load/family (Fig. 4; F(;y = 3.1, P = 0.091). There was also
no significant interaction between the two main factors
(F1) = 1.05, P = 0412, Additional file 1: Figure S4a).
These results suggest that while vir-1 levels may be im-
portant for DENV control in the mosquito they do not
explain variation in the blocking trait in Wolbachia-in-
fected mosquitoes at least at the time point surveyed
post-infection.

The same mixed effects model was applied to test for
differences in argonaute-2 (AGO2) gene expression
levels. The effect of Wolbachia was significant (Fig. 5;
Fqy = 16.72, P = 0.001), leading to heightened expression
of the gene. We also detected a significant effect of
DENYV load/family (Fig. 5; F3) = 27.62, P < 0.001), dem-
onstrating higher expression of the gene in Low DENV
load families. The interaction was also significant
(F21) = 5.26, P < 0.001), showing that the differences be-
tween High and Low DENV loads in AGO2 expression
are greater in wMel-infected mosquitoes than in WT
(Additional file 1: Figure S4b). In WT families, gene ex-
pression decreases as DENV titres increase. The same is
true for wMel-infected families, but with an even greater
disparity between Low and High families.

Candidate gene expression: host factor competition

We also examined how genes involved in intracellular
lipid transport (Sterol carrier protein 2, SCP-2) and nitric
oxide biosynthesis (Nitric oxide synthase, NOS) are dif-
ferentially expressed for each cell line and cluster. These
genes have previously been proposed as not only import-
ant for lipid distribution or nitrogen production but also
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to be critical for DENV infection in Ae. aegypti [63, 64].
The bacterium and the virus are hypothetically compet-
ing for host nutrients and thus providing the host with a
Wolbachia-mediated blocking phenotype.

The effect of Wolbachia infection on SCP-2 expression
was significant (Fig. 6; F(;) = 5.01, P = 0.035), with SCP-
2 expression slightly down regulated in wMel mosqui-
toes relative to WT. We also see a significant DENV
load effect on gene expression (Fig. 6; Fqy = 64.91,
P < 0.001). In this case, contrary to what we see in
AGO2 expression, SCP-2 levels are higher in those

individuals clustered into High DENV Load for both
WT and wMel-infected mosquitoes and hence the inter-
action was not significant (Additional file 1: Figure S4c;
Fio1y = 1.5, P = 0.087). This suggests that while SCP-2
may be a contributing factor to viral success in mosqui-
toes, its expression is not associated with variation in
wMel-mediated blocking.
For NOS, neither Wolbachia infection (Fig. 7;
= 048, P = 0.491) nor DENV load (Fig. 7, F3) = 1.3,
P = 0.267) had an effect on the gene’s expression. How-
ever, the interaction was significant (Fig. 7, F21) = 3.73,
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P < 0.001). The nature of the interaction is difficult to
interpret given the high level of variation in expression
between families particularly for the WT line (Fig. 7,
Additional file 1: Figure S4d). These data would suggest
that NOS expression is unlikely to be associated with
Wolbachia-mediated blocking.

Discussion

In this study we aimed to measure family level variation
present in the Wolbachia-mediated pathogen blocking
trait in mosquitoes infected with the wMel strain. To do
so, we performed a modified full-sib breeding design
that allowed us limit the contribution of environmental
variation to the trait but not completely remove it given
the maternal inheritance in Wolbachia. We were then
able to use families representing the phenotypic
extremes in blocking to test for correlations in gene
expression for a number of candidate genes for the basis
of the trait.

The experiments demonstrate that there is greater
variation in DENV loads in the wMel-infected mosqui-
toes compared to wildtype mosquitoes. The DENV loads
in extreme families of wMel mosquitoes spanned 45-fold
compared to the 5-fold difference seen for WT. DENV
infection success in WT mosquitoes is highly influenced
by genotype:genotype interactions between mosquito
and virus [17, 60, 65]. The greater variation in wMel
mosquitoes may stem from contributions from the
Wolbachia genome, as well environmental influences on
the symbiont, confounded with family. Variation in patho-
gen blocking due to differences in Wolbachia strains has
been demonstrated previously in Drosophila [66].

Studies that have examined phenotypic variation in
blocking in both Ae. aegypti and Drosophila also
show correlations between Wolbachia density and the
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strength of pathogen blocking [5, 11, 54, 66, 67].
Therefore, after determining the blocking phenotype
in the families, we also examined the variation in
Wolbachia load for the wMel-infected population. We
observed a high degree of variability in Wolbachia
levels among families. Within families this measure
will be confounded or inflated by Wolbachia’s near
perfect mode of vertical transmission. Wolbachia
loads in the carcass also correlated with pathogen-
blocking ability as predicted. While recent work from
our group suggested that Wolbachia loads in
particular tissues may not determine blocking
strength [68], our study reaffirms the relationship for
total Wolbachia loads.
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J

Wolbachia is currently being assessed for its capacity
to limit dengue virus transmission from mosquitoes to
humans in the field [12, 69, 70]. The long-term efficacy
of Wolbachia is not only reliant on the effective spread
of the symbiont in the population but also dependent on
the stability of expression of the blocking trait. Under-
standing how much variation and in particular genetic
variation there is for blocking and Wolbachia load is
critical. This is because populations can only adapt and
change if there is genetic variation present for the trait
of interest [71]. Blocking may be expected to vary across
genetically diverse mosquito populations, in response to
diverse viruses, over a range of environmental conditions
and with sufficient co-evolutionary time in response to
diverging Wolbachia strains. Given genetic variation in
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both host and symbiont we may be able to predict the
outcome of co-evolutionary pressures. Interestingly, dur-
ing a two-year period surveyed after release of the
Wolbachia strain wMel into wild populations, neither
host longevity nor DENV blocking showed evidence of
change [23, 72].

First, if high densities of Wolbachia confer better
blocking but those densities are detrimental to the host,
we may expect selection for reduced loads or lowered
maternal transmission rates. The detriment to the host
may come from the costs of producing an immune re-
sponse [73] or supporting a symbiont with complex
metabolic needs [46, 74]. Additionally, there may be dir-
ect effects of damage on infected cells and tissues. The
extreme form of this is demonstrated by the wMelPop
strain [75] that overgrows inside host cells and causes
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cell lysis, the result being shortened lifespan. While the
other strains of Wolbachia being developed for biocon-
trol, wMel and wAlB, do not appear to cause cellular de-
struction, they still induce an immune response and
spend a portion of their cellular resources on Wolbachia
[22, 39]. In the laboratory, these effects do not appear to
have substantial impacts on the insect’s reproductive
output [72, 76]. Lastly, modelling has demonstrated that
even with some negative fitness costs, the high maternal
transmission and CI of Wolbachia will help it remain in
populations [72].

Secondly, the impact of viral and other infectious
agents on the insect may select for stronger blocking.
Flaviviral infections can result in fitness costs for the
mosquito; in the case of DENV, both reduced fertility
and lifespan are affected [77]. Wolbachia-mediated
blocking would attenuate these potential fitness costs
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associated to a high viral infection, as infection rates are
lower in Wolbachia-infected mosquitoes and for those
that become infected, severity is reduced [23]. Therefore,
selection pressure for the blocking trait would be greater
in areas with a high incidence of DENV and other flavi-
viruses. Additionally, there may be protection of native
viruses [78] although it is unclear what impact these vi-
ruses have on host fitness if any. In D. melanogaster, the
symbiont does not appear to affect native viral diversity
[79]. Lastly, Wolbachia could protect against systemic
bacterial, fungal or other parasitic infections, encoun-
tered by insects in the field, the nature of which are very
poorly understood.

Using our extreme families with respect to DENV
blocking, we were able to test for correlations for several
candidate genes for the mechanism of blocking. Gene
expression is highly plastic and if the blocking trait was
reliant on Wolbachia-mediated modulation of some
genes, the phenotype of the trait could vary rapidly due
to co-evolution between Wolbachia and the mosquito
[80]. Gene modulation in response to the symbiont is
likely to be reduced greatly over time if the differences
between novelly and natively infected hosts are predict-
ive. For example, in Drosophila with long standing
Wolbachia associations, the immune response is negli-
gible [81]. We assessed genes involved in the humoral
responses (vir-1 and AGO2), intracellular lipid transport
(SCP-2) and nitrogen production (NOS). Interestingly,
AGO2 and SCP-2 showed a correlation between their
levels of expression and DENV load, which reaffirms
that they play a role in the viral infection. However,
neither are sufficient to explain Wolbachia-mediated
blocking of DENV infection [44]. The JAK/STAT ef-
fector vir-1 and NOS however, did not have patterns of
expression related to strength of pathogen blocking trait.
These data are in keeping with other studies [39, 53],
suggesting that the immune response to Wolbachia, par-
ticularly present in novelly infected hosts, cannot explain
a significant portion of blocking.

Several aspects of the study may limit its interpret-
ation. As detailed above, the inheritance pattern of
Wolbachia limits our ability to fully partition environ-
mental and genetic variances. It also leads to correla-
tions between DENV and Wolbachia loads in families.
Regardless of this, the approach was able to limit the
contribution of environmental influences by controlled
breeding and infection of mosquitoes. Additionally, the
approach used viral microinjection to infect mosquitoes
due to the constraints of blood-feeding compliance and
difficulties with obtaining disseminated infections in
wMel-infected mosquitoes due to pathogen blocking.
This method will not capture any of the variation in the
trait associated with the midgut as it is bypassed by in-
jection. However there is little evidence of strong
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Wolbachia loads in the midgut [68] and it is not clear if
this tissue contributes heavily to blocking. Also, we
tested for DENV load at a single time point post-
injection. Blocking phenotypes may vary with time, as
would gene expression profiles [82]. It is plausible, for
example, that gene expression levels for the candidate
genes peak immediately after blood-feeding or exposure
to the virus but decrease as soon as infection is estab-
lished and viral replication promoted. Moreover, we only
tested four candidate genes but for those that proved
significant, further experiments such as RNAi-based
knockdown or other gene modification techniques
should be performed in adult mosquitoes to further
elicit the contribution of both AGO2 and SCP-2 to
DENV infections.

Conclusions

In this study we demonstrated substantial variation in
Wolbachia-mediated DENV blocking in mosquitoes that
may spring from genetic contributions from both part-
ners and environmental influences on Wolbachia, not
controlled by family breeding. This suggests that the
Wolbachia-mediated blocking may have the opportunity
to evolve through time or be expressed differentially
across diverse environments. The long-term efficacy of
Wolbachia as a biocontrol tool will be dependent on the
stability of blocking. We suggest the use of genome wide
association studies to identify candidate genes that affect
blocking. While the confounding of Wolbachia inherit-
ance and environmental factors may lead to higher num-
bers of false positives, further functional testing using
genetic modification would allow the isolation of key
loci. Such broad genomic approaches offer the best
means for identifying candidate pathways in the mos-
quito and Wolbachia without any a priori assumptions
about how blocking might work. Understanding the
mechanism of blocking will be necessary for the success-
ful development of strategies [83] to counter the emer-
gence of evolved resistance or variation in its expression
under diverse conditions.

Methods

Mosquito collection

All Ae. aegypti mosquitoes collected from the field were
identified by morphology and later checked by qPCR
primer detection [12]. Two Ae. aegypti mosquito lines
were used in this study: wildtype (WT) and Wolbachia-
infected (wMel). WT are naturally Wolbachia free and
their eggs were collected outside the Eliminate Dengue
Wolbachia release zone [12] in greater Cairns, Australia,
whereas eggs from the transinfected line wMel were col-
lected from inside the same Wolbachia release zone and
reared in the lab for 13 generations prior to the start of
this study. Both lines were screened for presence/
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absence of Wolbachia infection using the same qPCR
methods. At every generation, wMel females were back-
crossed to 20% uninfected WT males within 3 genera-
tions of the field to limit differences in genetic
background while maintaining Wolbachia infection [24].

Mosquito rearing and family design

A modified full-sib [58, 59] breeding design was per-
formed independently in WT and wMel Ae. aegypti mos-
quitoes. After synchronized egg hatching, mosquitoes
were reared at a density of ~150 larvae in 30 x 40 x 8 cm
trays containing 3 | of RO water. Rearing was performed
under controlled conditions of temperature (26 + 2 °C),
humidity (~70%) and photoperiod (12:12, light:dark). Lar-
vae were fed fish food (Tetramin, Melle, Germany). After
pupation, males and females were sexed and transferred
separately to 30 x 30 x 30 cm cages to allow eclosion at a
density of ~450 individuals/cage. Adult mosquitoes were
fed a 10% sucrose water diet. Six to eight day-old adult fe-
males (P1) were group fed on human volunteers. A total
of 250 isofemale pairs containing a male and a blood-fed
virgin female were placed in small housings. Eggs laid by
isofemales on moist filter paper were collected every 2
days and dried uniformly for short-term storage. We
chose families that produced more than 25 eggs that did
not suffer from desiccation. F1 individuals from each fam-
ily were hatched in deoxygenated water and interbred to
increase the population number in F2. The experiment
was performed using 25 WT and 33 wMel independent
families that produced sufficient numbers of eggs.

Virus

All experiments were carried out with a dengue virus
serotype 2 strain (DENV-2, ET300) isolated from hu-
man serum collected from patients from East Timor
in 2000. The virus was propagated in cell culture as
described previously [84] before any experimental use.
C6/36 cells were grown in RPMI 1640 media (Life
Technologies, Carlsbad, CA, USA) and supplemented
with 10% heat-inactivated fetal bovine serum (FBS,
Life Technologies), 1% Glutamax (Life Technologies)
and 25 mM HEPES (Sigma-Aldrich, St. Louis, MO,
USA). Cells were maintained in a non-humidified in-
cubator at 25 °C. prior to injection, C6/36 cells were
grown to 70-80% confluence and ET300 infective vi-
rions were allowed to attach to the cells for 2 h,
washed and then maintained in 2% FBS media. Virus
was harvested at 7 dpi by collecting the cell culture
supernatant before centrifugation at 3200 rpm for
15 min at 4 °C. Viral stocks were stored in individual
aliquots at —80 °C until further use and titrated after
using plaque assays.
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Intrathoracic microinjections

DENV infected blood was injected to ensure uniformity
of dosage that cannot be obtained by blood-feeding. Ae-
des aegypti females were briefly anesthetized with CO,
and DENV was injected under a microscope using a
pulled glass capillary with a manual microinjector
(Nanoject II, Drummond Sci., Broomall, PA, USA).
Sixty-nine microlitres of diluted virus stock (~70 DENV
pfu) were delivered intrathoracically into every Ae.
aegypti female. After injection, mosquitoes were main-
tained under identical initial controlled conditions at
25 °C with 60% relative humidity, 12 h light/dark cycle
and feeding on a 10% sucrose solution.

Dissection of tissues

At 7-8 dpi, females were knocked down via CO, and
dissected in 1x phosphate buffered saline (PBS). Head,
midguts and carcasses were dissected for 5-15 females
per family. Dissecting needles were soaked in 80% etha-
nol between individual dissections to limit contamin-
ation. Different sets of needles were used for WT and
wMel dissections. Dissected tissues were immersed in
200 ul of TRIzol (Invitrogen, Carlsbad, CA, USA) in a
1.5 ml tube containing a 3 mm glass bead (Merck KGaA,
Darmstadt, Germany). Dissected samples were immedi-
ately placed on ice, lysed using a mini-beadbeater (BioS-
pec Products, Bartlesville, OK, USA), snap frozen and
stored at -80 °C until further processing. Any remaining
injected mosquitoes per family were collected, frozen
and stored at -80 °C as whole insects.

RNA/DNA extractions

Head and carcass samples were extracted using the man-
ufacturer’s protocol for TRIzol reagent (Invitrogen). Both
DNA and RNA phases were collected. RNA was quanti-
fied using a Synergy™ MX microplate reader (Biotek,
Winooski, VT, USA). All RNA samples were normalized
by diluting to an even concentration of 10 ng/ul prior to
analysis. Genomic DNA was stored at -80 °C, until sub-
sequent extraction with back extraction buffer (4 M
guanidine thiocyanate +50 mM sodium citrate +1 M
Tris pH = 8) according to the manufacter’s guidelines
for Trizol (Invitrogen).

DENV gRT-PCR and analysis

All qPCR assays were run on a LightCycler480 Instru-
ment (Roche Applied Science, Basel, Switzerland). One-
step quantitative RT-PCR (qRT-PCR) to detect DENV
titres was performed using TagMan Fast Virus 1-step
Master Mix (Roche Applied Science) in a total of 10 pl,
following manufacturer’s instructions. Standards and
samples were run in duplicate. Primer sequences used
for DENV detection can be found in Additional file 1:
Table S1. DENV qRT-PCR reactions were performed
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and run as described previously [44]. The number of
viral copies present in each sample was evaluated using
known standards [5]. The used standards ranged from
10® to 10 DENV fragment copies. The limit of detection
was set at 100 copies as the virus was consistently de-
tected at this level. Concentration of DENV in each
sample was extrapolated from the standard curve and
back calculated to DENV copies/ug of total RNA.

Analysis of genetic variance

Genetic variance and subsequent broad-sense heritabil-
ities (H?) for the focal traits (DENV and Wolbachia load)
were estimated using a modified full-sib breeding design
and the following random effects linear model:

zj =fi + & (1)

where z; is the trait value for the jth female from the
ith family, f; is the random effect of the ith family and ¢;
is the unexplained error. To test whether genetic vari-
ance was greater than zero, model (1) was compared to
a reduced model that had the family term omitted. A
likelihood ratio test was constructed where twice the dif-
ference in log likelihood between the full and reduced
models was contrasted with a Chi-squared distribution
with one degree of freedom [85]. All models were fit
using SAS version 9.3 (SAS Institute, Cary, NC, USA)
separately on the wildtype and wMel-infected groups.
Broad-sense heritability was calculated as twice the gen-
etic variance (0y,,,) divided by the total phenotypic
variance (0gmity + Oerror)-

Candidate gene expression

All carcass samples were retrotranscribed from RNA to
c¢DNA using the SuperScript III Reverse Transcriptase
kit (Invitrogen) containing 12.5 pl of RNA template, 1 pl
of random primers (RP, 125 ng/pl), 1 pl of deoxynucleo-
tides (ANTPs, 2.5 mM), dithiothreitol (DTT), 5x buffer
and enzyme as per kit instructions, totaling a volume of
20 ul. cDNA synthesis was performed in a C1000 Ther-
mal Cycler (Bio-Rad, Hercules, CA, USA) on the follow-
ing temperature profile: 5" at 65 °C followed by 10" at
25 °C, 50" at 50 °C, 10" at 75 °C and kept at 4 °C. Gene
expression levels were estimated using the SYBR™ Green
I Master (Roche Applied Science) with 1 pl of the previ-
ously synthesized c¢DNA, following manufacturer’s
instructions. All CT values were normalized to the
housekeeping Ae. aegypti RpSI17 gene [86], whose
expression was consistent in different samples and mos-
quito lines. Expression ratios were obtained using the
AACt method [87]. All primers for candidate genes are
listed in Additional file 1: Table S1.

Page 10 of 12

Wolbachia quantification

Wolbachia carcass densities were quantified after DNA
extraction using a set of wMel-specific primers amplify-
ing for the IS5 repeat element [88]. TagMan multiplex
qPCR was carried out following manufacturer’s protocol
(Roche Applied Science). The primers used can be found
in Additional file 1: Table S1. Wolbachia to RpS17
housekeeping ratios were calculated using the AACt
method [87].

Statistics and data analysis

All qPCR reactions throughout the study were run in
duplicate and samples that failed to amplify both times
were discarded as negative. Gene expression data were
analyzed using a generalized mixed model with a ran-
dom factor ‘Family’ nested with Wolbachia x DENV
load, with both ‘Wolbachia’ and ‘DENV load’ set as fixed
factors. Statistics were performed using IBM SPSS Statis-
tics (v.23) and GraphPad Prism 6.

Additional file

Additional file 1: Table S1. Primers and probes used for gPCR gene
detection. Gene IDs taken from VectorBase and UniProt. Figure S1. Head
DENV loads correlate with Carcass DENV loads. DENV loads in the head
were directly correlated to the same individual’s DENV loads in the
carcass using Pearson’s correlation. Each dot depicts an individual either
WT (blue, filled circles) or wMel-infected (green, filled squares). Figure S2.
Head DENV loads negatively correlate with Wolbachia loads. Individual
DENV loads were directly correlated to the same individual's Wolbachia
loads using Pearson’s correlation. Each square depicts an individual.
Figure S3. Wolbachia loads after viral injection. No significant differences
in Wolbachia levels were observed between media-injected mosquitoes
(black) and virus-injected mosquitoes (green). Figure S4. Interaction plots
on the expression of the four tested genes. Parallel lines show no-
interaction occurring between main effects DENV Load (High/Low) and
Wolbachia (+/-) (a, ¢). Non-parallel lines show strong interaction (b, d).
(PDF 512 kb)
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