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Trichinella spp. biomass has increased in
raccoon dogs (Nyctereutes procyonoides)
and red foxes (Vulpes vulpes) in Estonia
Age Kärssin1,2*, Liidia Häkkinen1, Enel Niin3, Katrin Peik1, Annika Vilem1, Pikka Jokelainen2,4,5 and Brian Lassen2,6

Abstract

Background: Raccoon dogs and red foxes are well-adapted hosts for Trichinella spp. The aims of this study were to
estimate Trichinella infection prevalence and biomass and to investigate which Trichinella species circulated in these
indicator hosts in Estonia.

Methods: From material collected for evaluating the effectiveness of oral vaccination program for rabies eradication in
wildlife, samples from 113 raccoon dogs and 87 red foxes were included in this study. From each animal, 20 g of
masseter muscle tissue was tested for the presence of Trichinella larvae using an artificial digestion method. The
Trichinella larvae were identified to species level by multiplex polymerase chain reaction method.

Results: The majority of tested animals were infected with Trichinella spp. The parasite species identified were T. nativa
and T. britovi. The apparent infection prevalence was 57.5% in raccoon dogs and 69.0% in red foxes, which were
higher than previous estimates. In addition, the larval burden had also increased in both hosts. We estimated that
in 2011–2012, the Trichinella spp. biomass was more than 15 times higher in raccoon dogs and almost two times
higher in red foxes than in 1992–2000 (based on mean larval burden), and almost 20 times higher in raccoon
dogs and almost five times higher in red foxes than in 2000–2002 (based on median larval burden).

Conclusions: Raccoon dogs and red foxes are relevant reservoirs for Trichinella spp. in Estonia. The biomass of
Trichinella circulating in sylvatic cycles was substantial and had increased: there is substantial infection pressure in
the sylvatic cycle.
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Background
Trichinella spp. are zoonotic parasitic nematodes trans-
mitted by carnivorism. Sylvatic Trichinella infections are
endemic in Estonia, a EU country located in north-eastern
Europe that is bordered by Latvia in the south and Russia
in the east [1–5]. For example, while anti-Trichinella anti-
bodies were not detected in the domestic pigs investigated
in our recent study, a substantial proportion of hunted
wild boars were Trichinella seropositive [5]. Assessment
of the sylvatic component and awareness about it are im-
portant because there is a risk of spill-over to domestic
animals and humans [5].

The raccoon dog (Nyctereutes procyonoides) is a suit-
able indicator species and well-adapted reservoir host
for all four Trichinella species circulating in Europe, and
the red fox (Vulpes vulpes) particularly for T. spiralis
and T. britovi [4, 6–10]. The invasive raccoon dog [11],
and the native red fox are common and numerous syl-
vatic carnivores in Estonia [12]. A total of 12,577 rac-
coon dogs and 7144 red foxes were hunted in Estonia
during the hunting season 2011–2012 [13].
The most recent epidemiological data on Trichinella

infections in raccoon dogs and red foxes in Estonia were
based on material collected in 2000–2002 [4]. The appar-
ent prevalence of Trichinella spp. was 42.0% in raccoon
dogs and 40.6% in red foxes, which did not differ signifi-
cantly from estimates from 1992 to 2000 [14]. In both
earlier studies, T. nativa and T. britovi were identified in
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the target hosts. Our study aimed to update the Trichi-
nella infection prevalence estimates in raccoon dogs and
red foxes in Estonia and to identify the Trichinella species
causing the infections. We compared the findings with the
two previous estimates and with those reported from
other European countries and estimated how the biomass
of Trichinella has changed in Estonia.

Methods
For the evaluation of the effectiveness of the oral vaccin-
ation program for rabies eradication in wildlife [15],
head samples from 1214 raccoon dogs and 625 red foxes
were collected from whole Estonian territory (average
density 4.3 animals per 100 km2) from August 2011 to
March 2012. The animals sampled were apparently healthy
hunted animals, rabies indicator animals killed due to ab-
normal behavior near human settlements, and animals
killed in traffic or found dead. We could investigate muscle
samples from 200 of these heads (113 raccoon dogs and
87 red foxes), which was evaluated to be a sufficient
sample size to estimate the infection prevalence with
80% confidence level.
To obtain a geographically representative sample for

this study, the number of samples from each county was
adjusted according to the surface area of the county, and
a random sample was drawn from the samples available
from there. Data on the estimated age (less than 1 year
old = juvenile, at least 1 year old = adult) and gender of
each animal had been collected on the submission forms.
Age group was unknown for 31 animals and gender for 69
animals.
The samples were kept refrigerated until analysis, but

few samples were or could have been frozen (n = 3 from
raccoon dogs and n = 2 from foxes arrived frozen). From
each animal, 20 g of masseter muscle tissue was analyzed
for the presence of Trichinella spp. larvae using the Euro-
pean Union reference method, i.e. magnetic stirrer method,
for artificial digestion [16]. The mean time between sam-
pling and digestion was ten days (range: 1–92 days).
Larvae from each positive sample were evaluated mor-

phologically and then counted, rinsed with water, col-
lected, and stored in ethanol at room temperature until
identification to species level. The species of Trichinella
were identified using a previously described multiplex
polymerase chain reaction method [17].
The sample size assessment and preliminary statistical

calculations were done with OpenEpi software [18]. The
confidence intervals (CI) of the prevalence estimates
were calculated using Mid-P exact. Comparisons with
the prevalence estimates, by host species and Trichinella
species, from other European countries and previous
Estonian studies were done using two by two tables.
Two-tailed P-values (Mid-P exact) < 0.05 were consid-
ered statistically significant.

Logistic regression models were built with STATA 13.0
(Stata Corporation, College Station, Texas, USA) software
for three outcomes: testing positive for Trichinella spp.,
testing positive for T. nativa, and testing positive for T.
britovi. The variables we evaluated were ‘host species’
(raccoon dog or red fox), ‘age’ (juvenile or adult), ‘gender’
(female or male), ‘county’ (the 15 counties included as
dummy variables i.e. allocated numbers that do not in-
dicate any particular order), and ‘cause of death’ (whether
the animal had been hunted, killed due to abnormal be-
havior, killed in traffic, or found dead). The variables
with P-value ≤ 0.25 in univariable analysis were in-
cluded in a multivariable model, followed by a stepwise
backward elimination of those with P ≥ 0.05 that did
not act as confounders.
Trichinella spp. biomass was quantitatively estimated

for 1000 host animals and for the hunting bag, using
estimate of weight of the host, estimate of proportion
of muscle of the host weight (based on information avail-
able for small mammals of similar size), point estimate of
Trichinella spp. prevalence, and mean or median larvae
per gram of muscle tissue.

Results
The majority (62.5%, 125/200, 95% CI: 55.6–69.0) of the
animals tested were infected with Trichinella spp. (Table 1).
The apparent Trichinella spp. infection prevalence was
57.5% (65/113, 95% CI: 48.3–66.2) in raccoon dogs and
69.0% (60/87, 95% CI: 58.6–77.7) in red foxes. The
prevalence was not significantly higher in red foxes
than in raccoon dogs.
The Trichinella species present were successfully identi-

fied from 80.8% of the animals that had larvae (Table 1).
The success rate of Trichinella species identification was
82.7% (91/110, 95% CI: 74.8–89.0) from larvae from sam-
ples that were digested within the recommended 21 days
after sampling [9], and 66.7% (10/15, 95% CI: 40.8–86.6)
from samples stored longer. However, the difference was
not significant.
The presence of two sylvatic species, T. nativa and T.

britovi, was confirmed (Table 1). Trichinella nativa was
detected as the only species present or in mixed infec-
tions in 31.9% of raccoon dogs and 31.0% of red foxes,
and T. britovi was detected as the only species present
or in mixed infections in 24.8% of raccoon dogs and
35.6% of red foxes. Of those animals that hosted Trichi-
nella spp. larvae that were determined to the species
level, T. nativa was detected as the only species present
or in mixed infection in 70.6% of raccoon dogs and
54.0% of red foxes. Of those animals that hosted Trichi-
nella spp. larvae that were determined to the species
level, T. britovi was detected as the only species or in
mixed infection in 54.9% of raccoon dogs and 62.0% of
red foxes. The prevalence of mixed infections had
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increased in red foxes from the estimate of the previous
Estonian study (Table 3) [4].
The apparent Trichinella spp. infection prevalences es-

timated from the samples from 2011 to 2012 were
higher than those from 2000 to 2002 in both raccoon
dogs and red foxes (Tables 2 and 3) [4]. Moreover, the
prevalence estimated from samples from 2011 to 2012
was higher than the one from 1992 to 2000 in red foxes;
however, the estimate from 2011 to 2012 did not differ
significantly from the estimate from 1992 to 2000 in rac-
coon dogs (Tables 2 and 3) [14].
The number of Trichinella spp. larvae recovered per

gram muscle tissue (lpg) was higher in raccoon dogs
(median: 98.0, mean: 161.1, range: 0.1–800.0 lpg) than in
red foxes (median: 8.2, mean: 48.0, range: 0.1–636.8 lpg),
and varied by Trichinella species (Table 1). The highest
larval burden, 800 lpg, was detected in a raccoon dog
with mixed infection.
The median larval burden had increased in both rac-

coon dogs and red foxes from those reported in the pre-
vious study: from 7.2 lpg to 98.0 lpg in raccoon dogs
and from 3.0 lpg to 8.2 lpg in red foxes [4]. Furthermore,
the proportion of animals with low larval burden (< 1
lpg) had decreased from 18.1% to 7.7% in raccoon dogs,
and from 23.7% to 11.7% in red foxes, further indicating
that the circulating parasite biomass of Trichinella lar-
vae had increased [4]. The Trichinella spp. biomass was
estimated to have increased 18.6-fold in raccoon dogs
and 4.6-fold in red foxes (based on median larval bur-
den) (Table 4).
Trichinella nativa was not detected in samples from

the large islands Saaremaa and Hiiumaa, nor the most
southeastern county Võrumaa, while T. britovi was
found in samples collected from all counties (Fig. 1).
None of the variables were significant factors for test-

ing positive for Trichinella spp. in either of the hosts
nor in both hosts together. The final model for testing
positive for T. nativa had two variables, ‘age’ and ‘county’,
and the area under the receiver operating characteristic
(ROC) curve was 0.72. The odds of testing positive for
T. nativa were 3.6 times (P = 0.009, 95% CI: 1.4–9.3)
higher in adults than in juveniles, and higher in counties
Põlvamaa and Pärnumaa when compared with Harjumaa
where the capital is located (P = 0.009, OR = 15.2, 95%
CI: 2.0–117.3, and P = 0.029, OR = 7.6, 95% CI: 1.2–47.1,
respectively). The final model for testing T. britovi posi-
tive included only the variable ‘county’, and the area
under the ROC curve was 0.68. The odds of an animal
testing T. britovi positive were higher in the counties
Valgamaa, Saaremaa, Läänemaa, and Pärnumaa (P = 0.019,
OR = 16.8, 95% CI: 1.6–176.2; P = 0.023, OR = 14.0,
95% CI: 1.4–137.3; P = 0.040, OR =11.7, 95% CI: 1.1–
122.4; and P = 0.043, OR = 9.7, 95% CI: 1.1–87.4, respect-
ively) than in the reference county Harjumaa.

Discussion
We summarized the results of European studies on Tri-
chinella spp. infection prevalence in raccoon dogs
(Table 2) and red foxes (Table 3). Lower prevalences
than our estimate from Estonia have been observed in
both hosts in Finland, Latvia, Lithuania, Poland and
Germany (Tables 2 and 3) [19–26]. Moreover, in red foxes,
the Trichinella spp. infection prevalence was higher in
Estonia than what has been reported in Austria, Belgium,
Denmark, France, Great Britain, Hungary, Italy, Ireland,
Netherlands, Norway, Northern Ireland, Portugal, Romania,
Serbia, Slovakia, Spain and Switzerland (Table 3) [26–56].
However, as different sampling schemes, sample sizes,
sample material, and detection methods were used, these
studies are not all directly comparable with our study.
In Europe, according to the International Trichinella

Reference Centre [57], the northern species T. nativa
has been found in raccoon dogs in Estonia, Finland,
Latvia, Russia, and Sweden; and in red foxes in Estonia,
Finland, Germany, Latvia, Norway, Poland, Sweden and
Ukraine. The published studies on T. nativa in raccoon
dogs and red foxes report lower prevalences (single and
mixed infections included) in Latvia, Lithuania and
Norway than our estimate from Estonia [4, 22, 42]. In
Poland and Germany, T. nativa has been found in red
foxes (Table 3) [20, 21, 24–26]. When comparing the
result of our study with that from the previous Estonian
study, the T. nativa infection prevalence had increased in
both raccoon dogs and red foxes (Tables 2 and 3) [4].
In Europe, T. britovi has been found in raccoon dogs

in Estonia, Finland, Germany, Latvia and Lithuania
(Table 2) [4, 57]. It is the most common Trichinella spe-
cies in red foxes in Europe [10]. The prevalence of T.
britovi we observed in raccoon dogs in single and mixed
infections was similar to that reported from Lithuania,
lower than that from Latvia, and higher than those from
western Poland and Germany (Table 2) [4, 21, 22, 24].
The prevalence of T. britovi we observed in red foxes,
including both single and mixed infections, was higher
than those reported from Austria, France, Hungary,
Norway, Poland, Portugal, Romania, Serbia, Slovakia and
Switzerland (Table 3) [21–24, 32, 33, 45–48, 50, 54–56].
A similar to our prevalence estimate for T. britovi was
detected in red foxes in Latvia [22]. When comparing the
result of our study with that from the previous Estonian
study, the T. britovi infection prevalence had increased in
red foxes (Table 3) [4]. Moreover, mixed infections were
more common in our study than what was observed in rac-
coon dogs and red foxes in the neighboring country Latvia
and in red foxes in Lithuania (Tables 2 and 3) [4, 22].
In this study, the odds of being Trichinella-infected

were not significantly different in raccoon dogs and red
foxes, whereas the mean larval burden was 3.2 times
higher in raccoon dogs than in red foxes. In Latvia, red
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foxes had higher odds to test positive (P = 0.010, OR =
1.41, 95% CI: 1.08–1.83) than raccoon dogs, but raccoon
dogs had 2.9 times higher mean larval burden than red
foxes [22]. In Finland, both indicators were higher in
raccoon dogs than in red foxes (P < 0.001, OR = 1.70,
95% CI: 1.35–2.14; 3.8 times higher mean larval burden)
[19]. A higher larval burden in raccoon dogs than in red
foxes has also been described in other studies [4, 8].
Despite the fact that we used 20 g of tissue for the di-

gestion, our study likely underestimated the actual in-
fection prevalence and larval burdens, because the
available material was not optimal for finding Trichi-
nella larvae [9, 58, 59]. In experimentally infected rac-
coon dogs, the T. nativa larval density in masseter
muscle was about half of that in foreleg muscles [58].

The storage conditions and transport time could also
affect the results [29, 40, 60].
The high Trichinella infection prevalence in raccoon

dogs and red foxes, as well as the overall circulation of
the parasites in the sylvatic cycle, may be supported by
human behavior. For example, the local hunters use car-
casses of hunted raccoon dogs as baits [61], which might
help the transmission. According to winter tracking index
and hunters’ estimations, after the rabies vaccination pro-
gram started in 2005 [62], the red fox population size first
increased, with a peak in 2009–2010, and then decreased
[12]. The raccoon dog population size has increased since
the second half of last century [62] and has relatively sta-
bilized after 2011–2012 [12]. These changes are also
reflected in the increased hunting bag sizes [13] and may

Table 4 Calculation of the change in Trichinella spp. biomass in raccoon dogs and red foxes in Estonia

Raccoon dog Red fox Reference

Hunting bag 1995, n animals 1723 3326 [67]

Hunting bag 2001, n animals 4259 6628 [67]

Hunting bag 2011, n animals 12,577 7144 [13]

With Trichinella larvae (%)

1992–2000 45.5 42.9 [14]

2000–2002 42.0 40.6 [4]

2011–2012 57.5 69.0 Present study

Mean body weight of host, g 4830 4890 [68, 69]

Muscle tissue of body weight, % 60 60 [70]

Median (mean) Trichinella lpg

1992–1996 nd (13.4) nd (43.1) [2]

2000–2002 7.2 (nd) 3.0 (nd) [4]

2011–2012 98.0 (161.1) 8.2 (48.0) Current study

Trichinella biomass 1992–2000, median (mean) n larvae

in 1000 animals nd (17,669,106) nd (54,249,367)

in the hunting baga nd (30,443,870) nd (180,433,393)

Trichinella biomass 2000–2002, median (mean) n larvae

in 1000 animals 8,763,552 (nd) 3,573,612 (nd)

in the hunting bagb 37,323,968 (nd) 23,685,900 (nd)

Trichinella biomass 2011–2012, median (mean) n larvae

in 1000 animals 163,302,300 (268,448,985) 16,600,572 (97,174,080)

in the hunting bagc 2,053,853,027 (3,376,282,884) 118,594,486 (694,211,628)

Increase in Trichinella biomass from 1992 to 2000 to 2011–2012, calculated from median (mean) n larvae

in 1000 animals nd (15.2-fold) nd (1.8-fold)

in the hunting bag nd (110.9-fold) nd (3.8-fold)

Increase in Trichinella biomass from 2000 to 2002 to 2011–2012, calculated from median (mean) n larvae

in 1000 animals 18.6-fold (nd) 4.6-fold (nd)

in the hunting bag 55.0-fold (nd) 5.0-fold (nd)

Abbreviations: nd, no data; lpg, larvae per gram of muscle tissue
an larvae = n animals 1995 × % with larvae 1992–2000 × (mean body weight of host, g × muscle tissue of body weight, %) × median (mean) lpg (1992–1996)
bn larvae = n animals 2001 × % with larvae 2000–2002 × (mean body weight of host, g × muscle tissue of body weight, %) × median (mean) lpg (2000–2002)
cn larvae = n animals 2011 × % with larvae 2011–2012 × (mean body weight of host, g × muscle tissue of body weight, %) × median (mean) lpg (2011–2012)
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have relevance beyond simply higher numbers. There was
an association between the abundance index of raccoon
dogs and the proportion of Trichinella-infected raccoon
dogs and red foxes in Finland [19].
Estonia is located in the transition zone of maritime

and continental climate [63]. The coldest months with mean
air temperature below zero are December to February [64].
According to data covering these three months from six
weather stations located in Harjumaa, Lääne-Virumaa,
Pärnumaa, Saaremaa, Tartumaa and Võrumaa, the mean
number of days with snow cover was 12.7% (from 4% in
Pärnumaa to 26% in Saaremaa) higher in 2002–2011 than
in 1992–2001 (data received on request from Estonian
Environment Agency). The snow cover could reduce
the destructive effect of freezing-thawing cycles on

carcasses of infected animals and thus facilitate survival
of Trichinella larvae [65, 66].
Raccoon dogs and red foxes act as reservoir hosts for

Trichinella spp. in the sylvatic cycle, where the infection
can spread to game animals, such as wild boars, that are
hunted for human consumption. The Trichinella sero-
prevalence in wild boars is high in Estonia [5], and the
odds of testing Trichinella-seropositive were higher if
the wild boar was hunted in certain counties, including
Pärnumaa and Saaremaa, when compared with Harjumaa.
In this study, a similar comparison was made, with Harju-
maa as the reference county. Raccoon dogs and red foxes
had higher odds to test T. nativa positive in Pärnumaa,
whereas the odds to test T. britovi positive were higher in
Pärnumaa and Saaremaa. Moreover, the highest larval

Fig. 1 Trichinella spp. in raccoon dogs (Nyctereutes procyonoides) (a) and red foxes (Vulpes vulpes) (b) in 2011–2012 in Estonia, by counties. Key: yellow
dot, T. britovi; green dot, T. britovi + T. nativa; blue dot, T. nativa; grey dot, Trichinella spp. (no species-level result); black dot, no larvae detected
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burden was detected in a young raccoon dog from Pärnu-
maa. This raccoon dog had a mixed infection. These two
counties could thus be interesting for further studies.
We estimated that in 2011–2012, the Trichinella spp.

biomass was more than 15 times higher in raccoon dogs
and almost two times higher in red foxes than in 1992–
2000 (based on mean larval burden), and almost 20
times higher in raccoon dogs and almost five times
higher in red foxes than in 2000–2002 (based on median
larval burden) (Table 4). Using the increased hunting
bag in the calculation as an indication of increased
population size or as an indication of biomass removed
from the circulation by hunting, the role of these hosts
as reservoirs was clearly illustrated (Table 4). The wide-
spread distribution of Trichinella infections in Estonian
wildlife underlines that there is a high infection pressure
within the eastern European sylvatic cycles. Moreover,
the results of this study indicate that there is an increase
in the infection pressure. Trichinella spp. thrive in
Estonia, and there is a continuous risk of spill-over to
domestic animals and humans.

Conclusions
In Estonia, the proportion of both raccoon dogs and red
foxes that hosted Trichinella were higher than ten years
earlier. In addition, the larval burdens had also increased
in these hosts, and an increased biomass of Trichinella
larvae was circulating in sylvatic cycles. Trichinella nativa
and T. britovi were found in both host species. There is a
substantial and increasing Trichinella infection pressure
to the food chains and humans.
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