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Abstract

Piroplasmids are tick-borne protozoan parasites that infect blood cells (erythrocytes, lymphocytes or other
leukocytes) or endothelial cells of numerous wild and domestic vertebrates worldwide. They cause severe disease
in livestock, dogs, cats, wild mammals and, occasionally, in humans. Piroplasmid infections are prevalent in wild
carnivores worldwide although there is limited information about their clinical and epidemiological importance.
There are currently nine recognized species of Babesia, two of Theileria, two of Cytauxzoon and one of Rangelia
infecting captive and wild carnivores, including members of Canidae, Felidae, Mustelidae, Procyonidae, Ursidae,
Viverridae, Hyaenidae and Herpestidae in the Americas, Eurasia and Africa. However, the number of piroplasmid
species is likely higher than currently accepted due to the reported existence of DNA sequences that may
correspond to new species and the lack of studies on many host species and biogeographical areas. Indeed, many
species have been recognized in the last few years with the advancement of molecular analyses. Disease and mortality
have been documented in some wild carnivores, whereas other species appear to act as natural, subclinical reservoirs.
Various factors (e.g. unnatural hosts, stress due to captivity, habitat degradation, climate fluctuation or
immunosuppression) have been associated with disease susceptibility to piroplasmid infections in some species in
captivity. We aimed to review the current knowledge on the epidemiology of piroplasmid infections in wild carnivores
and associated tick vectors. Emphasis is given to the role of wild carnivores as reservoirs of clinical piroplasmosis for
domestic dogs and cats, and to the importance of piroplasmids as disease agents for endangered carnivores.
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Background
The incidence and diversity of tick-borne infections in
humans and animals have increased in recent years due
to several factors. These factors include the existence of
better diagnostic tools; increased awareness among the
scientific community, veterinarians, physicians and pub-
lic health authorities; increased contact of humans with
wildlife and vectors (urbanization and habitat encroach-
ment); and changes in the environment, such as global

climate change [1, 2]. These factors have increased the
probabilities of contact with ticks and/or sylvatic reser-
voir hosts [3].
Piroplasmoses are among the most prevalent arthropod-

borne diseases of animals. Piroplasmoses are caused by
hemoprotozoan parasites of the phylum Apicomplexa be-
longing to four related genera: Babesia, Theileria, Cytaux-
zoon and Rangelia [3]. Piroplasmids owe their name to the
pear-shaped (pyriform) intracellular stages formed in the
host erythrocytes [4]. These parasites have a great eco-
nomic, veterinary and medical impact worldwide. In fact,
they are considered to be the second most commonly
found parasites in the blood of mammals after trypano-
somes [5], and are frequently found infecting free-living
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animals worldwide. Thus, they have gained increasing at-
tention as emerging tick-borne diseases [3].
Classification of piroplasmids has largely relied on

morphological and biological observations [3, 6].
Formerly, they were classified by: (i) the size and shape
of trophozoites in the erythrocytes; (ii) the number of
merozoites; and (iii) the host of origin. According to
their size, piroplasmids were classified into small and
large piroplasmids (mainly in the genus Babesia). On
the other hand, identification based on host origin was
based on the believe that these parasites were strongly
host-specific, but this assumption is not longer valid be-
cause this is not the case for many species [3, 4, 7, 8].
The sole use of direct observations of blood smears does
not allow species identification and molecular tech-
niques are needed [7, 9]. Thus, some of the early de-
scriptions and identifications of piroplamid species were
inadequate and did not meet today’s standards. For this
reason, only identifications using molecular techniques
are reviewed in the present manuscript.
Currently, according to the molecular characterization

of multiple gene targets (chiefly 18S rRNA and β-tubulin
gene sequences), piroplasmids should be divided into at
least five groups: (i) archaeopiroplasmids or Microti
group, including small Babesia from wild rodents, felids,
canids, and other mammals such as hyaenids and pro-
cyonids; (ii) prototheilerids or Duncani group, compris-
ing small piroplasmids of cervids, dogs and humans
from USA; (iii) babesiids, including primarily canine, bo-
vine, and cervine species; (iv) unguilibabesiids, including
primarily bovine, equine, and ovine species; and (v) thei-
leriids, including the genus Theileria and Cytauxzoon
[3, 5, 6, 10]. Rangelia vitallii is placed in the clade
“Babesia (sensu stricto)” [11].
In the last few years, there has been a dramatic in-

crease in the number of studies reporting infection with
piroplasmids in wildlife. The objective of this paper is to
review the current knowledge on the epidemiology of
piroplasmid infections in wild carnivore hosts and asso-
ciated tick vectors. Emphasis is given to the role of wild
carnivores as reservoirs of clinical piroplasmosis for do-
mestic dogs and cats, and to the importance of piroplas-
mids as disease agents for endangered carnivores.

Natural history of piroplasmids
Although piroplasmoses are among the most relevant
diseases of wild and domestic animals [7, 10], many
questions remain unsolved concerning their epidemi-
ology and life-cycles. These include questions regarding
their phases in the ixodid tick vector as well as the verte-
brate host, especially with regard to wildlife [12]. It is
known that piroplasmids are maintained in a complex
system of vectors and animal reservoirs, and infection of
the mammalian host often takes place via the bite of the

invertebrate vector, usually ticks [4, 13, 14]. While the
tick is feeding, sporozoites are released from its salivary
glands and enter the blood stream of the vertebrate host
[8, 13]. Parasites then attach to and are endocytosed by
erythrocytes (Babesia spp.), or initially penetrate into
lymphocytes [13] or other leukocytes [15] (Theileria
spp.), or macrophages, histiocytes, reticuloendothelial
cells and/or endothelial cells (Cytauxzoon spp. and R.
vitalii) [16, 17]. This is followed by an intraerythrocytic
cycle [4] or intraleukocyte cycle, e.g. in some Theileria
spp. [18]. Once parasites are in the erythrocytes or leu-
kocytes, they undergo asexual reproduction and merog-
ony, and the daughter cells can infect new cells. A naïve
tick then ingests infected erythrocytes. It is unclear
whether the transformation from merozoite to gamete
(gametocyte) begins in the vertebrate host or in the
tick [14]. In the tick midgut, the sexual phase of
reproduction occurs when the gametes fuse to form a
zygote. The zygote invades the epithelial cell of the tick
gut, and an asexual form of reproduction, sporogony, oc-
curs. The resultant forms, ookinetes, leave the epithelial
cell and invade either the salivary gland or the ovary of the
tick, where they participate in transstadial and transovarial
transmissions [4, 5, 8, 11, 14].
Tick bites appear to be the primary manner of trans-

mission for piroplasmids. However, other forms of trans-
mission have been described for some piroplasmid
species. For example, direct dog-to-dog transmission for
B. gibsoni is highly likely and may be the main mode of
transmission in some geographical regions such as
Australia [19], North America [20–22] and Europe [23,
24]. Vertical transmission is also possible by transplacen-
tal infection of pups by B. gibsoni [25] and B. canis [26]
in dogs from Asia. Another route of direct transmission
in human babesiosis by B. microti, is through blood
transfusion in North America [27]. On the other hand,
experimental transmission of Babesia spp. from domes-
tic to wild animals is usually only successful in closely
related species or after splenectomy [8, 28].

Description of piroplasmid species and prevalence of
infection in wild carnivores
In the past few years, important advances have been
achieved in the detection and identification of piroplasmids
infecting wild carnivores. A wide variety of carnivore spe-
cies have been reported to be infected with and/or exposed
to piroplasmids, including members of the families Cani-
dae, Felidae, Mustelidae, Procyonidae, Ursidae, Viverridae,
Hyaenidae and Herpestidae (Fig. 1; Tables 1 and 2).
Historically, the presence of piroplasmid species in

wild carnivores was believed to be an incidental finding
unrelated to disease and was described under other gen-
eric names, e.g. Piroplasma, Nuttalia and Nicollia, to
name a few. This was due to the fact that the diagnosis
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was based solely on morphology [8, 29]. The first piro-
plasmid reported in a wild canivore received the name
of Babesia herpestidis because it was observed in a blood
smear of an Egyptian mongoose (Herpestes ichneumon)
caught in Lisbon in 1908 [30]. Intracellular pyriform
structures in the erythrocytes, 1.5 to 1.8 μm in length,
which differed from those described thus far in horses
and deers, were noted [30]. However, as mentioned pre-
viously, species descriptions of older findings based on
morphology alone are most likely unreliable. Currently,
with a lack of reference material, it is almost impossible
to identify many of these piroplasmids with some degree
of accuracy. Therefore, in the present review, we relied
only on molecular identification of piroplasmid species
classified as Babesia spp., Theileria spp., Rangelia spp.,
and Cytauxzoon spp., without taking into account de-
scriptions made on the basis of morphology alone. With
this criterion, there are currently nine recognized species
of Babesia, two of Theileria, two of Cytauxzoon, and
one of Rangelia infecting wild carnivores worldwide.

Babesia spp.
Infection by Babesia spp. has been reported in 33 carni-
vore species belonging to eight families in Europe,

Africa, America and Asia (Table 1). Serological evidence
of exposure has been reported in ten additional species.
Taking into account studies with representative sample
sizes, reported molecular prevalences of Babesia spp. in-
fection vary widely between 0.5–100 % depending on the
species and location (Table 1). Babesia spp. infections by
means of direct diagnosis techniques such as blood
smear examination have been described for several
carnivore species [30–41]. These descriptions of Babesia
species are insufficient and do not meet today’s accepted
standards. Then, taking into account molecular diagno-
sis, infections with nine species of Babesia have been
reported thus far: B. canis, B. rossi and B. vogeli, most
commonly in canids; B. leo, B. felis and B. lengau in
felids; the piroplasmids belonging to the B. microti-like
group ("Theileria annae"; “Spanish dog isolate”; Babesia
cf. microti; "Babesia vulpes") that commonly infect some
species of wild canids; and two potentially new species,
named Babesia NV-1 in the American mink Neovison
vison and Babesia UR1 in the Hokkaido brown bear
(Ursurs arctos yesoensis), both in Japan (Table 1). In
addition to those, it has been proposed that more than
one species of Babesia may parasitize the raccoon (Procyon
lotor). Before the molecular era, this agent was named

Fig. 1 Distribution map of piroplasmid infection in wild carnivores worldwide. (1) High prevalence of Babesia microti-like group in red foxes
(Vulpes vulpes) in Europe suggests that this species may be acting as a sylvatic reservoir for these species, or may even be the natural host of the
parasite. (2) A canine distemper epidemic among Serengeti lions (Panthera leo) was associated with high levels of Babesia during the 1994 and
2001 outbreaks. (3) Raccoons (Procyon lotor) in USA and Japan may be uncontrolled reservoirs of Babesia sp. and may also participate in
the dynamics of human babesiosis caused by B. microti as dispersors of infected ticks. (4) Bobcats (Lynx rufus) and probably (5) cougars (Puma
concolor) are the reservoirs of Cytauxzoon felis in North America. (6) The Iberian lynx (Lynx pardinus) is a natural host for Cytauxzoon spp. in the
Iberian Peninsula, but due to its reduced population size cannot be considered a relevant reservoir of the parasite. (7) Brazilian wild felids, such as
the jaguar (Panthera onca), may also be natural hosts for Cytauxzoon sp. because infection is never related to the presence of clinical signs. (8)
Pallas's cats (Otocolobus manul) imported into Oklahoma from Mongolia were found to be infected with intraerythrocytic piroplasms, and DNA
sequencing revealed a novel organism, Cytauxzoon manul. (9) A meerkat population in South Africa was found to be frequently infected with
Babesia and Cytauxzoon without showing signs of disease. (10) An Asiatic wildcat (Felis silvestris ornata) was found suffering from clinical signs
of cytauxzoonosis in Iran
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Table 1 Molecular and serological studies performed on Babesia spp. and Theileria spp. infections in wild carnivores

Host Reported prevalence Targeted
agent

Country/Region Sample
origin

Observation Reference

% (positive/
n)

Technique

Canidae

Bush dog (Speothos venaticus) 29.0 (8/27) IFAT Babesia sp. Brazil Z [66]

Coyote (Canis latrans) 0/12 PCR B. microti-likea USA W [63]

Crab-eating fox (Cerdocyon thous) 5.0 (2/39) IFAT Babesia sp. Brazil Z [66]

Fennec fox (Vulpes zerda) (1/11) PCR Babesia sp. North Africa W [126]

Golden jackal (Canis aureus) 0/32 PCR Babesia sp. North Africa W [126]

Grey fox (Urocyon cinereoargenteus) 26.0 (8/31) PCR B. microti-like USA W [63]

Hoary fox (Pseudolopex vetulus) 0/7 IFAT Babesia sp. Brazil Z [66]

Maned wolf (Cerdocyon brachyurus) 0/21 IFAT Babesia sp. Brazil Z [66]

Pale fox (Vulpes pallida) 4.0 (1/28) PCR Babesia sp. North Africa W [126]

Racoon dog (Nyctereutes procyonoides) (3/14) PCR B. microti-like South Korea W Emaciated. One with severe tick infestation [62]

Red fox (Vulpes vulpes) 1.1 (1/91) PCR B. canis Portugal W [53]

0.7 (1/138) PCR Babesia sp. Northeastern Poland W [63]

0/13 PCR B. microti-like Sicily, Italy W [127]

0/16 PCR Babesia sp. North Africa W [126]

0.8 (1/119) PCR B. canis Bosnia W [58]

50.0 (10/20) PCR B. microti-like Spain W [128, 129]

(1/2) PCR B. microti-like Italy W [130]

(1/5) PCR B. microti-like Spain W [55]

37.0 (58/
158)

PCR B. microti-like USA W [63]

(1/1) PCR B. microti-like Prince Edward Island,
Canada

W Weakness, anemia, non-suppurative meningoencephalitis,
bronchopneumonia and vacuolar hepatopathy

[64]

5.2 (10/191) PCR B. microti-like Croatia W [59]

0.5 (1/191) PCR B. microti-like Croatia W [59]

69.2 (63/91) PCR B. microti-like Portugal W [53]

50.0 (18/36) PCR B. microti-like Austria W [56]

46.0 (121/
261)

PCR B. microti-like Thuringia, Germany W Carcasses with high infestations of ticks [60]

0.98 (2/205) PCR B. microti-like Italy W [12]

20.0 (81/
404)

PCR B. microti-like Hungary W [57]
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Table 1 Molecular and serological studies performed on Babesia spp. and Theileria spp. infections in wild carnivores (Continued)

31.9 (38/
119)

PCR B. microti-like Bosnia W 9.2 % co-infection with Hepatozoon canis; one fox
co-infected with B. canis and H. canis

[58]

(2/12) PCR B. microti-like Catalonia, Spain W One fox co-infected with Coxiella burnetti [83]

14.6 (46/
360)

PCR B. microti-like W/R [131]

Ruppell fox (Vulpes rueppellii) 0/11 PCR Babesia sp. North Africa W [126]

Side-striped jackal (Canis adustos) 0/2 PCR Babesia sp. North Africa W [126]

Wild dog (Lycaon pictus) 5.3 (16/301) PCR B. rossi South Africa W [132]

0/11 PCR Babesia sp. Zambia W Co-infection with Hepatozoon sp. [109]

Wolf (Canis lupus) 0/7 PCR B. microti-like Italy W [12]

0/3 IFAT Babesia sp. Brazil Z [66]

(2/12) PCR B. canis Budapest, Hungary R Good body condition. Necropsy with severe jaudice,
liver, gall bladder and spleen enlarged

[106]

0/7 PCR Babesia sp. Italy W [12]

Ursidae

Hokkaido brown bear (Ursus arctos
yesoensis)

(1/1) PCR Babesia sp.
UR1

Hokkaido, Japan W Heavily infested with ticks and anemia. Co-infection
with Cytauxzoon sp.

[79]

Japanese black bear (Ursus thibetanus
japonicus)

14.1 (22/
156)

PCR Babesia sp. Iwate, Japan W 76.3 % co-infection with Hepatozoon ursi [48]

Procyonidae

Raccoon (Procyon lotor) 8.3 (2/24) PCR Babesia sp. Hokkaido, Japan W All have splenomegaly [44]

(1/1) PCR Babesia sp. Illinois, USA W Anemia [46]

90.0 (37/41) PCR Babesia sp. North Carolina, USA W 67 % co-infection with B. microti-like [89]

83.0 (34/41) PCR B. microti-like North Carolina, USA W 76 % co-infection with Babesia (sensu stricto) clade [89]

1.7 (6/348) PCR Babesia sp. Hokkaido, Japan W Heavily infested with ticks [47]

(14/17) PCR B. microti-like Florida, USA W [45]

White-nosed coatis (Nasua narica) 100 (20) PCR Babesia sp. Costa Rica W [133]

Mustelidae

American mink (Neovison vison) (13/13) PCR Babesia sp.
NV-1

Hokkaido, Japan W [134]

Badger (Meles meles) (1/5) PCR Babesia sp. Burgos, Spain W [55]

North American river otter (Lontra
canadensis)

82.0 (32/39) PCR Babesia sp. North Carolina, USA W Wild-caught [135]

Stone marten (Martes foina) (1/10) PCR B. vogeli Catalonia, Spain W Co-infection with Bartonella clarridgeiae [83]

Felidae

Black-footed cat (Felis nigripes) (5/8) PCR Babesia sp. Swaziland, Southern Africa R [65]
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Table 1 Molecular and serological studies performed on Babesia spp. and Theileria spp. infections in wild carnivores (Continued)

Caracal (Caracal caracal) (1/1) PCR Babesia sp. Durban, South Africa W Found ill with clinical sign of feline babesiosis [136]

0/2 PCR Babesia sp. Swaziland, Southern Africa W [65]

0/1 IFAT Babesia sp. Brazil Z [66]

Cheetah (Acinonyx jubatus) 19.0 (18/97) PCR B. felis Namibia R [65]

6.1 (3/49) PCR B. felis Namibia W [65]

3.0 (3/97) PCR B. leo Namibia R [65]

28.5 (39/
137)

D/PCR B. lengau South Africa R [137]

(5/5) PCR Theileria sp. Salama-Malili ranch, Kenia R Subclinical [69]

0/5 PCR Babesia sp. Salama-Malili ranch, Kenia R Subclinical [69]

(4/4) PCR B. leo Zimbabwe R [65]

Fishing cat (Prionailurus viverrinus) 0/1 IFAT Babesia sp. Brazil Z [66]

Jaguar (Panthera onca) (6/13) IFAT Babesia sp. Brazil Z [66]

Leopard (Panthera pardus) (1/1) PCR B. leo Namibia, Swaziland, South
Africa

R [65]

(2/2) PCR Babesia sp. Nairobi National Park, Kenya R Subclinical [69]

0/1 IFAT Babesia sp. Brazil Z [66]

Lion (Panthera leo) (16/16) D/PCR Babesia sp. Kruger National Park, South
Africa

W Blood samples [136]

12.0 (3/25) PCR B. leo Swaziland, Southern Africa R Co-infection with B. felis [65]

25.0 (14/56) PCR B. leo Swaziland, Southern Africa W Co-infection with B. felis [65]

12.0 (3/25) PCR B. felis Swaziland, Southern Africa R [65]

1.7 (1/56) PCR B. felis Swaziland, Southern Africa W [65]

89.5 (238/
266)

PCR Babesia sp. Serengeti W 1994 Canine distemper virus epidemic [93], Terio personal
communication

97.0 (34/35) PCR Babesia sp. Ngorongoro W 2001 Canine distemper virus epidemic [93], Terio personal
communication

0/12 IFAT Babesia sp. Brazil Z [66]

(2/2) D/PCR B. canis Nairobi Orphanage, Kenya R Anemia, lethargy, wobble movement and dry eyes [69]

12.0 (10/86) PCR B. vogeli Zimbabwe R [67]

59.0 (51/86) PCR B. leo Zimbabwe R [67]

25.0 (6/24) PCR B. felis Zambia W Co-infection with Hepatozoon sp. [109]

25.0 (6/24) PCR B. leo Zambia W Co-infection with Hepatozoon sp. [109]

1.0 (1/86) PCR T. sinensis Zimbabwe R [67]

1.0 (1/86) PCR T. parva Zimbabwe R [67]
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Table 1 Molecular and serological studies performed on Babesia spp. and Theileria spp. infections in wild carnivores (Continued)

Little spotted cat (Leopardus tigrinus) 24.0 (9/38) IFAT Babesia sp. Brazil Z [66]

Margay (Leopardus wiedii) (2/4) IFAT Babesia sp. Brazil Z [66]

Ocelot (Leopardus pardalis) 60.0 (26/43) IFAT Babesia sp. Brazil Z [66]

Pampas cat (Oncifelis colocolo) (3/5) IFAT/PCR Babesia sp. Brazil Z [66]

Puma (Puma concolor) 78.0 (32/41) PCR Babesia sp. Florida, USA W 5 % co-infection with C. felis [119]

(2/18) IFAT Babesia sp. Brazil Z [66]

Tiger (Panthera tigris) 0/6 IFAT Babesia sp. Brazil Z [66]

Serval (Leptailurus serval) (1/3) PCR B. felis Swaziland, Southern Africa R [65]

(2/2) PCR B. vogeli Zimbabwe R [67]

0/1 IFAT Babesia sp. Brazil Z [66]

Wild cat (Felis silvestris) (6/6) PCR B. vogeli Zimbabwe R [67]

Yaguarundi (Puma yagouaroundi) 25.0 (6/25) IFAT Babesia sp. Brazil Z [66]

Viverridae

Common genet (Genetta genetta) (1/2) IFAT/PCR Babesia sp. Brazil Z [66]

0/34 PCR Babesia sp. Catalonia, Spain W [83]

Hyaenidae

Spotted hyena (Crocuta crocuta) (6/19) PCR Babesia sp. Zambia W Co-infection with Hepatozoon sp. [109]

Herpestidae

South-African meerkats
(Suricata suricatta)

80.0 (37/46) D/PCR Babesia sp. Kalahari, South Africa W 46 % of co-infection with Cytauxzoon sp. [78]

aWe used the name Babesia microti-like for all isolates belonging to the B. microti group and reported by their authors as B. microti-like, "T. annae", "B. annae" or "B. vulpes"
Abbreviations: D direct examination of smear, H histology, IFAT Indirect Fluorescent Antibody Test, PCR Polymerase Chain Reaction, Z Zoo collection, R rehabilitation center, W wild animal
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Table 2 Molecular studies of Rangelia vitalii and Cytauxzoon sp. infections in wild carnivores

Host Reported prevalence Targeted
agent

Country/Region Sample
origin

Observation Reference

% (positive/n) Technique

Canidae

Crab-eating fox (Cerdocyon thous) 30.0 (6/20) PCR R. vitalii Brazil W [11]

(1/1) PCR R. vitalii Brazil W Cachexia and intense dehydration, conjunctiva and
oral mucosae were distinctly pale. Co-infection with
canine distemper virus.

[73]

Pampas fox (Lycalopex gymnocercus) 0/4 PCR R. vitalii Brazil W [11]

(1/1) PCR R. vitalii Brazil W Mucosae were moderately pale. Spleen with
moderate follicle hyperplasia and extramedullary
hematopoiesis.

[73]

(1/1) PCR R. vitalii Brazil W Kidney with hyaline degeneration and coagulation
necrosis. Liver with slight vacuolar degeneration.
Spleen with red pulp hyperplasia.

[72]

Ursidae

Hokkaido brown bear (Ursus arctos yesoensis) (1/1) PCR Cytauxzoon sp. Hokkaido, Japan W Heavily infested with ticks and anemia. Co-infection
with Babesia sp. UR1

[79]

Felidae

Bobcat (Lynx rufus) 33.0 (10/30) PCR C. felis North Carolina, USA W Region where cytauxzoonosis is prevalent in
domestic cat

[138]

7.0 (5/69) PCR C. felis Pennsylvania, USA W Region where cytauxzoonosis is not prevalent
in domestic cat

[138]

25.6 (34/133) PCR C. felis Arkansas, USA W [105]

20.0 (138/696) PCR C. felis 13 states, USA W [90]

0/1 PCR C. felis USA R [139]

Wild cat (Felis silvestris ornata) (1/1) D/PCR C. felis Iran W Cachexia and anemia [140]

European wildcat (Felis silvestris silvestris) 14.3 (3/21) PCR Cytauxzoon sp. Italy W Road kill animals [121]

Iberian lynx (Lynx pardinus) 1.9 (1/51) D/PCR Cytauxzoon sp. Sierra Morena, Spain W One injured young male [76]

15.0 (3/20) PCR Cytauxzoon sp. Sierra Morena, Spain W [75]

75.0 (24/32) PCR C. felis Sierra Morena, Spain W [77]

0/45 PCR C. felis Doñana, Spain W [77]

26.9 (25/112) PCR C. felis Sierra Morena, Spain W/R 22 % co-infection with Toxoplasma gondii [141]

Jaguar (Panthera onca) (1/6) PCR Cytauxzoon sp. Brazil R [111]

(26/26) PCR C. felis Pantanal, Brazil W [142]

Little spotted cat (Leopardus tigrinus) 0/14 PCR Cytauxzoon sp. Brazil R [111]

Lion (Panthera leo) 0/266 PCR C. felis Serengeti W 1994 Canine distemper virus epidemic [93]

0/35 PCR C. felis Ngorongoro W 2001 Canine distemper virus epidemic [93]
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Table 2 Molecular studies of Rangelia vitalii and Cytauxzoon sp. infections in wild carnivores (Continued)

0/1 PCR C. felis USA R [139]

2.0 (2/86) PCR C. manul Zimbabwe R [67]

Margay (Leopardus wiedii) 0/2 PCR Cytauxzoon sp. Brazil R [111]

Ocelot (Leopardus pardalis) 6.8 (2/29) PCR Cytauxzoon sp. Brazil R [111]

Pallas's cat (Otocolobus manul) (4/4) H/D/PCR C. manul Mongolia W Trapped in Mongolia and transported to USA [74, 122, 143]

0/3 PCR Cytauxzoon sp. Brazil R [111]

Puma (Puma concolor) 12.0 (5/41) PCR C. felis Florida, USA W 5 % co-infection with Babesia sp. [119]

(3/3) D/PCR C. felis Florida, USA R 1 cougar with anorexia and lethargy. Hematological
findings of mild hemolytic anemia

[113]

(2/9) PCR Cytauxzoon sp. Brazil R [111]

(1/7) PCR C. felis USA R [90]

0/1 PCR C. felis USA R [139]

Serval (Leptailurus serval) 0/1 PCR C. felis USA R [90]

Tiger (Panthera tigris) (4/8) PCR C. felis USA Z [139]

Yaguarundi (Puma yagouaroundi) 0/6 PCR Cytauxzoon sp. Brazil R [111]

Viverridae

Common genet (Genetta genetta) 0/10 PCR Cytauxzoon sp. Doñana, Spain W [144]

Herpestidae

Egyptian mongoose (Herpestes ichneumon) 0/24 PCR Cytauxzoon sp. Doñana, Spain W [144]

South African meerkats (Suricata suricatta) 57.0 (26/46) D/PCR Cytauxzoon sp. Kalahari, South Africa W 46 % of co-infection with Babesia sp. [78]

Abbreviations: D direct examination of smear, H histology, IFAT Indirect Fluorescent Antibody Test, PCR Polymerase Chain Reaction, Z Zoo collection, R rehabilitation center, W wild animal
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Babesia lotori [42]. However, in the last years, molecular
analyses carried out in North America and Japan (where
this species was introduced) identified several sequences
corresponding with two or more species of Babesia. One
of these sequences, first detected by Goethert & Telford
[43] in Massachusetts, USA, and later by Kawabuchi et al.
[44] in Japan and Clark et al. [45] in Florida, USA, is phylo-
genetically related with the "Spanish dog isolate" (B.
microti-like group) and piroplasmid sequences obtained
from skunks and red foxes. A second potential species was
detected by Birkenheuer et al. [46] in Illinois. The obtained
complete sequence of the 18S rRNA gene was most closely
related with a sequence obtained from an Ixodes ovatus
tick infesting a dog in Japan. This agent was subsequently
detected in Japanese raccoons by Jinnai et al. [47], confirm-
ing that both species are also present in Japan. Interest-
ingly, a sequence showing 99.3 % identity with these agents
was later detected in a Japanese black bear (Ursus thibeta-
nus japonicus) [48]. Moreover, other Babesia spp. se-
quences identified by Jinnai et al. [47] were further
separated into a novel phylogenetic group, indicating that
at least three species of Babesia may infect feral raccoons
in Japan.
Regarding "T. annae"[49], Baneth et al. [50] recently

reclassified this piroplasm as a new species named "B.
vulpes". However, although there is a consensus about
this agent being a Babesia and not a Theileria [50], both
names are nomina nuda and thus unavailable (see Harris
[51]). In this review, we will use the name "Babesia
microti-like group" as recommended by Harris [51].
Isolates of Babesia microti-like group cause clinical
disease in dogs, and the most likely natural reservoir
is the red fox Vulpes vulpes [24, 49, 52]. The geo-
graphical distribution of infected red foxes includes
southern Europe (Portugal [53], Spain [54, 55], Italy
[12], Austria [56], Hungary [57], Bosnia [58], Croatia
[59], Germany [60] and Poland [61]); South Korea in
Asia [62]; and North America [63, 64]. Observed
prevalences in the red fox range from 5 % in Croatia
[59] to 69 % in Portugal [53]. In other carnivore spe-
cies not belonging to the family Canidae, B. microti-
like group has been reported with high prevalences
(up to 83 %) in the USA (Table 1). A Babesia
microti-like group agent was also detected in raccoon
dogs (Nyctereutes procyonoides) from South Korea
[62]. Alhough Baneth et al. [49] classified this agent
as a “Babesia sp. 2 raccoon”, and discussed the phyl-
ogeny of the parasite as if the raccoon and the rac-
coon dog were the same species, it is worth noting
that the raccoon dog belongs to the family Canidae
and not to the family Procyonidae (as the raccoon
does). Therefore, this parasite is most likely a "B.
annae" isolate as other B. microti-like group agents
parasitizing canids worldwide.

Interestingly, studies in free-ranging lions indicate that
co-infections with different species of piroplasmids (B.
leo and B. felis) were common in South Africa [65].
Table 1 summarizes other studies were co-infections
with more than one piroplasmid species in wild carni-
vores have been found.
Reports from serological surveys of piroplasmids are

scarce and information is available only for Babesia spe-
cies in Brazilian wild carnivores (Table 1). André et al.
[66] reported seroprevalences of 5 % in the crab-eating
fox (Cerdocyon thous), 11 % in puma (Puma concolor),
24 % in little spotted cat (Leopardus tigrinus), 29 % in
bush dog (Speothos venaticus), 25 % in yaguarundi
(Puma yagouaroundi), 46 % in jaguar (Panthera onca),
50 % in margay (Leopardus wiedii), 60 % in pampas cat
(Oncifelis colocolo), and 60 % in ocelots (Leopardus
pardalis).

Theileria spp.
Only two species of Theileria have been described in
free-living carnivores, namely T. sinensis and T. parva
(Table 1), both found infecting captive lions [67].
Theileria parva is the agent of the Corridor Disease and
East Coast Fever in cattle and African buffalo [15], and
T. sinensis was reported to infect cattle and yaks in
China [68]. Neither of these species was described previ-
ously in felids and further genomic studies are needed to
characterize these organisms in felids [67]. Interestingly,
Githaka et al. [69] inferred from phylogenetic analyses
that a piroplasmid detected in cheetahs in Kenya was
closely related to a Theileria sp. that infects sheep and
giraffes. In summary, these cases of carnivores infected
by piroplasmids of herbivores are probably the result of
spill-overs from the latter and may have little relevance
at the population level.

Rangelia spp.
Only one species, Rangelia vitalii, has been described
(Table 2). This piroplasmid causes the canine rangeliosis,
a severe tick-borne hemorrhagic disease of domestic
dogs in Brazil, Argentina and Uruguay [70, 71]. Rangelia
vitalii infection has been described only in two species
of wild canids, the crab-eating fox (Cerdocyon thous),
with a prevalence of infection of 30 % [11], and the pam-
pas fox (Lycalopex gymnocercus), with two individual
cases in Brazil [72, 73].

Cytauxzoon spp.
Infections with Cytauxzoon spp. have been reported al-
most exclusively in felids (Table 2). There is currently
only one unquestioned accepted species of Cytauxzoon,
namely C. felis, which infects North American felids
[bobcats (Lynx rufus) and pumas (Puma concolor)]
(Table 2). Another species, C. manul, was described
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based on material from the Pallas’s cat (Otocolobus
manul) from Mongolia, and the percent sequence diver-
gence between this parasite and C. felis allowed the au-
thors to consider this as a distinct species [74]. However,
many questions remain regarding Cytauxzoon taxonomy.
For example, the identification of C. felis as the causative
agent of infection outside America is probably incorrect.
In this regard, the sequencing of a 1,726-bp region of
the 18S rRNA gene of piroplasmids in the Iberian lynx
(Lynx pardinus) supported the distinction between
American and Eurasian Cytauxzoon spp. and suggested
that different species or strains may exist in different
geographical locations [75]. Surprisingly, three Cytaux-
zoon sequences from Iberian lynx were more closely re-
lated to the sequence obtained from a Spanish cat than
to a fourth sequence from another Iberian lynx, which
clustered together with C. manul [75]. This indicates
that Cytauxzoon taxonomy remains far from resolved.
Observed prevalences of infection by Cytauxzoon vary

between species and locations. In the bobcat, the species
for which most information was gathered, the prevalence
varies from 7 % in low-endemic areas to 33 % in en-
demic regions of the USA (Table 2); similar prevalences
have been reported in pumas living in the same regions.
In the Iberian lynx, the parasite is apparently present
only in one of its two main metapopulations (namely at
Doñana and Sierra Morena), as infection has never been
demonstrated in any of the lynx analyzed from Doñana
[75–77]. In Sierra Morena, observed prevalences ranged
between 15 and 75 % depending on the study (Table 2).
The only species reported to be infected by Cytaux-

zoon not belonging to the family Felidae is the South
African meerkat (Suricata suricatta; family Herpestidae)
and the Hokkaido brown bear (family Ursidae). In the
case of the meerkat, a single study reported a prevalence
of 57 % in 46 animals sampled in the Kalahari [78]; this
species lives on ranchlands in close proximity to human
settlements, which may have increased the potential for
pathogen interspecific transmission [78]. In the case of
the Hokkaido brown bear, only a single case was re-
ported [79].

Tick vectors of infection
As mentioned above, piroplasmoses are generally tick-
borne diseases. However, few studies have attempted
to determine the tick species transmitting piroplas-
mids in the wild, and only few have determined the
presence of piroplasmids in ticks retrieved from wild
carnivores (Table 3).
In dogs, Rhipicephalus sanguineous, Dermacentor

reticulatus and Haemaphysalis elliptica (formerly Hae-
maphysalis leachi) are the recognized vectors of B.
vogeli, B. canis and B. rossi, respectively [23]. In cats, the
vectors of babesiosis are unknown [14]. In wildlife,

Ixodes hexagonus was considered the leading candidate
as a vector responsible for the infection of domestic dogs
with B. microti-like group, but solely based on an associ-
ation between the presence of this tick species on dogs
at the time they were diagnosed [63–80]. In agreement
with this, B. microti-like group isolate was detected
(as "Theileria annae") in one of three adult Ixodes
hexagonus infesting foxes in Spain [81].
In a larger survey carried out in Thuringia, Germany,

Najm et al. [60] detected B. microti-like group in Ixodes
ricinus, Ixodes canisuga and I. hexagonus, also retrieved
from foxes. This study also detected isolates of B.
microti-like group (two different genotypes) in the same
species of tick, but this probably reflects that these ticks
became infected after feeding on micromammals and
not foxes. This may also be the case of the B. microti-
positive ticks retrieved from striped skunk (Mephitis me-
phitis) and raccoons (Procyon lotor) in New York, USA
[82]. In Spain, a recent study revealed the presence of B.
microti-like group in a pool of nymphs of I. canisuga
from a badger (Meles meles), but the badger was not in-
fected [83]. Also in that study, a pool of Rhipichephalus
turanicus from a red fox was co-infected with B.
microti-like group and B. vogeli, but in that case, the
host was indeed found to be infected by B. microti-like
group. A further pool of Rh. turanicus from an unin-
fected stone marten (Martes foina) was also infected
with B. vogeli [83]. Though much stronger evidence is
necessary to probe this hypothesis, Rhipicephalus ticks
might have a role as vectors of Babesia spp. other than
B. vogeli. Finally, Shock et al. [84] identified DNA of a Ba-
besia similar to Babesia poelea-like species in a Derma-
centor variabilis pool from a raccoon in the USA.
However, all these tick/parasite associations do not imply
effective transmission of the parasite by the tick species.
The life-cycle of C. felis in North America is the best

known cycle among the piroplasmids of carnivores. The
parasite has been recovered from two tick species, D.
variabilis and Amblyomma americanum, but compe-
tence has only been demonstrated in the latter [85]. In
fact, the geographic range of the parasite overlaps with
the ranges inhabited by A. americanum and the bobcat
[85]. Dermacentor variabilis was experimentally demon-
strated to transmit C. felis from wild felids to domestic
cats according to one study [86], but this was not con-
firmed in a later investigation [87]. The vector for other
Cytauxzoon sp. in other locations is not known. In
Brazil, Amblyomma cajennense or another ixodic tick
has been proposed as a vector, because this tick was
found in a captive-reared lion with fatal cytauxzoonosis
[88]. In the Iberian Peninsula, no attempt has been made
to determine the identity of the tick vector. The poten-
tial absence of the tick vector may be the cause of the
absence of Cytauxzoon sp. in the lynx population in
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Table 3 Reported body of evidence of Babesia spp. and Cytauxzoon spp. isolates in ticks found on wild carnivores

Host from which ticks were
retrieved

Reported prevalences Targeted agent Tick species Region/Country Reference

% (positive/n) Technique

Canidae

Red fox (Vulpes vulpes) 1/3 adults PCR B. microti-likea Ixodes hexagonus Burgos, Spain [81]

0/2 nymphs PCR B. microti-like Ixodes hexagonus Burgos, Spain [81]

(8/870) PCR B. microti-like Ixodes ricinus Thuringia, Germany [60]

(19/585) PCR B. microti-like Ixodes canisuga Thuringia, Germany [60]

(13/485) PCR B. microti-like Ixodes hexagonus Thuringia, Germany [60]

(4/870) PCR B. microti isolate Ixodes ricinus Thuringia, Germany [60]

(1/585) PCR B. microti isolate Ixodes canisuga Thuringia, Germany [60]

(1/485) PCR B. microti isolate Ixodes hexagonus Thuringia, Germany [60]

1 pool of 20 ticks PCR B. microti-like and B. vogeli Rhipicephalus turanicus Catalonia, Spain [83]

Ursidae

Hokkaido brown bear (Ursus arctos yesoensis) 0/1 PCR Cytauxzoon sp. Ixodes ovatus Hokkaido, Japan [79]

Mephitidae

Striped skunk (Mephitis mephitis) 19.4 (6/31) PCR B. microti-like Ixodes scapularis New York, USA [82]

Procyonidae

Raccoon (Procyon lotor) 23.5 (93/396) PCR B. microti-like Ixodes scapularis New York, USA [82]

Felidae

Bobcat (Lynx rufus) na D Cytauxzoon sp. Dermacentor variabilis Oklahoma, USA [86]

Lion (Pathera leo) na PCR Babesia sp. Stomoxys sp. Ngorongoro [93]

Mustelidae

Stone marten (Martes foina) 1 pool of 12 ticks PCR B. vogeli Rhipicephalus turanicus Catalonia, Spain [83]

Eurasian badger (Meles meles) 1 pool of 18 nymphs PCR B. microti-like Ixodes canisuga Catalonia, Spain [83]

Viverridae

Common genet (Genetta genetta) 1 pool of 3 ticks PCR Babesia sp. Ixodes ventalloi Catalonia, Spain [83]
aWe used the name Babesia microti-like for all isolates belonging to the B. microti group and reported by their authors as B. microti-like, "T. annae", "B. annae" or "B. vulpes"
Abbreviations: D direct examination of smear, PCR Polymerase Chain Reaction
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Doñana [75]. Finally, Cytauxzoon sp. DNA was detected
in one Ixodes ovatus from a Japanese brown bear suffer-
ing from cytauxzoonosis [79].
It is worth noting that in populations of wild carni-

vores with high prevalences of piroplasmid infections, it
may be possible for the parasite to be maintained in the
vertebrate host without the participation of tick vectors
through transplacental [25, 89] or direct transmission by
bites [20]. This may explain the maintenance of infection
in some species of wild carnivores in different geograph-
ical regions that may not have competent tick vectors.

Pathological, population effects and potential impact of
piroplasmoses on wild carnivore conservation
Piroplasmid infections in wild animals are typically sub-
clinical [8, 49, 90, 91]. For example, there is some evi-
dence that indigenous African canids can harbour B.
rossi without showing clinical signs of disease, contrary
to what happens in dogs, suggesting that wild canids in
Africa have been historically exposed to this piroplasmid
[92]. Nevetheless, piroplasmids can be pathogenic under
certain circumstances such as when they parasitize an
unnatural host, the host is stressed due to captivity or is
immunosupressed, or there is habitat degradation or cli-
mate fluctuations [8, 93, 94]. Moreover, piroplasmids
can occasionally cause severe disease in domestic ani-
mals (e.g. [3, 95, 96]), humans [3, 4, 97] and also wild
mammals [8, 64]. The clinicopathological abnormalities
of piroplasmoses in domestic and wild ruminants are
usually fever, anemia and hemoglobinuria [8, 98]. Piro-
plasmids can also affect marsupials belonging to the
family Macropodidae with anemia, lethargy and inappe-
tence [99]. Due to the scarcity of studies about the path-
ology and clinical features of piroplasmosis in wild
carnivores, inferences about the potential pathological
effects must be made based on data from their domestic
counterparts. For example, most cats affected by feline
babesiosis caused by B. felis are adults of less than three
years of age and present with clinical signs such as an-
orexia, listlessness, and anemia, followed by icterus, with
an estimated mortality of about 15 % [100]. Intriguingly,
B. felis infection is not associated with fever [100, 101].
On the other hand, most common clinical signs and
clinicopathological abnormalities in domestic dogs in-
fected with B. gibsoni include anorexia, lethargy, vomit-
ing, fever, anemia and hemoglobinuria [14, 51]. Infection
by B. microti-like group in dogs causes mainly hemolytic
regenerative anemia, thrombocytopenia, pale mucous
membranes, anorexia and apathy [102]. Some studies
have reported high fatality rates (22 %) [103, 104].
Cytauxzoonosis due to C. felis in domestic cats is typic-
ally acute and fatal, and is characterized by fever, an-
orexia, listlessness, anemia, icterus and usually death
within 19–21 days [105]. However, recent evidence

indicates that cat survival of C. felis infection is higher
than previously believed and subclinical infections have
been identified [85].

Babesia spp.
Babesia spp. infections normally occur as clinically un-
apparent infections in immunocompetent hosts [8, 93].
Mortalities have rarely been reported in free-ranging and
captive carnivores. When mortality takes place, it is usu-
ally related to immunosuppression or co-infection with
other disease agents. For example, sudden death in two
captive grey wolves (Canis lupus) in apparently good
body condition associated with B. canis infection could
be, according to the authors, secondary to the immuno-
supression related to captivity, which probably lead to
the clinical manifestation [106]. Similarly, marked
anemia in a Hokkaido brown bear cub was conceivably
caused by the combination of a heavy tick infestation
and Babesia sp. infection, which was aggravated by
stress factors [79]. Another fatal acute infection by
Babesia sp. was recorded in a captive juvenile African
wild dog (Lycaon pictus), and was associated with
vaccination-induced reduction in its immune compe-
tence [35]. In the case of B. microti-like group infection,
a clinical case with hemolytic anemia and weakness was
reported in a free-living juvenile red fox [64]; these clin-
ical signs are similar to those described in infected dogs
with babesiosis [23, 24].
Besides these factors, research has shown that historic

host-pathogen relationships may be altered by extreme
climatic conditions, which may synchronize the tem-
poral and spatial convergence of multiple infectious
agents, triggering epidemics with far greater mortality
than that produced by a single pathogen. For example,
in 1994, epidemics with high mortality in Serengeti lions
(Panthera leo) were originally attributed to canine dis-
temper virus (CDV) [107], but retrospective analysis re-
vealed that the distemper epidemic coincided with an
unusually high prevalence of Babesia sp. infection [93].
This was the result of extreme drought conditions with
widespread herbivore die-off [108], which according to
Munson et al. [93], increased the lion’s exposure to tick-
infested starving prey. The combination of high frequency
of exposure to ticks and CDV-related immunosuppression
caused the hemoparasite infections to become fulminate
[93, 109]. Another episode of mortality in 2001 due to
CDV that struck the nearby Ngorongoro Crater lion
population was also associated with an unusually high
prevalence of Babesia sp. infection [93].

Rangelia spp.
Clinical signs have been reported in wild foxes naturally
infected with R. vitalii. In one case, a wild female pam-
pas fox was found with physical debilitation, motor
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incordination, dehydratation, pale mucous membranes,
apathy, and hypothermia [72]. In another two cases, no
signs associated to typical clinical rangeliosis were de-
tected. These included a pampas fox that was in good
body condition, with moderately pale mucosae, and a
crab-eating fox showing myoclonic rear limbs, paresthesia
of front limbs and distinctly pale conjuctivae and oral mu-
cosae [73]. In both canids, necropsy revealed generalized
jaundice and histopathology examination showed R. vitalii
in endothelial cells of liver, stomach, heart, kidney, lungs,
lymph nodes, and gall bladder [73]. The significance
of rangeliosis at the population level has not been
investigated.

Cytauxzoon spp.
Wild felids naturally infected with Cytauxzoon spp.
rarely display clinical signs. Among free-living felids,
there is only one report of a naturally-infected young
bobcat with acute cytauxzoonosis. This animal suffered
from severe anemia and irregular respiration [110]. In
fact, bobcats rarely display clinical illness, and when dis-
ease occurs, it is usually from mild to moderate, and
schizogenous replication is limited [85]. Parasitized
Iberian lynx were always apparently healthy [75, 77].
Brazilian wild felids did not appear to have clinical signs
either [111]. Among captive felids, the death of a seven-
year-old tiger (Panthera tigris) in a Florida Zoo from
acute fever and cellular necrosis after a two-day history
of anorexia and lethargy, was reported [112]. Cytauxzoo-
nosis was diagnosed by histological changes including
large numbers of intravascular macrophages containing
developmental stages of Cytauxzoon sp. in the lungs,
spleen, liver and bone marrow. The origin of the in-
fected ticks was undetermined [112]. In another case, a
captive male cougar (Puma concolor) infected with C.
felis showed anorexia, depression, lethargy and anemia,
but not fever, and was ultimately euthanized because of
a condition attributed to diabetes mellitus; in this case,
Cytauxzoon infection was diagnosed by PCR [113]. Fatal
cytauxzoonosis was also reported in another tiger born
and kept in a German Zoo presenting with anorexia,
lethargy and dyspnea [114], and in a 6-month-old
captive-reared lion (Panthera leo) cub and its mother
living in the same exhibit in Brazil [88].
Finally, the above-mentioned case described by Jinnai

et al. [79] of an anemic Japanese brown bear cub sepa-
rated from his mother soon after emerging from hiber-
nation is noteworthy. The cub was heavily infested with
ticks and was found to be co-infected by Cytauxzoon sp.
(showing 90.1 % and 90.2 % identities with C. felis and
C. manul, respectively) and Babesia sp. The stress deri-
vated from being lost and the intense tick infestation
probably led to the development of clinical illness.
Moreover, according to Jinnai et al. [79], the presence

of multiple genotypes can result in recombination,
bringing benefits for the parasite such as genetic
modifications in virulence, transmission, induction of
immunity and drug resistance.

Role of wildlife in the epidemiology of piroplasmids
As shown in the present review, there is abundant evi-
dence of piroplasmid infections in wild carnivores
worldwide, in some circumstances displaying high preva-
lences. There are species of abundant wild carnivores
that could serve as reservoirs for piroplasmids, and a
wide range of potential vectors that may allow these par-
asites to maintain endemic sylvatic life-cycles in their
geographical distribution area. This could potentially
lead to the transmission of infection to domestic carni-
vores, especially in peri-urban and urban environments
[8, 60, 90]. In this regard, many wild reservoir hosts (e.g.
red fox, golden jackal and raccoon) are increasing in
number and expanding their geographical ranges, thus
increasing intra- and interspecies contact risk with do-
mestic carnivores [115]. However, a high prevalence of
infection alone does not demonstrate that the species in
question acts as a reservoir. In addition, many species of
wild carnivores are not abundant, and probably unable
to maintain a pathogen in the absence of dogs or an-
other reservoir.
As already outlined, there is some consensus about the

bobcat as the natural reservoir of C. felis in North Amer-
ica [85]. Infections with C. felis in domestic cats in enzo-
otic areas occur when the cats become incorporated into
the naturally occurring cycle between bobcats [86, 116]
and the tick vector [105]. Cats living close to wooded
areas or less intensely managed land are more likely to
become infected [105]. Pumas may be an additional nat-
ural reservoir for C. felis in the United States [117–119].
Brazilian wild felids may be a potential reservoir for
Cytauxzoon sp. because, as mentioned previously, they
did not appear to be clinically infected [111]. Regarding
the Iberian lynx, its role as a reservoir is doubtful due to
its extremely low population size (less than 300 individ-
uals). Moreover, the only domestic cat diagnosed with
Cytauxzoon infection with no clinical data available in
Spain was located far from lynx distribution areas [120].
Most likely, the natural reservoir in Iberia is the wildcat
(Felis silvestris silvestris), which is more abundant, has a
broader distribution area and frequently interacts with
domestic cats. Though no data is available in Spanish
wildcats, a recent study reported that 19 % of Italian
wildcats were positive for piroplasmid infection and
three sequenced amplicons clustered with the Italian,
Spanish, French and Romanian Cytauxzoon spp. isolates
and with C. manul [121].
On the other hand, experimental infection of domestic

cats with C. manul from Pallas's cats was successful,
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with cats developing a low but noticeable and persitent
parasitemia. Thus, potential interspecies transmission is
likely [122]. However, the predominance of subclinical
erythroparasitemia and the evidence of persistent infec-
tion in the only endemic focus described in Europe (Tri-
este, Italy) in free-ranging domestic cats support the
hypothesis that the domestic cat may serve as a reservoir
host for this infection [123].
On the other hand, a growing body of evidence

(Table 1) suggest that other wild carnivore species may
serve as reservoirs of pirolasmids. For example, the high
prevalence of B. microti-like group infection in red foxes
in diverse locations suggests that this species may be the
natural host and sylvatic reservoir of the parasite [49,
54]. Similarly, the raccoon may be the natural host of
two or more species of Babesia (see above). Both wild
foxes and racoons often have peridomestic habits that
may facilitate inter-species transmission with dogs. Fi-
nally, it has been proposed that crab-eating fox could act
as natural reservoir of R. vitalii in rural and periurban
areas in Brazil [73].
Few attempts have been made to demonstrate suscep-

tibility in a species of wild carnivore experimentally [28,
122, 124]. In one study, coyotes (Canis latrans) experi-
mentally infected with B. gibsoni developed a maximum
parasitemia of 8–11 % infected red blood cells, but this
did not significantly affect the health of the coyotes. The
long duration of the infection, the high level of parasit-
emia and the absence of clinical disease suggested that
coyotes could serve as potential reservoirs [28].

Zoonotic implications
Zoonotic species are found among Babesia species, but
humans are not natural hosts of Theileria spp. or Cytaux-
zoon spp. Humans can, however, be accidental hosts for
numerous Babesia spp. [3, 5]. Yet, as far as it is known,
none of the piroplasmids infecting wild carnivores are
zoonotic. Nevertheless, Hersh et al. [82] described the
presence of the zoonotic B. microti in I. scapularis ticks
retrieved from raccoons and skunks in the USA. If these
ticks were infected after biting these carnivore hosts, this
would have major implications for B. microti dynamics.
Therefore, raccoons and skunks could play a critical role
in the transmission of the disease in the USA as mechan-
ical dispersers of infected ticks. Their role would depend
on their B. microti-infected tick loads and relative tick
abundance [82]. Nevertheless, infections of carnivores by
B. microti have never been confirmed, and references to B.
microti infections in carnivores may represent B. microti-
like infections (see above).

Potential impact on wild carnivore conservation
Diseases can have a profound effect on wildlife popula-
tions. In fact, one of the most repeated examples of the

impact of a pathogen in a wild carnivore population was
the canine distemper epidemic in Serengeti lions [107].
However, as mentioned above, subsequent analyses
showed that levels of Babesia in lions were significantly
higher during the 1994 and 2001 epidemics, and that
CDV probably acted as an immunosuppressive agent
that caused babesiosis to fulminate [93, 109]. This is the
only available evidence of a piroplasmid having a dem-
onstrable negative effect on the population dynamics of
a wild carnivore. However, evidence of piroplasmid-
related disease has been reported in some individuals
(see above, and Tables 1 and 2).
On the other hand, wild carnivores are sometimes cap-

tured for translocation to establish new populations or
reinforce existing ones. Alternatively, in the context of
ex situ conservation actions, captive-bred animals are
released into the wild [8, 67]. All of these management
actions can create favorable conditions for the develop-
ment of clinical piroplasmosis in the animals. Stress-
mediated recrudescence of latent infections can also take
place. For example, a case of mortality caused by Thei-
leria sp. in a wild ungulate after a translocation was at-
tributed to stress factors resulting from the translocation
[95]. On the other hand, released individuals might for-
tuitously introduce new species or strains of a parasite
into a naïve population. For example, during Iberian lynx
conservation efforts, lynx from the northern population
(where Cytauxzoon sp. is present) were translocated to
the southern one (Doñana, where the parasite has never
been detected). This may eventually pose a risk if the
southern population lacks acquired immunity against
the parasite.

Knowledge gaps and future research perspectives
To better understand the role of wild carnivores in the
epidemiology of piroplasmoses and to determine
eventual conservation threats for endangered carnivores,
it is imperative that research be conducted to fill the
gaps existing in the knowledge of the natural history of
the different species of piroplasmids. These gaps may
include:

� The exact determination and classification of the
causative agent for diverse piroplasmid infections in
wildlife.

� The identity of the vector/s and/or reservoir/s for
many agents (e.g. Cytauxzoon sp. in Europe, Asia, and
South America, and for "B. microti-like" or R. vitalii).
These data are extremely important to understand the
disease dynamics of piroplasmoses and to determine
potential distribution areas of the disease.

� The investigation of the critical role of ticks in the
dynamics of piroplasmoses. For some piroplasmids,
such as Cytauxzoon spp. in Eurasia, the competent
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vector is still unknown. It is also necessary to
determine the ability of ticks to serve as reservoirs
in the absence of the vertebrate host, and the
duration of infectivity in the tick vector [3].

� The confirmation of the competence of suspected
wild reservoirs to infect the tick vector through
xenodiagnosis.

� The investigation of alternative ways of piroplasmid
transmission (transplancental, direct) and its role in
the maintenance of piroplasmids in the wild in the
absence of a tick vector.

� Improved economical and sensitive serological tests
for use in the cases where parasites may be difficult
to detect by direct methods, and epidemiological
surveys in wild populations.

� Improvement of the available molecular biology
tools for characterization of piroplasmids infecting
wild carnivores, and for comparison with domestic
animal-derived sequences.

Conclusions
Piroplasmid infection is a common feature of wild carni-
vores wherever it has been investigated, but conversely,
there is little information about its role in the epidemi-
ology of the disease. Wild carnivores belong to the same
Order as dogs and cats, sharing several disease agents.
Some species, such as the red fox, are widespread and in
some cases can have high local population abundances.
In addition, some wild carnivores often live in sympatry
with high-density human and domestic carnivore popu-
lations, facilitating inter-species transmission. For ex-
ample, foxes infected with B. microti-like group were
frequently detected in the Barcelona metropolitan area
[83]. Moreover, outdoor activities such as hiking are in-
creasingly popular, providing an opportunity for ticks to
infest domestic dogs accompanying people in natural en-
vironments [125]. In conclusion, the research focusing
on piroplasmoses in wild carnivores remains in its early
stages and many research opportunities exist.
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