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Abstract

Background: Tsetse flies occur in much of sub-Saharan Africa where they are vectors of trypanosomes that cause
human and animal African trypanosomosis. The sterile insect technique (SIT) is currently used to eliminate tsetse fly
populations in an area-wide integrated pest management (AW-IPM) context in Senegal and Ethiopia. Three Glossina
palpalis gambiensis strains [originating from Burkina Faso (BKF), Senegal (SEN) and an introgressed strain (SENbkf)]
were established and are now available for use in future AW-IPM programmes against trypanosomes in West Africa.
For each strain, knowledge of the environmental survival thresholds is essential to determine which of these strains
is best suited to a particular environment or ecosystem, and can therefore be used effectively in SIT programmes.

60 % rH.

Fecundity, Environmental conditions

Methods: In this paper, we investigated the survival and fecundity of three G. p. gambiensis strains maintained
under various conditions: 25 °C and 40, 50, 60, and 75 % relative humidity (rH), 30 °C and 60 % rH and 35 °C and

Results: The survival of the three strains was dependent on temperature only, and it was unaffected by changing
humidity within the tested range. The BKF strain survived temperatures above its optimum better than the SEN
strain. The SENbkf showed intermediate resistance to high temperatures. A temperature of about 32 °C was the
limit for survival for all strains. A rH ranging from 40 to 76 % had no effect on fecundity at 25-26 °C.

Conclusions: We discuss the implications of these results on tsetse SIT-based control programmes.

Keywords: Tsetse flies, Area-wide integrated pest management, Sterile insect technique, Mass-rearing, Survival,

Background

Tsetse flies are the cyclical vectors of human African try-
panosomoses (HAT) and African animal trypanoso-
moses (AAT), which are debilitating diseases affecting
humans (i.e. ‘sleeping sickness’) and livestock (i.e. ‘na-
gana’), respectively [1, 2]. The presence of tsetse flies im-
pairs the development of sustainable and productive
agricultural systems in over ten million km” of sub-
Saharan Africa [3, 4] leading to potential losses in live-
stock and crop production estimated at USD 4750
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million annually [5]. In this context, vector control is
considered an important component of the integrated
management of both HAT [6] and AAT [1, 7-10].
Glossina palpalis gambiensis is one of the most im-
portant vectors of trypanosomes in West Africa [11, 12].
Over the past decades, chemotherapy-based manage-
ment strategies of the disease has shown limitations
linked to the development of parasite-resistance to the
available trypanocidal drugs [13]. In addition, vector
control programmes relying on the use of insecticides
and that were not implemented following area-wide
principles [14] failed to show sustainable results, with
re-introduction of the flies from bordering infested areas
as a consequence [15]. The use of the sterile insect tech-
nique (SIT) within an area-wide integrated pests
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management (AW-IPM) approach [16] appears neces-
sary (at least in West Africa for this riverine species) to
achieve eradication of this insect vector [17]. Recently,
considerable efforts have been directed towards improv-
ing the application of this technique against G. p. gam-
biensis to support eradication programmes in Senegal
and other countries [18—-24]. Indeed, previous work car-
ried out in Mali and Senegal showed that the Burkina
Faso (BKF) strain of G. p. gambiensis competes with G. p.
gambiensis populations from other countries [19, 25, 26],
thus indicating the potential of the BKF strain to be used
in eradication strategies of isolated populations of this spe-
cies in selected areas of West Africa such as the Niayes in
Senegal [10, 27].

Little is known, however, of the relationship between
tsetse flies and environmental factors such as
temperature and relative humidity (rH) [28, 29]. Previ-
ous research in this area has focused on the pupa stage
and, specifically, on impacts of environmental variability
on pupal water loss [30, 31], the effect of dehydration on
mortality and adult emergence [30] and metabolic re-
sponses [32]. Previous studies on adult tsetse flies were
conducted mostly on the morsitans group flies, and they
focused on temperature-dependent metabolic rate vari-
ation [33—36] and thermic tolerance [34, 37].

In nature, climatic parameters influence the spatial
and temporal distribution, abundance and behavior of
insects [17, 34, 38—41]. Although the BKF strain is com-
patible with strains from other countries [19], seasonal
variations within one country and between countries
could affect important components of fly competitive-
ness, i.e. mating performance and survival. High temper-
atures and low humidity are detrimental for the survival
of tsetse flies [28, 34, 37] and under such circumstances
flies will seek resting places with more favourable micro-
climatic conditions, i.e. higher humidity and lower
temperature [42].

In view of results obtained in field cage studies and
during pilot trial releases, it was decided to use the BKF
strain for release in the Senegal project. In spite of data
that indicated adequate compatibility and competitive-
ness of the BKF strain with the local Senegal popula-
tions, two new strains were developed to serve as
alternatives in case of failure of the BKF strain to per-
form in certain ecosystems of the Niayes. These two
strains were a G. p. gambiensis Senegal (SEN) strain that
originated from Pout/Sebikotane in the Niayes and an
introgressed (SENbkf) strain, obtained from crossing
BKF females with SEN males. Whilst the BKF strain had
been cultured for more than four decades, and was more
prolific than the newly created SEN strain [19], it was
hypothesized that a strain introgressed with the BKF
strain, adapted to an artificial mass-rearing environment
but maintaining most of the SEN genetic background,
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may lead to better adaptation to the harsh environment
of the Niayes and, therefore, better performance in cer-
tain ecosystems when compared to the BKF strain. In
the Niayes area of Senegal, the ecology of G. p. gambien-
sis populations from which SEN was obtained is differ-
ent from that of other G. p. gambiensis populations that
thrive in riparian forests. In the Niayes, the habitat
favoured by G. p. gambiensis includes mainly mango and
citrus tree plantations, residual riparian thickets and
palm tree plantations, as the flies have adapted to this
man-made vegetation and strong anthropic pressures
[8, 17, 43]. Moreover, the combined use of markers
such as microsatellites and mitochondrial DNA and
wing morphometrics showed that the Niayes popula-
tion was completely isolated from the main tsetse belt
in West Africa [10, 27] and can thus be considered a
different ecotype or even sub-species [44].

While best environmental conditions for rearing the
BKF strain are 24-25 °C, 75+5 % rH and 12 h:12 hrs
light (L): dark (D) regime [45-47], the optimal condi-
tions for the SEN and SENDbKf strains remain unknown.
In view of the differences in environmental conditions
between regions, it is therefore crucial to determine
which strain would perform best in which particular
ecosystem.

Methods

Fly strains

Three strains of G. p. gambiensis were used in this study:
BKF, SEN and SENDbkf. The fly material of the BKF and
SEN strains was derived from colonies maintained at the
Insect Pest Control Laboratory (IPCL) of the Joint FAO/
IAEA Programme of Nuclear Techniques in Food and
Agriculture, Seibersdorf, Austria and the SENDKf flies
were derived from a colony developed at the IPCL and
maintained at the Slovak Academy of Sciences (SAS),
Bratislava, Slovakia.

The BKF strain was established at Maisons-Alfort,
France in 1972 using material collected in Guinguette,
near Bobo-Dioulasso, Burkina Faso. It was transferred in
1975 to the Centre de Recherche sur les Trypanosomia-
ses Animales (CRTA), Burkina Faso [45, 47] [CRTA was
later renamed Centre International de Recherche-
Développement sur I'Elevage en zone Subhumide (CIR-
DES)]. In 2009, 8000 pupae of this colony were shipped
to the IPCL to establish a colony for research purposes
to support the eradication programme in the Niayes
[19, 21]. The IPCL colony provided seed material to
the SAS where a colony was likewise established to
supply additional pupae to the Senegal project.

The SEN strain was established at the IPCL from Sep-
tember 2009 to December 2010 from pupae obtained
from wild females collected in Pout and Sebikotane and
that were shipped weekly to the IPCL [19].
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The SENDbKS strain was developed in 2010 at the IPCL
and then transferred to the SAS insectary. Initial crosses
were made between SEN males and BKF females and the
hybrid females were backcrossed 4 times with SEN
males. Flies of the 5th generation were then intercrossed
for rearing, initially at the IPCL and later at the SAS.
The strain is, therefore, genetically composed of 97 % of
the SEN genome and 3 % of the BKF genome, with
mitochondria from the BKF strain.

These colonies were maintained in both insectaries at
24-25 °C and 75+5 % rH with a 12 L:12D cycle. The
flies were offered blood meals using an in vitro silicon
membrane feeding system using bovine blood (Svaman
SRA, Majava, Slovak Republic), frozen at -20 °C and ir-
radiated with 1 kGy in a commercial irradiator [48].

Preliminary data from source insectaries

The SENbkf and SEN strains were reared at the SAS and
IPCL, respectively, while the BKF strain was reared in
both institutes. Production data of the SENbkf and SEN
strains were collected from August 2012 to October
2014 and from January 2010 to September 2014, respect-
ively. Production data of the BKF strain were collected
from January 2011 to September 2014 at the IPCL and
from April 2010 to September 2014 at the SAS. The
weekly datasets of the 3 colonies were analyzed with col-
ony size, daily mortality and fecundity being the main
parameters.

Transport of pupae

Pupae of the SENbKf strain were transported from
the SAS to the IPCL, where pupae of the BKF and
SEN colonies were added and shipped with a courier
service to the Centre de Coopération Internationale
en Recherche Agronomique pour le Développement
(CIRAD), Montpellier, France. Pupae were placed in
Petri dishes with the top lid perforated with holes of
~2 mm diameter for aeration. The Petri dishes were
placed in a kraft paper air bubble envelope (TAP
Comebag® type B (11 x21.5 cm)) to absorb mechan-
ical shocks during transport. Due to the small size of
the SENbkf colony, pupae were collected over 1 week
and pooled to constitute 1 batch while for BKF and
SEN strains, pupae of the same batch had the same
age. There were 2 batches for each shipment and for
each strain. On the day of shipment, pupae of batch
1 were 15 days old for the BKF and SEN strains and
9-15 days old for the SENDbKf strain, and those of
batch 2 were 8 and 2-8 days old, respectively. Each
batch of the BKF/SEN and the SENbkf strains con-
tained on average 200 and 50 pupae, respectively.
Pupae were shipped on Tuesdays and were received
on Fridays.
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Experimental conditions

Pupae were divided on receipt into glass Borel jars
(Dutscher Scientific, Essex, UK) of 3.5 cm diameter and
8.2 cm in height (40 pupae per tube) and kept in an in-
cubation room (25+1 °C, 75+5 % rH, 12 L:12D) until
emergence. Every morning (except Saturday and
Sunday), the emerged flies were transferred to Roubaud
cages and placed in climate controlled rooms with ad-
justable temperature, rH and photoperiod. A climate
chamber (Memmert HPP 110, GmbH & Co KG, Schwa-
bach, Germany) with an internal size 40 x 25x 32 cm
was also used for the 26 °C, 40 % rH treatment. A data
logger (KistockKTH-350A, KIMO, Montpon, France)
was placed inside each room and was programmed to
display temperature and relative humidity every minute
and to record data every 5 min. The data loggers have a
resolution of 0.1 °C and 0.1 % rH and an accuracy of +
0.3°Cand 1.5 % rH.

The maximum critical temperature was evaluated at
temperatures ranging from 25 °C to 35 °C with an incre-
ment of 5 °C and the rH fixed at 60 %. The minimum
critical rH was assessed at a constant temperature of
25 °C and a rH of 40, 50, 60 and 75 %. Flies belonging to
the same cohorts were used to assess the survival and fe-
cundity. The fecundity was assessed in all treatments
where the longevity of flies allowed it. A photoperiod of
12 L:12D was maintained for all experimental rooms
and light intensity varied from 280 to 500 Lux depend-
ing on the position of the cages in the room.

Fly handling
Newly emerged flies were separated by sex and put into
Roubaud cages (maximum 25 flies per small cage (7.5 x
5x4 cm) and 40 flies per large cage (13.5x 8 x 4.5 cm)
and then placed in the experimental rooms. Due to the
low number of flies that emerged per strain and sex on
some days, the number per cage was often less than the
maximum (< 40 flies) and each constituted a replicate.
Females were put into cages covered with white tulle of
large mesh (2.5 mm) and males in smaller mesh cages
(1.5 mm). The large mesh allowed third instar larvae
(L3) to escape from the cage. Flies were offered a blood
meal three times a week (Monday, Wednesday and Fri-
day) on an in vitro silicon membrane system using defi-
brinated sheep blood collected aseptically and previously
frozen at -20 °C. The feeding system was installed in a
climatic room that was maintained at 25+ 1 °C and 50 +
5 % and the system was used for feeding flies from all
treatments. The flies remained in the feeding room for
less than 30 min.

Three to 4 day-old virgin females were mated with 6—
8 day-old virgin males (the time that the flies become
sexually mature) [49] and put into holding cages at an
initial male to female ratio of 1:3. Males and females
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remained together until all flies had died. Due to the low
number of females on some days, the mating was often
done in small number and each constituted a replicate.

Fecundity and reproductive biology

Mating cages were placed in individual larviposition
cups and pupae were collected daily (except Saturday
and Sunday) and sorted into normal and aborted L3.
The normal pupae were weighed using an electronic bal-
ance of 0.1 mg sensitivity and automatic calibration
(Precisa® 410 AM-FR, HE electronic, Kadikoy Istanbul,
Turkey). The production of pupae was recorded daily by
treatment and cage. The first larval period (time between
female emergence and the production of the first pupae)
and the subsequent interlarval period (time between the
reproductive cycles) was also recorded.

Mortality

Mortality was recorded daily (except on Saturdays and
Sundays) for each treatment per strain and per sex until
the death of the last individual. Dead flies were sorted
into blood-fed and starved fly mortalities.

Adult emergence rate

Pupae were kept in an incubation room at 25 + 1 °C and
75+ 5 % rH. The number of flies that emerged per treat-
ment was recorded daily (except on Saturdays and Sun-
days) and used to calculate the percentage of emerged
adults from the total number of pupae for each treat-
ment. Only flies that escaped from the pupal case were
considered as emerged.

Data analysis

The R Software (version 3.1.0) was used to perform all
statistical analyses [50]. The survival of flies kept under
various experimental conditions was analyzed using
Kaplan-Meier survival curves. Survival curves were com-
pared using the coxph model [51] where the strain, the
sex, the temperature, rH and their second and third
order interactions were used as explanatory variables
and survival rate as the response variable. The best
model was selected on the basis of the lowest corrected
Akaike information criterion (AICc), and the significance
of the fixed effect was tested using the likelihood ratio
test [52, 53]. When analyzing mortality, we considered
the mean temperature and humidity to which the flies
were subjected the day before their death, to account for
potential variability of the conditions within the climatic
rooms. For the fecundity analysis, we considered their
mean values over 10 days before each larviposition. Pair-
wise comparisons of median survivals between treat-
ments were tested with a Tukey’s post-hoc test (‘glht’
function in the ‘multcomp’ package). The best model
was used to plot the survival rate against the maximum
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temperatures from 24 to 36 °C. The optimal temperature
for rearing the BKF strain is 25+ 1 °C [45-47]. Thus,
from the plot for females, the mean survival correspond-
ing to the maximum temperature for BKF mass-rearing
(the reference strain), i.e. 26 °C, was used to determine
the maximum temperature for the mass-rearing of SEN
and SENDbK( strains.

The pupal production was followed by cage and not
individually, thus the first larval period was determined
per cage. The number of pupae per cage was plotted
against the age of females and the first peak was consid-
ered as corresponding to the first larval period. The sub-
sequent interlarval interval was determined by
considering the following peak. When there were 2
peaks within less than 7 days, the highest peak was used.
The first and subsequent interlarval periods, the pupal
production and the pupal mass were analyzed using gen-
eral linear models [54] where the strain, the treatment
and their interactions were considered as fixed variables.
For modeling the first and subsequent interlarval pe-
riods, the cage number was considered as a random ef-
fect while for modeling the pupal mass, the random
effect was the emergence date. The smallest AICc of dif-
ferent models was used to choose the best model and
the significance of the fixed effect was tested using the
likelihood ratio test.

Results

Experimental conditions

The data recorded with the Kimo® loggers showed that
during the experiments, temperature and rH varied
around the expected values. Table 1 gives the target
values and the measured mean temperatures and rH ex-
perienced by the flies. In subsequent analyses, we there-
fore used the mean recorded conditions instead of the
target values.

A total of 5984 pupae were received from the ICPL
(BKF and SEN) and SAS (SENbkf) insectaries, of which
2883, 2245 and 856 were of the BKF (5 shipments), SEN
(6 shipments) and SENbkf (7 shipments) strains, respect-
ively. The emergence rates of the adult flies in the pupal
incubation room (25.6 °C, 734 % rH) were 95.1 %,
87.3 % and 84.4 % for the BKF, SEN and SENDKf strains,
respectively. Table 2 shows the number of flies by strain,
by gender and by treatment used in the experiments. Al-
most all females that survived until the mating date were
used for fecundity measurements.

Production parameters of the 3 colonies in the insectaries
of origin

Figure la shows the temporal fluctuations in colony size
(females) of the 3 strains in the insectaries of origin. At
the IPCL, the daily mortality (mean + SD) was signifi-
cantly higher (P <107; Table 3) for the SEN flies (1.3 +
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0.5 %) than that of the BKF strain (0.9 + 0.6 %) while in
the SAS insectary, the mortality was similar between
SENDbKf (1.0 + 0.2 %) and BKF (1.0 £ 0.3 %) flies (Fig. 1b).
Considering the 3 strains, the BKF flies had the lowest
mortality, followed by the SENbkf, and the SEN flies (P
<10 Table 3). The fecundity was better for the BKF
than the SEN and the SENDbKf flies, but the SEN colony
performed better than the SENbkf colony (P <107
Table 3; Fig. 1c). More importantly, fecundity of the SEN
colony increased significantly over time (P < 10”%; Table 3)
but not that of the SENbkf colony. When restricting the
analysis to the BKF colonies reared in the 2 insectaries, a
lower mortality and a better fecundity was observed for
the colony maintained at the IPCL insectary when com-
pared with the SAS colony (P < 107%; Table 3).

Relationship between survival and environmental
conditions

Survival curves of the flies from the different treatments
are presented by strain and gender in Fig. 2. The median
survival times obtained from the curves are summarized
in Table 4. The analyses showed that survival of flies was
influenced by strain, sex and temperature (P< 107
Table 5). Females survived significantly longer than
males, irrespective of the strain and treatment (P < 107
Table 5). Survival was very short at high temperatures,
i.e. at 31.4 °C the median survival was 4 days for females
and 3 days for males of all strains, while at 35.3 °C the
median survival was 2 days for both sexes (Table 4).
Within the same gender, at 25-26 °C there was little dif-
ference in survival between 40 and 76 % rH (Fig. 2,
Table 4). Under these environmental conditions, the me-
dian survival for females was 46.7, 42.5 and 37 days for
BKF, SENbkf and SEN flies, respectively. For males, it
was 27.3, 16.8 and 18.5 days respectively. These results

Table 1 Target temperature and relative humidity and mean (+
standard deviation) environmental conditions experienced by
the flies and recorded with the Kimo® loggers

Table 2 Number of flies used for the experiments per strain,

sex and treatment

Page 5 of 13

Treatment (°C-% BKF SEN SENbkf

™ 3 @ & ¢ & 39
252+05-47.7+85 270 465 173 310 40 87
264+£02-552+16 141 219 145 219 82 48
251 £04-76.1+£80 169 150 188 122 90 97
260+ 0.0-403+0.7 85 172 112 130 51 52
314£08-551+20 273 179 99 56 16 17
353+£1.3-502+25 217 134 86 61 12 20
Total 1155 1319 803 898 291 321

show that the rH (40-76 %) has a marginal effect on
survival (P =0.06; Table 5). Overall, BKF flies survived
longer than SENbkf and SEN flies irrespective of gender,
and SENDbKf female flies survived longer than SEN fe-
males but not males (P < 10% Table 5). The relationship
between daily mortality and mean temperature for the 3
strains is presented by gender in Fig. 3.

The mean survival for the 3 strains (males and fe-
males) against the maximum temperature, i.e. the range
of 24-36 °C (at 60 % rH) using the binomial mixed

Target Recorded conditions
(c()c&rlcol/ltiri'r;s Temperature (°C) Relative humidity (%)
Experimental rooms
25-50 252+05 47.7 £ 85
25-60 264 £0.2 552+16
25-75 251+04 76.1£80
30-60 314+£08 55.1£20
35-60 353+£13 502+25
Experimental chamber®
26-40 26.0£0.0 40307
Pupal incubation room
25-75 256+03 734+33
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Fig. 1 Performance parameters of the Glossina palpalis gambiensis
strains (BKF, SEN and SENbkf) in the insectaries of origin (IPCL and SAS).
The time was recoded in weeks from 2010. a Temporal fluctuations in
colony size (females), b daily mortality (%), and ¢ fecundity
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Table 3 Summary of the best mixed effect model results for the preliminary data from source insectaries and the experimental

fecundity
Trait Fixed effect Estimate Standard Error Z-value PG |2))
Preliminary data from source insectaries
Mortality (Intercept) -2.795867 0.016912 -165.32 <2e-16%**
SAS insectary -0.021391 0.003165 -6.76 14e-11%%*
SENbkf 0.143523 0.004638 30.95 <2e-16%**
SEN 0.529115 0.005628 94.02 <2e-16%**
Production (Intercept) -0.212193 0.012092 -17.55 <2e-16***
SAS insectary -0.320035 0.00149 -213.88 14e-11%%
SENbkf -0.633439 0.00255 -248.40 <2e-16%**
SEN -0.382742 0.00319 -119.99 <2e-16"**
Experimental fecundity
First larval period (Intercept) 20.5769 03254 63.244 <2e-16%**
BKF -0.6436 0.5379 -1.196 023614
SEN -1.4465 04749 -3.046 0.00342**
Interlarval period (Intercept) 84706 0.5991 14.139 <2e-16%**
SENbkf 1.9294 0.9844 1.96 0.0572.
SEN 1.8627 0.875 2.129 0.0396*
Pupae per initial female (Intercept) 3.1248 0.2986 10.464 <2e-16%**
SENbkf -0.9939 0.3986 -2494 0.0148*
SEN -0.5463 04314 -1.266 02092
Pupal mass (Intercept) 206968 0.3743 55.296 <2e-16%**
BKF 0.7434 0.393 1.891 0.0631.
SENbkf -0.6608 03431 -1.926 0.0585.
264 °C-552 % -2.1292 0.396 -5377 1.14e-06***
252 °C-47.7 % -0.2925 0.3994 -0.732 04666
26.0 °C-40.3 % -0.6103 04579 -1.333 0.1873
Adult emergence (Intercept) 2.9945 0.1545 19.387 <2e-16%**
SENbkf -1.0086 0.2229 -4.524 6.07e-06***
SEN -0.9223 0.155 -5.95 2.68e-09%**
264 °C-552 % -0.486 0.2303 -2.11 0.0349*
252 °C-47.7 % 04255 0.2601 1.636 0.1018
26.0 °C-40.3 % 03428 02192 1.563 0.118

Significance: ***P < 0.001; ** P<0.01; *P <0.05 (these apply to values above)

model showed a decrease in survival with increasing
temperature (Fig. 4). There were negative effects on the
interactions between temperature and the SEN and
SENbKf strains on survival (P<107; Table 5), showing
that BKEF flies resisted better at higher temperatures than
SENDKf and SEN flies irrespective of gender. Females of
the SENDKf strain had a similar mean survival than BKF
females at moderate temperatures, whereas at higher
temperatures, the resistance of SENDbLf females de-
creased faster than that of BKF females until they
reached the same level as SEN females (Fig. 4). Males of
the SENDbKf strain had the lowest resistance to increasing
temperatures when compared with the BKF and SEN

males (Fig. 4). The introgression thus showed increased
resistance to high temperatures for females but not for
males. Above 32 °C, all flies, irrespective of the strain
and gender, died rapidly.

From the plot, the mean survival for BKF females at
26 °C (maximum temperature for BKF mass rearing)
was 50 days (Fig. 4). This survival value corresponded to
a maximum temperature of 25.6 and 24.9 °C for the
SENbkf and SEN females, respectively.

Fecundity in relation to environmental conditions
Fecundity of the different strains was assessed using a
range of rH values (40-76 %) and a temperature of 25
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and 26 °C, since above 30 °C survival was too low to
monitor fecundity.

At 25-26 °C and between 40 and 76 % rH, the first
larva of the SENDKf strain was deposited on average on
day 19.7, which was similar to that of the BKF strain
(day 19.2) (P=0.2; Table 3), but significantly later than
that of the SEN strain (day 19.0) (P = 0.003; Tables 3 and
6). These results indicate that the rH had no influence
on the first larviposition day (F3 64y = 1.96, P =0.1).

For all strains, at 25—-26 °C the rH also had no effect
on the interlarval period (Fz4z) =0.35, P=0.8). Overall,
the analysis showed a significantly shorter interlarval
period for BKF (8.5 days) females as compared with SEN
(10.3 days, P = 0.04; Table 3) and SENbkf (10.4 days, P =
0.06; Table 3) females.

Results indicate that pupal production was signifi-
cantly influenced by the Glossina strain (F(o,g0) = 3.19, P
=0.04) but not by the treatment (25-26 °C and 40-76 %

Table 4 Median survival (days) by sex, strain and treatment

Treatment (°C-% Female Male

H) BKF SEN  SENDKf BKF  SEN  SENDKF
251+04-7614£80 57°  37°¢ 48 32 30° 28«
252+05-477+85 47 29 46 25 3¢ 1@
264+02-552+16 36° 33°¢ 30 25 139 g
260+£00-403+07 58  41%  46%° 200 1gdet qgef
314408551420 59 48h 49 L 30
353+£13-502+25 1 2 3k 2 2 2

Median survivals were separated using Tukey’s post-hoc test and values that
have a common letter (a-k, amongst columns and rows) are not significantly
different (P> 0.05)

rH) (Fzg0 =168, P=0.2). Indeed, the highest mean
pupae per initial female (PPIF) at 56 days (8 weeks), 3.2
(all treatments together except 31.4 and 35.3 °C treat-
ments) recorded for the BKF strain (Table 6), was signifi-
cantly higher than that for the SENDbKf strain (2.1; P =
0.01; Table 3) and similar to that for the SEN strain (2.6;
P =0.2; Table 3). The strain effect was marginal as it was
only observed at 25.2 + 0.5 °C—47.7 + 8.5 % rH.

At 25-26 °C, the mean pupal mass was relatively
similar between strains, irrespective of the experimen-
tal rH (P=0.06; Table 3 and 6); mean (+ SD) values
of 20.6+1.4, 19.8+1.7 and 194 +1.3 mg were ob-
tained for the BKF, SEN and SENDbkf strain, respect-
ively. On the other hand, adult emergence was
significantly better for BKF flies (93.5+ 9.4 %) as com-
pared with SEN (87.6 +18.5 %) and SENbkf (87.9 +
19.0 %) flies (P <1073 Table 3). There was a marginal
effect of rH on pupal mass and adult emergence as
the lowest values were observed at 26.4+0.2 °C and
55.2+1.6 % rH (P<107% Tables 3 and 6).

Discussion

The aim of this study was to assess the effect of different
temperatures at the same rH, but also to assess the effect
of variation in rH at a single optimal temperature to try
to determine the best environmental conditions for
mass-production of the new G. p. gambiensis strains
(SEN and SENbkf) and to define the critical maximum
temperature and critical minimum rH for each strain.
These aspects are important because, in 2000, the Afri-
can Heads of States and Governments decided to in-
crease efforts to address the tsetse and trypanosomosis
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Table 5 Summary of the best cox model for the survival of flies
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Fixed effect Coef Exp(coef) SE(coef) Z-value PC |2))
Relative humidity -0.002520 0.997483 0.001334 -1.889 0.05892.
Temperature 0531286 1701118 0.010805 49.172 <2e-16***
SENbkf 2.183868 8.880592 0671772 3.251 0.00115**
SEN 3.173181 23.88334 0439600 7218 5.26e-13%**
Male 5.949196 383.4449 0.344772 17.255 <2e-16***
Temperature x SENbkf -0.076943 0.925942 0.024771 -3.106 0.00190**
Temperature X SEN -0.105743 0.899656 0.016044 -6.591 4.37e-11%**
Temperature X Male -0.185816 0.830426 0.012024 -1545 <2e-16***
SENbkf x Male -1.327588 0.265116 0.900588 -1.474 0.14045
SEN x Male -2.860653 0.057231 0.566269 -5.052 4.38e-07***
Temperature X SEN x Male 0.058313 1.060046 0.033291 1.752 0.07985
Temperature x SENbkf x Male 0.100787 1.106041 0.020437 4932 8.16e-07***

Abbreviation: Coef coefficient, SE standard error
Significance: ***P <0.001; ** P<0.01 (these apply to values above)

problem on the African continent under the auspices of
the African Union (PATTEC) [55]. For West Africa, this
entails AW-IPM programmes against G. p. gambiensis;
this species thrives in riparian and forest environments,
and eradication strategies will require the use of the SIT.

The results of this study will facilitate optimization of
the mass-rearing of the three strains that are currently
established and guide programmes that include a SIT
component to select the strain that is best adapted to
the local environmental conditions of the target area.

Female Male
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Fig. 3 Correlation between daily mortality and mean temperature for male and female flies of the BKF, SEN, and SENbkf strains. The size of the
data points is proportional to the number of flies at each date of emergence with the equation of the linear model and R also supplied
J




Pagabeleguem et al. Parasites & Vectors (2016) 9:520

BKF,
SENbKF
?
60
@
>
©
A=A
T BKF
>
2 40 .
= J
[%2] AN
c SENbKf .
© AN
8 .
=
20
0 -
T T T T T T T
24 26 28 30 32 34 36
Maximum temperature (°C)
Fig. 4 Mean survival of the BKF, SEN, and SENbkf strains plotted
against the maximum temperature. The relative humidity was
maintained constant at 60 %

We found that female G. p. gambiensis survived sig-
nificantly longer than males irrespective of the strain
and environmental conditions except at sub-lethal
temperatures. The difference in lifespan between the
sexes is common in insects and it seems to be genet-
ically determined [56]. Indeed, similar results were
obtained with Anopheles arabiensis and An. funestus
under combinations of temperature and humidity
[57], with Aedes albopictus at constant temperatures
[58, 59], and with Ae. krombeini at both constant and
fluctuating temperatures [60]. In mosquitoes, this
gender-biased difference seems to be associated with
variations in the amount and composition of cuticle
lipids between the sexes [61] which influences water
loss [62], but also to differences in size [61]. Indeed,
the larger mass of females translates into a higher
water content, which further contributes to enhanced
survival time [61]. These same factors could be impli-
cated in the difference in survival of tsetse, as con-
firmed by pronounced differences in size between
males and females.
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At higher temperatures, survival of the flies was very
low, i.e. the median survival was four days at 31 °C and
2 days at 35 °C for the two sexes (at 60 % rH). Similar
results were obtained with G. fuscipes fuscipes at 30 °C
and 19 % rH [63]. Mellanby [63]observed that at a
temperature of 30 °C, the flies died quicker at a higher
than at a lower humidity. G. f. fuscipes [63], G. morsitans
[64], G. tachinoides and G. m. submorsitans [49] can
survive at sub-lethal temperatures by evaporating water,
but they can only do so for a short period (a few hours)
and when the rH is low. In wild-caught G. pallidipes,
the median survival at 37.9, 36.2 and 35.6 °C (95 % ClIs:
+ 0.5 °C) were 1, 2 and 3 h, respectively [34].

The BKF strain showed better survival when compared
with the SEN and SENDKf strain even at high tempera-
tures irrespective of gender. Such differences have been
reported among species and determine their ability to
survive in some environments [65]. For example, teneral
G. f fuscipes and G. morsitans exposed for 24 h to 25 °C
and 50 % rH lost 3.2 and 2.7 mg water, respectively, for
a mean mass of 22 and 19 mg [65]. This difference
seems related to size; however, this appeared not to be
the case with our G. p. gambiensis strains that had the
same size. Our results suggest that this capability to sur-
vive at higher temperatures might also vary among pop-
ulations of the same species. This observation supports
earlier findings that the water balance response to vari-
ation in temperature and rH in Glossina varies within
and among species, subgroups, and ecotypes, in terms of
both magnitude of effects and direction of change [29].
The variation between populations of the same species
in the ability to survive to higher temperatures is sup-
ported by the differences in habitat preferences observed
between these two populations [8, 43, 66, 67]; in
addition, at present, the BKF and SEN strains are sepa-
rated by a natural barrier preventing gene flow, and thus
evolve independently [10, 27, 43, 66, 67], with likely con-
sequences for behavior [68] and physiology between the
three strains that could explain the observed differences
in their ability to survive at high temperatures. From an
ecology or evolutionary point of view, distinguishing be-
tween strains on the basis of the survival at a given set

Table 6 First larviposition day, interlarval period, fecundity, mean pupal mass and emergence rate of adults under various

experimental conditions

Treatment (°C-%) First larviposition day Interlarval period (days) PPIF Mean mass of pupae (mg =+ sd) Emergence (%)

BKF  SEN  SENbkf BKF ~ SEN  SENbkf  BKF SEN  SENbkf BKF SEN SENbkf BKF  SEN  SENbkf
251+£04-76.1+£80 21 20 19 93 80 10.0 32% 27 21 216+15 210+23° 194+27° 934 877 935
264+02-552+16 19 17 20 94 100 120 37%° 33" 19 184+28° 179+32° 186+18° 881 807 771
252+05-477+85 19 20 19 7.3 9.8 11.0 27° 18° 18°  213+22° 207+24° 189+27° 949 895 890
260+0.0-403+0.7 20 19 19 80 11.6 93 34% 25%  27% 207+25 204+35 193+24® 957 917 920

Abbreviation: PPIF pupae production per initial female at 56 days (8 weeks)

For the PPIF and mean mass of pupae, the values that have a common letter (a and b, amongst columns and rows) are not significantly different (P> 0.05)
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of temperatures could present some limits and some
other studies of thermal tolerance (e.g. critical thermal
maximum or heat knockdown time) should be con-
ducted to complement the survival assays presented
here. Therefore, the absence of significant differences in
survival between strains at a given temperature (e.g. at
26.4 °C) should be interpreted with caution, since a
three-day difference in survival is considered substantial.

The difference in establishment time of the three
strains suggests an adaptation to breeding conditions for
BKF dating back more than four decades [45, 47], while
SEN and SENbkf have been in culture for only five years
(since 2010) [19]. This hypothesis is supported by data
from the IPCL insectary, where the productivity of SEN
flies at 25+ 1 °C and 75+ 5 % rH after four years of es-
tablishment reached the same level than that of BKF for
fecundity but not for survival.

Genetically, the SENDKf strain contains 3 % of the nu-
clear genome of BKF and 97 % of the genome of SEN,
whereas its mitochondrial DNA is 100 % BKF (maternal
transmission). As for the relationship between the sur-
vival rate of females for the three strains and maximum
temperature (see Fig. 4), the intermediate survival ability
of SENDbKf females at high temperatures might be related
to the influence of mitochondrial DNA transmitted by
the BKF strain. Further research is required to confirm
the validity of this hypothesis.

In view of the performance of the BKF strain with re-
spect to temperature variation, its use in the G. p. gam-
biensis eradication campaign in the Niayes area is
justified, as the environmental conditions prevailing in
the target area, i.e. 25-30 °C and 60-80 % rH [17] cor-
respond to the optimal conditions for survival and com-
petitiveness of this strain. This was confirmed in field
pilot trials where released BKF sterile males showed
good competitiveness in most ecosystems of the Niayes
(unpublished data). In addition, only colonies of this
strain were large enough to produce the weekly number
of required sterile males for release in the Niayes.

At 25-26 °C and with a rH ranging from 40 to 76 %,
we observed no effect of humidity on survival of the flies
regardless of the strain, indicating that the different hu-
midity conditions appeared to have no effect on the me-
tabolism of the flies. This might be due to the rather
small range of humidity conditions tested in our experi-
ment. These results, however, are in agreement with the
findings by other authors who observed that at 24 °C G.
f fuscipes lost ~ 0.47 mg fat in 24 h at rH levels of 19—
88 % [63, 69] and Jackson [69] observed that at 25 °C
the fat loss in 24 h for G. palpalis, G. morsitans and G.
swynnertoni teneral males was comparable within a
range of 19-88 % rH. A predictive study using a physio-
logical and climate GIS database showed an effect of
moisture on the physiology of Glossina pupae but not
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adults [70]. The lack of any effect of humidity on fly
physiology was observed in other insects. Fasting bed-
bugs, kept for various lengths of time at five different
temperatures, ranging from 8-37 °C, and at different rH
(i.e. 0, 30, 60 and 90 %), used the same amounts of food
reserves at each humidity level for a given temperature,
though more water evaporated from insects kept in dry
air than in humid air [71].

Our results indicate that at 26 °C, the maximum
temperature for the mass-rearing of BKF flies, the mean
survival of this strain was 50 days [45-47]. By compari-
son, a mean survival of 50 days corresponded to a
temperature of 25.6 and 24.9 °C for the SENDbkf and
SEN strains, respectively. Considering that 25+ 1 °C is
the optimal temperature for BKF mass-rearing [45-47],
those of SENbkf and SEN might be slightly lower; how-
ever, a study of the fecundity at temperatures lower than
25 °C is necessary to determine the optimal rearing con-
ditions for these strains. The optimal temperature for
the mass-rearing of the three strains was relatively simi-
lar since the difference was less than+1 °C. Neverthe-
less, preliminary data (from the insectaries of origin)
indicating that the mortality of SEN and SENDbKf flies at
25+1°C and 75+ 5 % rH was greater than that of BKF,
support the hypothesis that the difference in establish-
ment time of the three strains has resulted in differing
levels of adaptation to breeding conditions. The optimal
relative humidity for the BKF strain of 75+ 5 % can also
be considered valid for the two other strains, since a
range from 40 to 76 % rH did not affect the survival and
the fecundity of the three strains.

Above 30 °C, the survival of flies was too low to assess
fecundity. Previous laboratory studies on G. f fuscipes
showed that a constant temperature of 30 °C caused
sterility in females, with abnormal development of the
ovaries and embryos failing to hatch from the eggs [72],
similar to the the changes that occur when a tsetse fe-
male is deprived of Wigglesworthia [73]. In the same
way, G. pallidipes pupae kept at 31 °C resulted in non-
viable flies [74]. Below 30 °C, the only temperature
where the fecundity was assessed was 25-26 °C; there-
fore, the effect of temperatures between 26 and 30 °C
could not be evaluated and additional experiments are
needed.

The rH (40-76 % at 25-26 °C) had no effect on the
reproduction of the three G. p. gambiensis strains. The
same result was obtained with G. morsitans [64] and G.
f fuscipes [63], where insemination rates and pupae pro-
duction were affected by temperature but not by
humidity.

Our data indicate that at 25-26 °C and 40-76 % rH fe-
male G. p. gambiensis produce their first larva at~
19 days old. These results do not differ significantly from
those obtained in previous studies. Pollock [75] observed
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that the tsetse female (irrespective of the species) at 25 °
C produces her first larval on day 18 to 20 post-
emergence. According to Mellanby [72], the develop-
ment of the first G. f fuscipes larva takes a minimum of
18 to 19 days at 24 °C, made up of a minimum of eight
days for oocyte maturation, three to four days for em-
bryonic development and seven days for larval growth in
the uterus, after which the mature larvae is deposited.
But at 21-23 °C ovulation in G. morsitans and G. swyn-
nertoni (morsitans group) was delayed to about the 12"
or 13 day [64, 76].

At 25-26 °C and 40-76 % rH, a mean interlarval
period of 8.5 days was observed for the BKF strain and
ten days for the SEN and SENDbKf strains. These results
show that the interlarval period of BKF was shorter than
observed for other species, but the observations for the
SEN and SENDbKf strains were in line with previous data
obtained under stable insectary conditions, i.e. an inter-
larval period of ten days at 26 °C was obtained for G.
palpalis palpalis [77], a mean of 9.9 days (range of nine
to 11 days) at 24 °C for G. f fuscipes [72], an interlarval
period of 11 days at 24 °C for G. morsitans [64] and 13—
14 days at 24-26 °C for G. tachinoides [49]. In view of
the length of time that the BKF strain already spends in
under insectary rearing, the resultant selection has pro-
moted fecundity, as the BKF strain performed better
than the two other strains.

Models developed using field data to predict the first
larval and interlarval periods of G. pallidipes and G.
morsitans [78, 79] indicated that the first larval period
was slightly shorter for flies under field conditions as
compared with laboratory flies, but there was no differ-
ence for the subsequent interval periods [39]. The esti-
mated time to produce the first larva was between 14—
17 days post-emergence depending on the temperature,
i.e. at 25 °C the predicted time was 15.9 days [39, 80].
The difference between the first larval period under la-
boratory and field conditions might be due to the spe-
cific behavior of tsetse flies in the field, where they
minimize the effects of extreme temperatures by using
microenvironments, i.e. refuges when the temperatures
are high, and resting in direct sunshine at low tempera-
tures [79]. Previous findings have shown that in the field,
tsetse appear to live at temperatures 2 to 6 °C lower than
the room temperature (corresponding to the constant
temperature of the laboratory) [81]. For this reason, cau-
tion must be taken in the interpretation of results pre-
dicted from field experiments.

Conclusions

The survival and pupae production of G. p. gambiensis
flies appeared to be governed mainly by temperature,
and was unaffected by changing humidity within the ex-
plored range. The BKF strain survived at higher
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temperatures better than the SEN and SENDKf strains
but the temperature limit of survival remained at about
32 °C for all strains.
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