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Abstract

and lymphatic filariasis.

quinquefasciatus

Background: Although many mosquito species develop within agricultural landscapes where they are potentially
exposed to agricultural chemicals (fertilizers and pesticides), the effects of these chemicals on mosquito biology
remain poorly understood. This study investigated the effects of sublethal concentrations of four agricultural
chemicals on the life history traits of Anopheles arabiensis and Culex quinquefasciatus mosquitoes.

Methods: Field and laboratory experiments were conducted to examine how sublethal concentrations of four
agricultural chemicals: an insecticide (cypermethrin), a herbicide (glyphosate), and two nitrogenous fertilizers
(@ammonium sulfate and diammonium phosphate) alter oviposition site selection, emergence rates, development
time, adult body size, and longevity of An. arabiensis and Cx. quinquefasciatus.

Results: Both mosquito species had preference to oviposit in fertilizer treatments relative to pesticide treatments.
Emergence rates for An. arabiensis were significantly higher in the control and ammonium sulfate treatments
compared to cypermethrin treatment, while emergence rates for Cx. quinquefasciatus were significantly higher in
the diammonium phosphate treatment compared to glyphosate and cypermethrin treatments. For both mosquito
species, individuals from the ammonium sulfate and diammonium phosphate treatments took significantly longer
time to develop compared to those from cypermethrin and glyphosate treatments. Although not always significant,
males and females of both mosquito species tended to be smaller in the ammonium sulfate and diammonium
phosphate treatments compared to cypermethrin and glyphosate treatments. There was no significant effect of the
agrochemical treatments on the longevity of either mosquito species.

Conclusions: These results demonstrate that the widespread use of agricultural chemicals to enhance crop
production can have unexpected effects on the spatial distribution and abundance of mosquito vectors of malaria
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Background

Mosquitoes transmit some of the most devastating
infectious diseases including malaria, lymphatic filaria-
sis (LF), and dengue. Transmission of these diseases is
largely influenced by mosquito distribution, abun-
dance and fitness, which are in turn dependent on the
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quality of aquatic habitats where egg hatch and larval
development occurs [1, 2]. Because mosquitoes do not
provide parental care to their offspring, natural selec-
tion should favor the ability of gravid females to select
aquatic habitats that maximize egg hatch and offspring
fitness [3]. This process requires complex integration
of biological, chemical and physical cues by gravid
females [4]. Chemical contaminants can potentially
disrupt this process by modifying the quality and
attractiveness of the aquatic habitats and vector
biologists are faced with the challenge of determining
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the impact of these chemicals on mosquito ecology,
behavior, and ability to transmit pathogens.

Agrochemicals (fertilizers and pesticides) are one of
the major classes of chemical contaminants that can
potentially affect mosquito oviposition behavior and
offspring fitness. Every year, an estimated 2.4 million
tons of pesticides [5] and 180.1 million tons of fertil-
izers [6] are used worldwide to improve agricultural
production and human health. The extensive use of
these chemicals has led to their recurrent detection
in many surface waters [7, 8] increasing the potential
for aquatic communities to be exposed to these
chemicals. Immature stages (larvae and pupae) of
many mosquito species including the vectors of
malaria and LF develop in a variety of ephemeral and
permanent water bodies situated within agricultural
areas where they are potentially exposed to agro-
chemicals that are either applied to these farmlands
or transported from nearby farmlands through spray
drift, surface runoff, and/or leaching. However, despite
the notable potential for mosquitoes to be exposed to
agrochemicals, the implications of agrochemical use
on the ecology and behavior of major vectors remain
poorly understood.

Agricultural application of nitrogenous fertilizers is
a major source of nitrate contamination of aquatic
systems. In many countries, nitrate concentration in
surface and ground water ranges from 5 mg/l to >
100 mg/l, and due to its high solubility in water,
nitrate has high mobility in the environment [7]. High
levels of nitrates may promote mosquito production
by enhancing proliferation of algal blooms and other
microbial assemblages that serve as food for mosquito
larvae [9, 10]. Fertilizer application also may alter the
physical and chemical properties of the aquatic
habitats making them attractive oviposition sites for
mosquitoes [11-13]. This may explain why fertilizer
application in rice fields is often associated with a dra-
matic increase in mosquito larval populations [10-12].
However, experimental studies to decipher the impact
of nitrogenous fertilizers on epidemiologically relevant
mosquito life history traits in the absence of other
confounding factors are lacking.

Pesticides may also affect mosquito populations and
communities both directly and indirectly. When ini-
tially applied, pesticides have lethal effects but can
break down over time and switch from being lethal to
sublethal and eventually to having no effects [14]. A
shift in pesticide concentrations from lethal to sub-
lethal is clearly demonstrated by the rapid reduction
in mosquito larvae and their predators after pesticide
application, followed by the resurgence of mosquito
populations thereafter since they recover faster than
their predators [15, 16]. Lethal concentrations of
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pesticide may produce compensatory effects by killing
a fraction of the population and releasing the survi-
vors from larval competition [17-19]. Conversely,
insights from other aquatic insects and amphibians
suggest that sublethal concentrations of insecticides
can cause morphological, behavioral, and physiological
impairments [20-24] that can become more deleteri-
ous when presented in the presence of other environ-
mental stressors [24-26]. Similar effects have been
reported in Culex and Aedes mosquitoes where larval
exposure to certain pesticides alters their emergence
rates, development time, longevity, body size, sex
ratio, and vector competence [18, 27-30]. In addition,
Culex mosquitoes preferred to oviposit in carbaryl-
contaminated pools while Anopheles mosquitoes had no
preference for either control or carbaryl-contaminated
treatments [31].

We conducted a series of field and laboratory exper-
iments to determine how Anopheles arabiensis and
Culex quinquefasciatus mosquitoes respond to two
commonly used pesticides (a- cypermethrin and
glyphosate) and two commonly used fertilizers (am-
monium sulfate and diammonium phosphate). We
examined this by quantifying several life history traits
including oviposition site selection, development time,
emergence rates, adult body size and longevity. Culex
quinquefasciatus is a major worldwide vector of LF
[32-34] while An. arabiensis is an important vector of
both malaria and LF and has become the most domin-
ant malaria vector in areas where insecticide-treated
bed nets and indoor residual spraying have been
implemented [35-37]. We tested the hypotheses that:
(i) the fertilizer and pesticide treatments alter ovipos-
ition site selection by the two mosquito species; and
(ii) agrochemical treatments would differentially affect
the development time, emergence rates, adult body
size and longevity of the two mosquito species.

Methods

Study area

This study was conducted at the Mwea Irrigation
and Agricultural Development (MIAD) experimental
station and at Kangichiri and Kariua villages in the
Mwea rice irrigation scheme, 100 km north-east of
Nairobi, in Mwea Division, Kenya. The two villages
were selected based on the presence of large popula-
tions of An. arabiensis and Cx. quinquefasciatus and
proximity to MIAD. Mwea occupies the lower alti-
tude zone of Kirinyaga County in an expansive low-
lying area mainly characterized by black cotton soils.
The mean annual rainfall is 950 mm with maximum
amount falling in April-May (long rains) and
October-November (short rains). The average max-
imum temperatures are in the range of 16-26.5 °C.
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Relative humidity varies from 52 to 67 %. According
to the 2009 national census, Mwea Division has ap-
proximately 150,000 persons in 25,000 households.
The Mwea Rice Irrigation Scheme is located in the
west central region of Mwea Division and covers an
area of about 13,640 ha. More than 50 % of the
Scheme area is used for rice cultivation. The
remaining area is used for subsistence farming, graz-
ing and community activities. Anopheles arabiensis is
the dominant vector of malaria in Mwea, and the
only sibling species of the An. gambiae species com-
plex recorded in the area [38, 39]. Culex quinquefas-
ciatus is the most abundant species of Culex in the
area [40].

Agrochemicals

Alpha cypermethrin is a pyrethroid insecticide applied
as an ultra-low volume spray to control insects in both
large-scale commercial agriculture and small-scale agri-
cultural settings. Pyrethroids are increasingly replacing
organophosphates and carbamates in agriculture because
of their effectiveness, lower application rates, and lower
toxicity to mammals [41]. Up to 3,114 pg/l of permeth-
rin have been observed in water bodies [42].

The herbicide glyphosate is of particular interest to
understanding the consequences of pesticide use on
pathogen transmission because of its widespread and
abundant use [43]. By volume, it is one of the most
widely used herbicides and is commonly used for agri-
culture, horticulture, viticulture and silviculture pur-
poses, as well as garden maintenance [44]. Glyphosate is
absorbed through foliage and minimally through roots
and translocated throughout the plant [45]. Its primary
action is blocking an enzyme that plants need to make
aromatic amino acids and proteins thus killing the plants
within days [46]. Worldwide, around 650,000 tons of
glyphosate products were used in 2011 [47]. Glyphosate
use has continued to increase largely due to the produc-
tion of genetically modified crops and is expected to
double by 2017 [48]. The maximum concentration of
glyphosate observed in water bodies is 5,200 ug/1 [49].

Ammonium sulfate [(NH,),SO,] and diammonium
phosphate [(NH),HPO,] are inorganic fertilizers that
are commonly used to supplement the soil with three
basic elements that are essential for plant growth
nitrogen, sulfur and phosphorus. The annual world
demand for nitrogen and phosphate fertilizers stands
at 113.1 and 42.7 million tons, respectively and is
expected to increase over the next two years [50].
These nutrients are important sources of ground and
surface water pollution. Nitrate concentrations in
water bodies near intensively cultivated and fertilized
areas can be greater than 100 mg/l1 [51] while that of
phosphate can be as high as 9.45 mg/I [52].
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Laboratory studies on the effect of agrochemicals on
oviposition site selection by An. arabiensis and Cx.
quinquefasciatus

Blood-engorged females of An. arabiensis and Cx.
quinquefasciatus were collected inside human dwell-
ings in Kangichiri and Kariua villages using manual
aspirators. At MIAD, 20 randomly selected females
of either species were transferred into one of 9 (An.
arabiensis) and 15 (Cx. quinquefasciatus) insect rear-
ing cages (30 x 30 x 30 cm) and provided continuous
access to 10 % sucrose. For Cx. quinquefasciatus
oviposition, each cage was provisioned with five Petri
dishes containing either 50 ml of tap water (control)
or 50 ml of agrochemical-spiked water generating
four treatments with a final concentration of 0.1 mg/
1 «-cypermethrin, 0.5 mg/l glyphosate, 845 mg/l
ammonium sulfate, or 845 mg/l diammonium phos-
phate. These pesticide concentrations are within the
range that is commonly found in aquatic habitats
[42, 49, 51, 52]. In contrast, the fertilizer concentra-
tions used in this study are much higher than
observed in nature. Because fertilizer application in
rice fields within the study sites and other parts of
Africa is done manually through broadcasting, it is
expected that some parts of the rice fields receive
high doses of fertilizers similar to those used in this
study. Therefore we sought to determine how poten-
tially higher doses of fertilizers may affect mosquito
ecology. A similar setup was used for An. arabiensis
except that the Petri dishes were lined with filter
papers moistened with respective agrochemical treat-
ments. A single Petri dish was placed on each corner
of a cage and the fifth one was placed in the middle
of the cage. The treatments were rotated daily to
eliminate positional bias. The number of eggs laid in
each Petri dish were counted and recorded every day
for 31 days and their sums computed. Agrochemical-
treated filter papers were replaced each day.

Field studies on the effect of agrochemicals on
oviposition site selection by Culex quinquefasciatus

This experiment was conducted between 1st August,
2014 and 20th September, 2014 under field conditions
since Culex egg rafts are easy to monitor compared to
Anopheles eggs that are laid individually. The experi-
ment was conducted in five randomly selected home-
steads in Kangichiri village. In each homestead, five
20-litre plastic buckets containing either 3 1 of fermen-
ted grass infusion (control) or 3 | of fermented grass
infusion spiked with one of four agrochemicals for a
final concentration of 1 mg/l a-cypermethrin, 2 mg/l
glyphosate, 845 mg/l ammonium sulfate, or 845 mg/l
diammonium phosphate served as the artificial
oviposition sites. Because pesticides are expected to
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breakdown rapidly under field conditions, we deliber-
ately used higher concentrations of a-cypermethrin and
glyphosate than those used in laboratory oviposition
experiment described above. Each bucket had a top lid
and large openings on their upper halves to facilitate
access by mosquitoes. The infusion was prepared by
mixing 1 kg of fresh grass with 100 1 of water and
leaving it to ferment for 5 days. The homesteads were
at least 60 m apart and the buckets within a homestead
were 2 m apart. The buckets within each homestead
were rotated daily to eliminate spatial effects. Every
day, egg rafts were collected, counted, and transported
to the laboratory in Petri dishes lined with moist filter
papers. The infusion was replaced every three days and
13 oviposition trials were conducted.

Effect of agrochemicals on survival and development of
An. arabiensis and Cx. quinquefasciatus

Twenty first instar larvae (24 h old) of either An. arabiensis
or Cx. quinquefasciatus obtained by hatching eggs from
control treatments of oviposition experiments were added
into tripour beakers containing either 350 ml of tap water
(control) or 350 ml of tap water spiked with one of four
agrochemical treatments at the following final concentra-
tions: 0.0004 mg/l a-cypermethrin, 0.05 mg/l glyphosate,
845 mg/l ammonium sulfate, or 845 mg/l diammonium
phosphate. These low a-cypermethrin and glyphosate con-
centrations were chosen based on concentrations observed
in aquatic systems as well as in previous studies on the
impact of sublethal doses of pesticides on aquatic commu-
nities. Also, our preliminary studies revealed that higher
doses of a-cypermethrin were lethal to mosquito larvae
(data not shown). Each treatment was replicated 6 times
for a total 60 containers. The larvae were replenished with
0.05 g ground Tetramin® baby fish food once per week.
Containers were examined daily until all individuals had
either pupated or died. Pupae were placed in plastic vials
with a small volume of water until eclosion. The date and
sex of newly eclosed adults in each replicate were recorded.
The adults were held individually in 75 x 20 mm plastic
cups covered by nylon net and provided continuous access
to 10 % sucrose solution. All cages were maintained at
approximately 25-27 °C, with a relative humidity (RH) of
65-75 % and a 12:12 Light: Dark cycle. Each individual
adult mosquito was monitored daily until death. Dead
adults (both males and females) were preserved in plastic
vials and transported to the Eastern and Southern Africa
Centre of International Parasite Control (ESACIPAC),
Kenya Medical Research Institute (KEMRI) where their
wings were removed and mounted on microscope slides.
The wings were scanned and measured from the tip (ex-
cluding the fringe) to the distal end of the allula, using
VHX KEYENCE digital microscope at the Department of
Entomology, Nairobi National Museum.
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Statistical analyses

Data analyses were conducted using R.3.2.5 (R Core
Team) and SAS 9.4 (SAS Institute) statistical packages.
Data were checked for normality and homogeneity of
variances using Kolmogorov-Smirnov test. Oviposition
data were log-transformed [log (x + 1)] to normalize the
distribution. The means of each replicate of a treatment
were compiled for each life-history trait and statistical
analyses were based on these means. For each mosquito
species, univariate analysis of variance (ANOVA) was
used to determine the effect of agrochemical treatments
on oviposition site selection, hatching rates and
emergence rates (males and females combined). In the
field oviposition experiment, agrochemical treatment
was used as a fixed factor while trial number was used
as a random factor. Multivariate analysis of variance
(MANOVA) was used to determine the effect of
agrochemical treatments on both male and female devel-
opment time, wing length and longevity. Standardized
canonical coefficients were used to describe the relative
contribution of development time, wing length, and
longevity to the significant treatment effects. When
significant effects were obtained in both ANOVA and
MANOVA tests, pair-wise differences between treat-
ment means were compared using the Tukey-Kramer
multiple comparison procedure.

Results

Effect of agrochemicals on oviposition site selection by
An. arabiensis and Cx. quinquefasciatus

Agrochemical treatments had significant effects on
oviposition site selection by An. arabiensis (Fa0) = 24.02,
P <0.001). The numbers of An. arabiensis eggs deposited
were highest in the DAP and ammonium sulfate treat-
ments, intermediate in the control treatment and lowest in
the cypermethrin and glyphosate treatments (Fig. 1a). Simi-
larly, results of both laboratory (Fi470)=25.18, P<0.001)
and field experiments (Fi41245) = 331.37, P < 0.001) revealed
that Cx. quinquefasciatus egg rafts were highest in the DAP
and ammonium sulfate treatments, intermediate in the
control treatment, and lowest in the cypermethrin and
glyphosate treatments (Fig. 1b, c).

Effect of agrochemicals on emergence rates, development
time, wing length and longevity of An. arabiensis and Cx.
quinquefasciatus

Agrochemical treatments had significant effects on
emergence rates of both mosquito species (An. arabiensis:
Fla5 =428, P=0.009; Cx. quinquefasciatus: Fs5) = 4.54,
P=0.007). Emergence rates for An. arabiensis in the
cypermethrin treatment were significantly lower compared
to those of the control and ammonium sulfate but not gly-
phosate and DAP treatments (Fig. 2a). Emergence rates for
Cx. quinquefasciatus in the cypermethrin and glyphosate
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treatments were significantly lower than those of DAP but
not control and ammonium sulfate treatments (Fig. 2a).
For both mosquito species and sexes, multivariate
analysis of variance revealed a significant effect of agro-
chemical treatment on development time to adulthood,
wing length and longevity, with development time
followed by wing length accounting for most of the
variation (Table 1). Anopheles arabiensis females from
the control, DAP, and ammonium sulfate treatments
had significantly longer development times compared
to those from the glyphosate and cypermethrin treat-
ments (Fo5 =17.71, P<0.001; Fig. 2b). However,
agrochemical treatment had no significant effect on An.
arabiensis female wing length (F405 =3.2, P=0.30;
Fig. 2d) and longevity (F425) = 1.6, P =0.21). Anopheles

arabiensis males from the DAP and ammonium sulfate
treatments had significantly longer development times
compared to those from the control, glyphosate and
cypermethrin  treatments (F25 =16.36, P <0.001;
Fig. 2c). Anopheles arabiensis males from the ammonium
sulfate treatment were significantly smaller compared to
those from the control, glyphosate and cypermethrin treat-
ments, but not from the DAP treatment (Fi425 = 6.32, P =
0.001; Fig. 2e). In addition, males from the DAP treatment
were significantly smaller than those from the cypermethrin
treatments (Fig. 2e). There were no significant effects of
agrochemical treatment on An. arabiensis male longevity
(Fa25) = 1.05, P = 0.40).

Culex quinquefasciatus females from the control, DAP,
and ammonium sulfate treatments took longer to develop
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Table 1 MANOVA results on the effect of agrochemical treatments on development time to adulthood, wing length, and longevity
of An. arabiensis and Cx. quinquefasciatus mosquitoes. Standardized canonical coefficients (SCC) describe the relative contribution of
each response variable to significant treatment effects. Negative associations are denoted by (-)

Mosquito species Sex df Pillai’s trace P Standardized canonical coefficients
DT WL LG
An. arabiensis Females 12,75 0.90 0.005 168 -044 -0.06
Males 12,75 1.07 0.0004 -1.67 113 0.16
Cx. quinquefasciatus Females 12,75 0.96 0.002 -2.55 063 -0.38
Males 12,75 1.22 < 0.001 -336 0.56 0.15

Abbreviations: df degrees of freedom, DT development time to adulthood, WL wing length of adult, LG longevity

compared to those from the glyphosate and cypermethrin
treatments (F405)=39.24, P<0.001; Fig. 2b). Culex
quinquefasciatus females from the DAP and ammonium
sulfate treatments were significantly smaller compared to
those from the glyphosate and cypermethrin treatments
but not from the control (F(4,25) = 10.01, P < 0.001; Fig. 2d).
Females from the control treatments were also signifi-
cantly smaller than those from the cypermethrin but not
the glyphosate treatment (Fig. 2d). There were no signifi-
cant effects of agrochemical treatment on Cx. quinquefas-
ciatus female longevity (Fas5 =0.77, P=0.55). Culex
quinquefasciatus male development time was longest in
DAP and ammonium sulfate treatments, intermediate in
control treatments, and shortest in glyphosate and cyper-
methrin treatments (F2s5) =84.99, P<0.001; Fig. 2c).
Males from the DAP treatment were significantly smaller
than those from the glyphosate and cypermethrin treat-
ments but not from the control and ammonium sulfate
treatments (F,05)=7.99, P<0.001; Fig. 2e). In addition,
males from the control treatment were significantly
smaller than those from the cypermethrin treatment
(Fig. 2e).

Discussion

Our results show that agrochemicals can alter the at-
tractiveness and quality of An. arabiensis and Cx.
quinquefasciatus larval habitats. When presented a
choice of fertilizer and pesticide-treated oviposition
substrates, gravid females of both mosquito species
preferentially oviposited in fertilizer-treated substrates.
Fertilizer treatments were also associated with higher
emergence rates, longer development times, and
smaller adults relative to pesticide treatments. These
findings are partially consistent with the optimal ovi-
position theory which predicts that egg laying females
should select oviposition sites that maximize the prob-
ability for their offspring to reach adulthood and
reproduce [53, 54]. To the best of our knowledge, this
is the first study to investigate how commonly used
agrochemicals affect oviposition site selection and off-
spring survival of two of the most important mosquito
vectors of human pathogens in sub-Saharan Africa.

The impact of fertilizers on mosquito larval popula-
tions is well documented. Application of nitrogenous
fertilizers in rice fields is often associated with
dramatic increase in larval populations of Anopheles
and Culex mosquitoes [9-12, 38]. Similarly, fertilizer-
enriched mesocosms and wetlands had higher popula-
tions of mosquito larvae compared to control treat-
ments [55, 56]. However, the mechanisms underlying
fertilizer-mediated increase in mosquito larval popula-
tions are poorly understood. Our results suggest that
fertilizer-mediated enhancement of habitat attractive-
ness and quality may be two of the major factors that
account for dramatic increase in mosquito larval
populations following application of nitrogenous
fertilizers. Fertilizer application promotes microbial
growth, which provide chemical cues that aid gravid
females to locate suitable oviposition sites [57, 58],
stimulate egg hatch [59], and serves as food for
mosquito larvae [60],

Avoidance of pesticide-treated oviposition substrates by
the two mosquito species was expected as pesticides could
be detrimental for egg and larval survival. However, previ-
ous studies have documented both positive and negative
effects of pesticides on oviposition site selection by mosqui-
toes. Aedes aegypti avoided ovipositing in grass infusion
treated with microbial larvicide Bacillus thuringiensis var.
israelensis but did not discriminate between tap water or
untreated grass infusion [61]. Gravid females of Aedes
aegypti were attracted to spinosad-treated oviposition
substrates but avoided temephos-treated substrates [62].
Similarly, Eugenol, citronellal, thymol, pulegone, rosemary
oil, and cymene acted as oviposition deterrents for Ae.
aegypti while borneol, camphor and (-pinene acted as
oviposition attractants for this mosquito species [63].
Carbaryl-treated pools were more attractive oviposition
sites for Culex mosquitoes but had no effect on oviposition
behavior of Anopheles mosquitoes [31]. Collectively, these
findings suggest that pesticides can alter oviposition behav-
ior of mosquitoes but the direction of the response is
pesticide-specific. Further studies are needed to establish
how a variety of mosquito species respond to different types
of commonly used pesticides.
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In general, mosquitoes from control and fertilizer treat-
ments took longer to develop and were smaller compared
to those from pesticide treatments. Given that pesticide
treatments had lower emergence rates compared to con-
trol and fertilizer treatments, we believe that random
elimination of some larvae by pesticides may have released
the survivors from larval competition thereby promoting
faster development and larger mosquitoes. It is also
possible that pesticides may have selectively favored the
survival of larger individuals with rapid growth and devel-
opment. Both mechanisms have been used to explain why
Aedes and Culex mosquitoes from experimental micro-
cosms exposed to low concentrations of pesticides develop
faster and are larger compared to those from control
treatments [18, 29, 64]. However, our study design could
not allow us to determine which of the two mechanisms
was responsible for our observation and further research
is needed on this topic.

Mosquito body size is commonly used as a proxy for
mosquito fitness and vector potential. Large mosquitoes
consume bigger blood meals and lay more eggs compared
to small mosquitoes [65]. Large mosquitoes also have lon-
ger life spans [2] and are more likely to survive through
the extrinsic incubation period of the pathogen compared
to smaller mosquitoes [66]. Thus, although fertilizer appli-
cation may lead to production of large numbers of adult
mosquitoes, this may not necessarily translate to increased
risk of pathogen transmission since the majority of adults
may be small and short-lived. This may be one of the
many factors explaining why rice cultivation in East Africa
is often associated with large populations of malaria vec-
tors but lower risk of malaria transmission compared to
adjacent non-irrigated agroecosystems [67—70]. However,
we did not observe any significant effect of agrochemical
treatments on adult mosquito life span. Moreover, both
fertilizers and pesticides are used simultaneously in many
agroecosystems and the large mosquitoes resulting from
pesticide treatments may have higher fecundity [64] and
longevity both of which may increase the risk of pathogen
transmission. However, although exposure of mosquitoes
to sublethal concentrations of pesticides is known to
enhance arbovirus transmission [28, 29], their impact on
malaria and LF transmission is poorly understood. Studies
using insecticide-resistant and insecticide-susceptible
strains of mosquitoes suggest that exposure to pesticides
may reduce the ability of the vector to transmit malaria
and LF [71-73] but additional studies are needed to assess
how short-term exposure of mosquitoes to sublethal pesti-
cide concentrations affect vector susceptibility to malaria
and LF parasites.

Conclusions
Our results demonstrate that the extensive and widespread
use of agricultural chemicals to promote agricultural
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production can have unexpected consequences on human
health by altering epidemiologically relevant mosquito life
history traits. In particular, we found that agrochemical
treatments can influence where mosquitoes lay eggs, how
long they take to complete their development, how many
adult mosquitoes are produced, and how big the resulting
adults will be. In turn, these traits can influence the spatial
and temporal distribution and abundance of mosquito
populations and associated pathogens. Additional studies
on sublethal effects of agricultural chemicals on mosquitoes
and the public health implications are warranted and
concerted efforts made to mitigate any potential negative
effects of agrochemical use on mosquito-borne diseases.
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