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Abstract

Background: Wildlife repatriation represents an opportunity for parasites. Reintroduced hosts are expected to
accumulate generalist parasites via spillover from reservoir hosts, whereas colonization with specialist parasites is
unlikely. We address the question of how myxozoan parasites, which are characterized by a complex life-cycle
alternating between annelids and fish, can invade a reintroduced fish species and determine the impact of a de
novo invasion on parasite diversity. We investigated the case of the anadromous allis shad, Alosa alosa (L.), which
was reintroduced into the Rhine approximately 70 years after its extinction in this river system.

Methods: We studied parasites belonging to the Myxozoa (Cnidaria) in 196 allis shad from (i) established
populations in the French rivers Garonne and Dordogne and (i) repatriated populations in the Rhine, by screening
the first adults returning to spawn in 2014. Following microscopical detection of myxozoan infections general
myxozoan primers were used for SSU rDNA amplification and sequencing. Phylogenetic analyses were performed
and cloned sequences were analyzed from individuals of different water sources to better understand the diversity
and population structure of myxozoan isolates in long-term coexisting vs recently established host-parasite systems.

Results: We describe Hoferellus alosae n. sp. from the renal tubules of allis shad by use of morphological and
molecular methods. A species-specific PCR assay determined that the prevalence of H. alosae n. sp. is 100 % in
sexually mature fish in the Garonne/Dordogne river systems and 22 % in the first mature shad returning to spawn
in the Rhine. The diversity of SSU rDNA clones of the parasite was up to four times higher in the Rhine and lacked
a site-specific signature of SNPs such as in the French rivers. A second myxozoan, Ortholinea sp., was detected
exclusively in allis shad from the Rhine.

Conclusions: Our data demonstrate that the de novo establishment of myxozoan infections in rivers is slow but of
great genetic diversity, which can only be explained by the introduction of spores from genetically diverse sources,
predominantly via straying fish or by migratory piscivorous birds. Long-term studies will show if and how the high
diversity of a de novo introduction of host-specific myxozoans succeeds into the establishment of a local successful
strain in vertebrate and invertebrate hosts.
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Background

The allis shad, Alosa alosa (L.) is an anadromous clupeid
fish whose original distribution covered the area from
the coast of southern Scandinavia to that of northwest-
ern Africa. This species has a pelagic marine existence
but upon maturation (4 to 6 years) migrates to spawn in
the higher middle watercourse of rivers [1]. The popula-
tions of allis shad decreased severely by the middle of
the 20th Century and are regarded as endangered on a
European level. A combination of anthropogenic factors,
such as the construction of dams on rivers that prevent
spawning migrations, the destruction of spawning
grounds, over-fishing and increasing pollution were con-
sidered to be causal [2, 3]. Residential populations of
allis shad were likewise extinct in the Rhine ecosystem
by the middle of the 20th Century [4, 5] until their
repatriation in the course of the EU-LIFE project “The
reintroduction of Allis shad (Alosa alosa) in the Rhine
system” (2007-2010) and the follow-on EU-LIFE+ pro-
ject “Conservation and Restoration of the Allis shad in
the Gironde and Rhine watersheds” (2011-2015). Within
these projects, allis shad brood stock from a natural
population in France were spawned in captivity and
10.66 million larvae reared in aquaculture facilities were
released into the Rhine system, between 2008 and 2014
[6, 7]. Adult shad first returned to spawn in the Rhine
six years after the release of larvae in these waters [7].

Wildlife repatriation after long periods of absence offers a
great opportunity for obtaining real time data on the
recolonization of hosts with parasites and for understand-
ing local species diversity. Whilst generalist parasites can be
obtained from reservoir hosts in a relatively short period of
time, colonization with specialist parasites is dependent on
the contact with members of established fish populations
elsewhere [8]. Allis shad shows natal site fidelity which pro-
vides fitness benefits due to local adaption [9, 10]. However,
some degree of straying has been observed, especially be-
tween neighboring populations [11].

Myxozoans are morphologically extremely reduced
cnidarian parasites with complex life-cycles that require
an invertebrate (predominantly annelid) definitive host
and a vertebrate (mainly fish) intermediate host [12, 13].
In the present study, allis shad originating from natural
populations in the Dordogne/Garonne river systems
were found infected with a myxozoan species belonging
to the genus Hoferellus Berg, 1898 in the renal tubules
and collecting ducts of the kidney. In cyprinids, Hoferel-
lus spp. show extreme host specificity [14]. Specialist
parasites with an indirect life-cycle can only establish if
(i) all hosts required for completion of the life-cycle are
present and (ii) one of the hosts becomes infected in a
given habitat. In this study, we describe Hoferellus alosae
n. sp. from Alosa alosa and investigate parasite SSU rDNA
clone diversity in established host-parasite populations in
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the Dordogne/Garonne watershed and in the first infected
hosts returning to the Rhine system for spawning. We
address the questions of genetic diversity of newly estab-
lishing myxozoan specialist parasite populations and the
potential sources of infection.

Methods

Origin of fish and diagnostic methods

During 2012-2014, allis shad were obtained from well-
established natural populations of two large rivers in
south-western France, the Dordogne and the Garonne
watersheds, which merge into a macrotidal estuary, the
Gironde that empties into the Atlantic (Fig. 1). In the
Rhine (Germany), reintroduced allis shad first returned
in 2014, when adults and newly-established young-of-
the-year populations were detected and sampled. In the
present study, 196 wild allis shad were analyzed for myx-
ozoan infections. The wild fish populations were repre-
sented by 110 adults and 23 young-of-the-year caught in
the Garonne/Dordogne system in France, as well as 9
adults and 54 young-of-the-year from the Rhine in
Germany (Fig. 1, Additional file 1: Table S1). Young-of-
the-year were directly frozen or fixed in 100 % ethanol
after capture. Adult allis shad caught in the Rhine were
frozen immediately or necropsied within 24 h after cap-
ture. The captive brood stock, which originated from the
Garonne and the Dordogne, was reared in two 10 m?
tanks for about 1 month at a breeding facility in Bruch,
France, as part of the reintroduction program. Allis shad
that died during this time period or fish euthanized at
the end of the reproduction period were analyzed during
the present study (Additional file 1: Table S1). Freshly
dead or moribund fish were frozen or analyzed immedi-
ately on site. The diagnostic methods were dependent
on the quality and quantity of available material. All
freshly dead and sacrificed fish were sectioned using
sterile instruments and a complete bacteriological,
mycological, virological and parasitological screening in-
cluding histology was performed within the framework
of the project. For the study of Hoferellus spp. infections,
squash preparations of the kidney were examined and
screened using light microscopy (Zeiss, Axiostar plus,
Oberkochen, Germany). Furthermore, 125 samples of
anterior kidney were fixed in 5 % formalin as well as 54
whole allis shad in Bouin’s solution (Sigma-Aldrich,
Taufkirchen, Germany). The Bouin-fixed samples were
decolorized over 24 h [15] and afterwards dehydrated in
an alcohol series together with the formalin-fixed kidney
samples, transferred to xylene and embedded in paraffin
at the Hessen State Laboratory, Germany. Paraffin
blocks were sectioned (4 pm), stained with haematoxylin
and eosin and analyzed using a Leica microscope (Leica
DM 2500, Leica Mikrosysteme Vertrieb GmbH, Wetzlar,
Germany).
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Fig. 1 Map of France and Germany showing the watersheds studied (Dordogne, Garonne and Rhine), stocking locations (A-G, see Hundt et al.

Parasite morphology

Kidneys from 14 freshly dead or euthanized adult allis
shad of the donor population (France) were transferred
into a 1.5 ml collection tube with 500 pl distilled water
containing 100 U/ml Penicillin-Streptomycin solution.
The material was sent to the Biology Centre of the
Czech Academy of Sciences and analyzed immediately.
Plasmodia and spores were examined on an Olympus
BX51 microscope equipped with an Olympus DP72
digital camera. Measurements of spores (1 =25) follow
the guidelines by Lom & Arthur (1989) [16] and were
taken on digital images, using Image] v.1_44p (Wayne
Rasband, http://imagej.nih.gov/ij).

SSU rDNA sequence analyses and genetic variability
between sites

Kidney samples of 100 allis shad (Additional file 1: Table
S1) frozen at -20 °C or fixed in 100 % ethanol were used
for molecular analyses. Kidneys were removed from
ethanol and briefly dried on a paper towel. Thereafter
they were placed in TNES urea buffer [17] and DNA
was extracted using proteinase K and a simplified
phenol-chloroform extraction method [18]. Two partial,
overlapping myxozoan SSU rDNA sequences were amp-
lified using nested PCR assays. Universal eukaryotic
primers ERIB1 and ERIB10 [19] were used in the first
round. The resulting PCR product was used in two
nested PCRs, employing myxozoan-specific primers: (i)
MyxGP2F [20] and ACTIR [21]; and (ii) Myxgen4F [22]

and ERIB10 (see above). The following PCR cycling con-
ditions were used: 95 °C for 3 min, thereafter 30 cycles
of 94 °C for 1 min, 60 °C [first round PCR)/58 °C (nested
PCRs) for 1 min, 68 °C for 2 min (first round PCR)/
1 min (nested PCRs)], followed by a final elongation step
at 68 °C for 10 min. PCRs were performed in 10 pl reac-
tions using Titanium Taq DNA polymerase. PCR products
were visualized on 1 % agarose gels stained with ethidium
bromide, purified using a Gel/PCR DNA Fragments Extrac-
tion Kit (Geneaid Biotech Ltd., New Taipei City, Taiwan)
and sequenced commercially (https://www.seqme.eu/en/).
Almost complete SSU rDNA sequences of H. alosae were
obtained from four fish each from the Garonne and the
Dordogne whereas the sequences obtained from infected
fish from the Rhine showed double peaks in the variable
sections of the SSU rDNA, indicating mixed infections.
Nested PCR products of these samples were subsequently
cloned into the pDrive Vector (PCR Cloning Kit, Qiagen,
Hilden, Germany) and plasmid DNA was isolated using
the High Pure Plasmid Isolation Kit (Roche Applied
Science, Penzberg, Germany). Twelve clones per nested
PCR product (2 overlapping partial SSU rDNA amplicons,
see above) per infected fish (2 individuals) from the Rhine
were sequenced and analyzed (fish individuals indicated in
Additional file 1: Table S1).

In order to estimate SSU rDNA genetic diversity and
compare it between Hoferellus isolates from different
fish and rivers, nested PCR products (primers MyxGP2F
and ACTI1R) were cloned as described above. In total,
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six clones per fish were sequenced from three allis shad
from the Dordogne, three shad from the Garonne and
two infected specimens from the Rhine. Clones were ob-
tained from adult shad as infection was only detected in
adults in the Rhine. However, to determine differences
in parasite diversity between the riverine young-of-the-
year and adults returning from the sea to the same river,
the same number of clones (3 fish, 6 clones each) was
obtained from juveniles in the Garonne. Sequences were
aligned in Geneious v8.1.3. (http://www.geneious.com,
[23]) using the MAFFT v7.017 algorithm [24] and the
L-INS-i method, with a default gap opening penalty
(—op =1.53) and gap extension penalty (—ep = 0.0). The
number and position of single nucleotide changes and
of polymorphic sites was noted and the divergence
calculated.

Phylogenetic analyses

The SSU rDNA sequences obtained for the Hoferellus
isolates from the three rivers as well as that of an
Ortholinea sp. SSU rDNA sequence from allis shad kid-
neys from the Rhine were aligned with 21 ingroup taxa,
which were selected on the basis of their close related-
ness (BLAST result on GenBank) and to represent all
sub-clades within the “freshwater myxosporean clade”
sensu Fiala [25]. Basal freshwater myxosporeans
Myxidium lieberkuehni Biitschli, 1882 and Chloromyxum
legeri Tourraine, 1931 were used as outgroup taxa.
Sequences were aligned as stated above and maximum
parsimony (MP) analysis was performed in PAUP*
v4.b10 [26], using a heuristic search with random taxa
addition, the ACCTRAN option, TBR swapping
algorithm, all characters treated as unordered and gaps
treated as missing data. Maximum likelihood (ML) ana-
lysis was performed in RAxML v7.2.8 [27] using the
GTR +T model. Clade support values were calculated
from 1000 bootstrap replicates with random sequence
additions for both MP and ML analyses. Bayesian infer-
ence analysis (BI) was performed in MrBayes v3.2.2 [28]
implemented in Geneious and using the GTR+T +1
model. MrBayes was run to estimate posterior probabil-
ities over 1,100,000 generations via 2 independent runs
of 4 simultaneous Markov Chain Monte Carlo (MCMC)
algorithms with every 200th tree saved. ‘Burn-in’ was set
to 100,000 generations.

Diagnostic PCR assay

In order to estimate true prevalences of Hoferellus infec-
tions in allis shad we designed a diagnostic PCR assay on
the basis of specific nucleotide differences in highly vari-
able regions of the SSU rDNA gene region. Primers HaloF
(5'-CTT TGC GGT TTA CCC CAG AGG-3') and HaloR
(5'-AAT TTC GAC GCC CAT AGT TGC-3') were used
in PCR (see cycling protocol above) using 56 °C as
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annealing temperature and 40 s for elongation. The result-
ing 865 bp PCR product was sequenced from 15 kidney
isolates including all rivers (see Additional file 1: Table S1).
Specificity of the PCR assay was tested on DNA isolates of
phylogenetically related myxosporeans H. cyprini (Doflein,
1898), H. carassii Akhmerov, 1960, Hoferellus sp., H.
anurae Mutschmann, 2004, H. gnathonemi Alama-
Bermejo, Jirkti, Kodadkova, Peckovd, Fiala & Holzer, 2016,
Ortholinea orientalis (Shul’'man & Shul’'man-Albova, 1953)
and Ortholinea sp. (present study). All samples obtained in
this study were screened for potential H. alosae n. sp.
infection.

Scanning electron microscopy

The spores used for scanning electron microscopy
were gently spun and pipetted onto filter paper
(Millipore Millex-HV size 0.45 pl). The filter paper
was stuck on a stub using Tissue-Tek and rapidly
frozen (< 10 K/s) in slushy nitrogen. After freezing,
the sample was transferred to a high vacuum prepar-
ation chamber (ALTO 2500, Gatan). The surface of
the sample was sublimated at -95 °C, for 1 min. After
sublimation, the sample was coated with a mixture of
platina and paladium at a temperature of -135 °C.
The coated sample was analyzed on a Field Emission
Scanning Electron Microscope (JSM-7401 F, JEOL).
Images were obtained at an accelerating voltage of
1 kV using GB high mode.

Results

Phylum Cnidaria Hatschek, 1888

Class Myxosporea Biitschli, 1881

Order Bivalvulida Schulman, 1959
Suborder Variisporina Lom & Noble, 1984
Family Sphaerosporidae Davis, 1917
Genus Hoferellus Berg, 1898

Hoferellus alosae n. sp.

Type-host: Alosa alosa (L.) (Actinopterygii: Clupei-
formes: Clupeidae), allis shad.

Type-locality: River Garonne, France (mainly 44°06'33"N,
0°51'14"E).

Other localities: River Dordogne, France (mainly 44°
50'42"N, 0°37'59"E) and River Rhine, Germany (49°04'09"N,
8°25'55"E and 49°24'19"N, 8°29'40"E); for additional sites see
Additional file 1: Table S1.

Type-material: Unstained spores, fixed for 1 h in neutral
buffered formalin, washed and mounted in glycerol-
gelatine; ethanol-fixed infected kidney tissue of A. alosa,
DNA extracted from infected kidney tissue stored at -80 °C;
2 histological slides stained with haematoxylin and eosin
are deposited in the Collection of the Laboratory of Fish
Protistology, Institute of Parasitology, Biology Centre of the
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Czech Academy of Sciences, Ceské Budéjovice, Czech
Republic (record number: IPCAS Prot 34; collection
curator: Miloslav Jirkd, miloslav.jirku@seznam.cz).
Location of sporogonic stages: Kidney tubules (predom-
inantly in anterior kidney), ureters and urinary bladder,
exceptionally in Bowman’s capsules.

Prevalence: Determined by PCR. Garonne (2012-2014):
adults 100 % (33/33), young-of-the-year 63.6 % (14/22);
Dordogne (2013): adults 100 % (10/10); Rhine (2014):
adults 22.2 % (2/9), young-of-the-year 0 % (0/26).
Representative DNA sequences: Three SSU rDNA
sequences are submitted to the GenBank database under
accession numbers KU301050-KU301052.

ZooBank registration: To comply with the regulations
set out in article 8.5 of the amended 2012 version of the
International Code of Zoological Nomenclature (ICZN)
[29], details of the new species have been submitted to
ZooBank (www.zoobank.org). The Life Science Identifier
(LSID) of the article is urnisid:izoobank.org:pub:
15E34957-2C16-43E8-B374-845148395D1B. The LSID for
the new name Hoferellus alosae is urn:lsid:zoobank.org:act:
230BD64C-E2C6-41D6-8DFC-19DC4362F237.
Etymology: Species name ‘alosae’ refers to the species
name of the host Alosa alosa.

Description

Mature spore. Mature spores subspherical in valvular
view, ellipsoidal in sutural view, posteriorly rounded,
measuring 9.1-10.3 (9.7 £ 0.4) pm in length, 7.7-9.2 (8.4
+0.5) um in width, and 7.2-8.3 (7.7 + 0.3) um in thickness
(n =25 spores). Valves thickened at posterior end of spore,
with 2 distinct but relatively small posterior valve projec-
tions (Fig. 2), occasionally with 3 to a maximum of 7 pos-
terior filaments measuring 5-22 pm (Figs. 2 and 3b).
Sutural line between valve cells straight, well marked;
valves with 12 longitudinal ridges parallel to suture line,
bifurcating in center of each valve, forming a distinct pat-
tern (Fig. 3¢, d). Polar capsules 2, equally sized, subspheri-
cal, 3.5-44 (4.0+0.2) um long, 24-3.6 (3.0+0.3) pm
wide (1 =25 spores). Polar filament with 5 turns. Sporo-
plasm in posterior part of spore, bi-nucleated.

Plasmodium. Plasmodia polymorphous (round, spher-
ical or elongated), often with finger-like processes
averaging 20 pm in length (Fig. 3a). Plasmodia di- to
polysporous, without visible pansporoblast formation,
measuring 25-71 x 18-53 um.

Remarks

Five Hoferellus spp. have been found in nine clupeid spe-
cies worldwide; of these four were reported from mem-
bers of the genus Alosa but none of them from the allis
shad (Table 1). Hoferellus donecii (Gasimagomedov,
1970) [30] and H. jurachni Moshu & Trombitsky, 2006
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Fig. 2 Schematic line drawing of Hoferellus alosae n. sp. ex Alosa alosa

[31] differ considerably from H. alosae n. sp. with regard
to spore shape and length as well as organization of the
posterior spore appendages. Hoferellus caspialosum
(Dogiel & Bychovsky 1939) [32] is smaller in size than
H. alosae n. sp. Hoferellus caudatus (Parisi, 1910) [33]
overlaps with H. alosae n. sp. with regard to most mea-
surements. However, in contrast to H. alosae n. sp., this
species was shown to consistently possess long posterior
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The arrow in ¢ indicates capsular openings at the apical pole of the spore

Fig. 3 Morphological characteristics of Hoferellus alosae n. sp. spores and plasmodia. Light microscopy photomicrographs of a polysporous plasmodium
with finger-like surface extensions (FE Plasm) and b spores with posterior filaments (FIL), one polar capsule with extruded polar filament (PF). ¢, d Scanning
electron micrographs of spore surface showing suture between valves and longitudinal ridges and their characteristic pattern in the center of each valve.

filaments, while H. alosae n. sp. was only occasionally
found to have posterior filaments. Furthermore, the pos-
terior end of the spore of H. caudatus is serrated
whereas that of H. alosae n. sp. is smooth with only one
small process on each valve. Hoferellus caudatus was de-
scribed from an isolated, landlocked population of twaite
shad Alosa agone (Scopoli, 1786) in Lake Como in Italy
[33, 34], but was later reported from the anchovy
Engraulis encrasicolus (L.) [35] and its Azov Sea-
inhabiting subspecies E. encrasicolus maeoticus Pusanov,
1926 [36]. Considering the important difference in host
habitat and the recently described strong host specificity
of Hoferellus spp. in closely related cyprinids [12], it may
be speculated that the records of Reshetnikova [35] and
Naidenova [36] refer to a different parasite species in the
anchovies. One could suspect a similar case for H.
caspialosum which was described from the Caspian shad
Alosa caspia caspia (Eichwald, 1838) by Dogiel &
Bychovsky [32] but later reported from the Pontic shad

Alosa immaculata Bennet, 1835 and the twait shad
Alosa fallax (Lacépede, 1803) [37]. However, in contrast
to A. alosa, the latter Alosa spp. are more closely related
and their exact relationship is unresolved [38]. Unfortu-
nately, SSU rDNA sequences are presently only available
for H. alosae n. sp. from the allis shad.

Pathology and diagnostics

The gross examination of allis shad revealed no patho-
logical or macroscopically visible changes of the kidney.
In allis shad from the Garonne/Dordogne system the in-
tensity of infection with Hoferellus alosae n. sp. was esti-
mated as mild in 45 %, moderate in 47 % and severe in
9 % of cases, while the infection intensity of allis shad
from the Rhine was always mild. Depending on the in-
tensity of infection, the tubules were mildly to severely
dilated, but generally no further pathological changes of
the kidney tubules, the parenchyma or the excretory
ducts were observed. In a single severe case the rupture



Table 1 Summary of Hoferellus spp. reports from Alosa spp. including information on localities and morphological characteristics

Plasmodia Spores
Species Host records Localities  Site of  Size (um) Description Spore size Description Valve Posterior processes PC size PC
infection () striations (um) description
H. alosae Alosa alosa  Dordogne  Renal 25-71x18-53  Polymorphous in [:9.1-103 Subspherical, 12 2, small, occasionally L:35-44  Equal in size,
n. sp. (L) and tubules, shape, di- to (9.7 £04); pronounced longitudinal  up to 7 hair-like (40+0.2); subspherical,
Garonne ureters, polysporous, without W: 7.7-9.2 suture line; ridges filaments up to W:24-36  pyriform;
(France), urinary pan-sporoblasts; (84 £0.5); single-celled 22 um long (3.0£03) filament in 5
Rhine bladder surface with T.72-83 bi-nucleated coils
(Germany) finger-like processes (7.7 £0.3) sporoplasm
H. jurachni Moshu  Alosa Sasyk Lake, Renal 24-63 x 15-25, Polymorphous in L:85-125 Triangular 4-8 Numerous short, L:3.5-40 Equal in size,
& Trombitsky, 2006  tanaica Cuciurgan tubules, disporous shape, polysporous,  W: 6.4-7.5 shape; flattened  longitudinal  lamellate processes spherical,
(Grimm, reservoir ureters,  pansporoblasts  with disporous T:7.5-100 anterior pole, lines surrounded by pointed
1901) [31] urinary  125-16.5 pansporoblasts; narrow posterior transparent mucous towards
bladder surface with small pole envelope opening
lobo- podia
H. caudatus Alosa agone  Lake Renal Polymorphous in L:10-11 Subspherical, Posterior end of L: 40-4.5
(Parisi, 1910) (Scopoli, Como, tubules shape, with valves thick valves serrated with
(syns Sphaerospora  1786) [33]%  Italy disporous (2-3 um), 6 long filaments
caudata; Mitraspora . pansporoblasts pronounced emerging from
caudata) Engrau/ls Black Sea and lobopodia suture line sma\\gpr(%ections
encrasicolus
maeoticus
(Pusanov,
1926) [35,
36]
H. caspialosum Alosa caspia  Peninsula  Renal 12-15 Round in shape L:85; Round to oval Posterior end of spore Polar
(Dogiel & caspia Sara, tubules W: 7.7 with a number of small filament in 4
Bychovsky, 1939) (Eichwald, Caspian protrusions/projections; coils
(syn. Sphaerospora  1838) 321°  Sea, long filaments not
caspialosae) Azerbaijan observed
Alosa Black Sea
immaculata
Bennet,

1835% Alosa
fallax,
(Lacépede,
1803) [37]°

Abbreviations: L length, W width, T thickness, PC polar capsule
®Reported as A. finta lacustris (Fatio, 1890)

Preport is related to jun. syn. Caspialosa caspia (Eichwald, 1838)

‘report is related to jun. syn. Alosa kessleri pontica (Eichwald, 1838)
dreport is related to Alosa fallax nilotica (Geoffroy Saint-Hilaire, 1809)
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of dilated renal tubules led to an inflow of H. alosae n.
sp. in the surrounding kidney parenchyma causing an in-
flammation with infiltration of epitheloid cells.

The PCR assay designed in this study was specific for H.
alosae n. sp. and did not amplify DNA of any phylogenet-
ically related species screened in this study (see Methods).

SSU rDNA sequence diversity in host individuals and river
systems

In allis shad from the Dordogne/Garonne river system,
all sequences obtained by direct sequencing of PCR
products and by sequencing of clones belonged to a sin-
gle species, H. alosae n. sp. In contrast, in shad from the
Rhine, H. alosae n. sp. was amplified from two individ-
uals that had mixed infections of H. alosae n. sp. with a
second myxozoan inhabiting the urinary tract of allis
shad. This second myxozoan was later morphologically
identified as Ortholinea sp., via spores detected in histo-
logical sections and the partial SSU rDNA sequence was
submitted to GenBank under the accession number
KU301053. Ortholinea sp. was also detected in a third
fish from the Rhine (identified by SSU rDNA sequences
from the nested myxozoan PCR assay), which had no
mixed infection with H. alosae n. sp.

Almost full length SSU rDNA PCR products of H. alo-
sae n. sp. in numerous fish from the Garonne did not
exhibit variable positions or polymorphic sites, whereas
those in allis shad from the Dordogne showed six con-
sistent single nucleotide polymorphisms (SNPs) at posi-
tions 100 (A/G), 524 (C/T), 527 (C/T), 590 (A/G), 608
(C/T), 825 (C/T), in a 1923 bp alignment. The compari-
son of cloned partial SSU rDNA sequences (901 bp) for
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H. alosae n. sp. encompassing these sites, revealed
two additional polymorphic sites (total of 8) and showed
that clones from individual fish varied in only 3-7 base
changes (1 SNP) in the Garonne, in 9-10 base changes
(6 SNPs) in the Dordogne and in 15-18 base changes (2
SNPs) in the Rhine (summarized in Table 2; detailed in
Additional files 2, 3 and 4: Tables S2, Tables S3 and Ta-
bles S4, see alignment in Additional file 5: Figure S1).
Only a single SNP site overlapped between different riv-
ers (position 655, rivers Rhine and Garonne). The gen-
etic diversity comparison between young-of-the-year
shad and adult fish returning to spawn (Garonne)
showed a similar signature, with 3-7 base changes vs 3—
5 base changes and the presence of a single, identical
SNP (Table 2, Additional file 5: Figure S1). Sequence di-
vergence between complete SSU rDNA sequences (PCR
products of 19 fish; 1922 bp) was 0-1.09 % and that be-
tween partial cloned SSU rDNA isolates (66 sequences;
901 bp) was 0-1.44 %.

Phylogenetic relationships

BLAST results and subsequent pairwise sequence align-
ments indicated O. orientalis as the closest relative of H.
alosae n. sp., with only 87-88 % SSU rDNA sequence
identity. The second myxozoan SSU rDNA sequence be-
longs to Ortholinea sp. and was isolated from three fish
in the Rhine. The sequence was almost identical to O.
orientalis, with only 1.8-2.0 % sequence divergence over
912 bp. A consistent number of 15 nucleotide changes
in the variable regions of the SSU rDNA suggest Ortholi-
nea sp. is a different, but very closely related species.
Phylogenetic analyses (MP/ML/BI; Fig. 4) showed that

Table 2 Hoferellus alosae n. sp. SSU rDNA diversity in different rivers. Location and frequency of single nucleotide polymorphic (SNP)
site changes and number of individual nucleotide changes identified in 901 bp cloned SSU rDNA fragments of H. alosae n. sp.

from Alosa alosa (6 clones per fish sequenced)

River-fish individual® SNP sites and number of changes Other nt Total sites
91 95 519 522 585 603 655 820 changes  with nt
C»T A-»G T-»C T-»C A-G CoT CoT  CoT changes
Garonne - F39 - - - - - 1/6 - 4 5
Garonne - F240 - - - - - 1/6 - 2 3
Garonne - F243 - - - - - 1/6 1/6° 3 5
Garonne - F241 - - - - - - 1/6 - 6 7
Garonne - F247 - - - - - - - 3 3
Garonne - F248 - - - - - - 2/6 - 4 5
Dordogne - F179 - 6/6 6/6 6/6 6/6 6/6 - 6/6 4 10
Dordogne - F187 - 1/6 1/6 1/6 1/6 1/6 - 2/6 3 9
Dordogne - F188 - 3/6 5/6 5/6 2/6 5/6 - 5/6 3 9
Rhine - D281 3/6 - - - - - - - 14 15
Rhine - D290 1/6 - - - - 6/6 - 16 18

#Compare Additional file 1: Table S1

PNot considered a polymorphic site in Garonne as change observed in only 1/36 clones
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Ortholinea sp. clusters with O. orientalis and the three
H. alosae n. sp. river isolates in a well-supported group
(Fig. 4). This group furthermore clustered in polytomy
with two clades composed of three Hoferellus (sensu
lato) spp. (i.e. H. gilsoni (Debaisieux, 1925), H. anurae
and H. gnathonemi) and of Ortholinea spp. + Myxobila-
tus gasterostei (Parisi, 1912) + Acauda hoffimani Whipps,
2011. Importantly, H. alosae n. sp. clustered outside the
Hoferellus (sensu stricto) clade (comprising the type-
species H. cyprini as well as H. carassii and Hoferellus
sp. ex Cyprinus carpio L.) and hence is to be considered
Hoferellus (sensu lato).

Discussion

Little is known about the population structure and dy-
namics of myxozoans, and information on the de novo
establishment of myxozoans in watersheds that have
been extirpated of obligatory fish host populations is
missing to date. The repatriation program of the allis
shad, A. alosa, in the Rhine allowed a unique first insight
into the repopulation by myxozoans, and the diversity of
new parasite settlements compared with watersheds
where hosts and parasites have coexisted for a long
period of time.

Bagliniére & Elie [39] listed 16 species of Alosa native
to the northern hemisphere and distributed through the
western and eastern Atlantic coasts, the Mediterranean,
Black and Caspian Seas, as well as Lake Volvi (Greece).
The genus shows a large variation in life-history strat-
egies (mostly anadromous, but also amphidromous, en-
tirely marine and strictly freshwater) and a capacity to
colonize new habitats thus making the genus Alosa an
interesting model to study speciation and adaptation of
the host itself and its parasites. To date, four Hoferellus
spp. have been described from the urinary tract of Alosa
spp. (Table 1). However, due to the different life strat-
egies and hence geographical isolation (see also remarks
in the species description) and strong host specificity in
coelozoic myxozoans (e.g. [40—42]) with limited but con-
vincing evidence also from the genus Hoferellus [14],
parasite diversity in the genus Alosa may be larger than
presently estimated. Unfortunately, sequence data are
only available for H. alosae n. sp. from A. alosa (present
study). Phylogenetic analyses of SSU rDNA sequences
for Hoferellus spp. from different Alosa spp. and geo-
graphical localities in relation to host phylogeny would
shed light on the diversity of species and the co-
evolutionary history of Alosa spp. and their Hoferellus
Spp. parasites.

In myxozoans, species boundaries are difficult to de-
termine as fish are unlikely infected by only one spore
from a single parasite clone produced in one inverte-
brate host individual. SSU rDNA sequences have been
widely used to describe and diagnose myxozoan species.
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rDNA occurs in a number of copies in eukaryotic cells
[43], with around estimated 1000 copies in myxozoan
rDNA [44—46]. Despite the concerted evolution of the
rRNA gene [47], some degree of variation exists between
these copies. Hence, rDNA sequences obtained from a
single fish host show the full spectrum of such intrage-
nomic heterogeneity as well as of intraspecific hetero-
geneity between ‘strains’ or genotypes. When assuming
intragenomic heterogeneity as a constant in isolates of a
single species, any additional variation can be ascribed to
host- or site-specific variation. Comprehensive data on in-
traspecific variation of rDNA sequences are available for
only a few myxozoan species, Myxobolus cerebralis Hofer,
1903 [48, 49], Tetracapsuloides bryosalmonae Canning,
Curry, Feist, Longshaw & Okamura, 1999 [47, 48], Kudoa
thyrsites (Gilchrist, 1924) [50], Ceratonova shasta (Noble,
1950) [51, 52] and Parvicapsula wminibicornis Kent,
Whitaker & Dawe, 1977 [53]. In most cases, variations
have been ascribed to geographical differences between
isolates. However, in the case of C. shasta, four sympatric
genotypes were described, that showed little geographical
structure in the parasite population but profound popula-
tion isolation effects created by utilizing different verte-
brate hosts. To some extent, population structuring by
fish host was also evident in coho and Chinook salmon in
P. minibicornis. In contrast to these species, H. alosae n.
sp. seems to be host-specific and geographical isolation
appears to be the main factor for SSU rDNA site
variability.

Reports of allis shad populations in the Garonne and
the Dordogne date back to the end of the 18th Century
[54] and stocks are well-established despite a present de-
cline [55]. Hoferellus alosae n. sp. SSU rDNA sequence
variation is larger in hosts from the Dordogne (9-10 nu-
cleotide positions and 6 SNPs) than in the Garonne (3-7
nucleotide positions, 1 SNP), potentially indicating a
higher diversity in hosts from the Dordogne. This is sur-
prising since the Garonne is longer (575 vs 472 km) and
has a much larger number of tributaries, suggesting a
higher diversity of invertebrate host habitats and popula-
tions of H. alosae n. sp. [56]. However, the distribution of
susceptible oligochaete species is correlated to a variety of
conditions [51, 57-59] and remains poorly understood.
Independently, the presence of six SNP positions out of a
total of 9-10 nucleotide changes indicates the establish-
ment of a locally different ‘strain’ or genotype of H. alosae
n. sp. in the Dordogne watershed when compared with
that of the Garonne. Ceratonova shasta only showed three
SNP SSU rDNA sites while P. minibicornis exhibited 17
SNPs [51, 53]. In contrast to these two species, our study
was limited to a comparatively small sample set from
three river systems (Garonne/Dordogne and Rhine) that
revealed eight SNPs. The population dynamics of C.
shasta and P. minibicornis are considerably different as a
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number of genotypes exist in different salmonid hosts and
a polychaete definitive host is used in both cases [52, 53].
Hoferellus alosae n. sp. is expected to be very host-specific
and to use an oligochaete definitive host, since it clusters
in the ‘freshwater’ clade of myxozoans as defined by Fiala
[25] whose members parasitize oligochaetes [60]. We ex-
pected to find more overlap in SNPs between the geo-
graphically close and estuary-linked French rivers. In
contrast, our present data indicate a clear separation of H.
alosae n. sp. populations in these rivers, which are charac-
terized by a unique nucleotide signature for each river.
The overlapping nucleotide signature pattern in young-of-
the-year and adults in the Garonne indicate that straying
of allis shad is limited, resulting in the establishment of

local successful parasite genotypes as a consequence of
long-term co-evolution of H. alosae n. sp. and allis shad in
a specific watershed or microhabitat.

The SSU rDNA sequence variability pattern of H.
alosae n. sp. in the first returners (2014) of allis shad re-
patriated in the Rhine was defined by only one (out of
two) common SNP. The large number of individual
changes in different clones (14—16) may indicate the exist-
ence of further SNP sites which cannot be identified at
present. Likely, they represent those of close-by rivers,
such as e.g. the Scheldt or the Meuse, where allis shad
may be straying to or from. The large number of changes
is likely a result of geographical distance from the French
rivers. However, the nucleotide signatures (known SNPs
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and single nucleotide changes) vary to the same extent be-
tween the isolates from the Rhine as between Rhine and
Garonne or Dordogne, rivers in which SNP signatures are
site-specific and relatively homogenous. This strongly in-
dicates that the infection in the two Rhine shad originates
from at least two different sources and that genetic diver-
sity in repatriated allis shad in the Rhine is higher than
that found in established fish populations in the French
rivers. Since the majority of the changes represents single
nucleotide changes it may even be speculated that they
represent multi-site signatures. The recovered isolates
show a complexity that requires further analysis. In order
to determine the diversity of H. alosae n. sp. isolates and
populations in different watersheds as well as riverine mi-
crohabitats in more depth, the analysis of polymorphic
microsatellite loci would be desirable as it allows a better
fine scaling of the population structure in complex organ-
isms like myxozoans that are characterized by clonal,
vegetative and sexual reproduction. However, our findings
underline that the analysis of parasites and their genetic
diversity is a valuable tool to investigate biological charac-
teristics and ecosystem variations.

The twaite shad, A. fallax shares A. alosa’s history of
population decrease in the middle of the 20th Century
but small populations can now be found restricted to
the lower Rhine [61]. Though unlikely identical with H.
caspialosum (originally described from geographically
isolated A. caspia caspia, see Table 1 and Remarks
section), the twaite shad in the Rhine may still harbor
Hoferellus infection. In phylogenetic studies, A. alosa
and A. fallax form clearly distinct lineages [38], even in
watersheds where they hybridize [62]. The question
arises whether the twaite shad can serve as a reservoir
host for H. alosae n. sp. in the Rhine. Arguments that
reject this hypothesis and the consequential existence of
H. alosae n. sp.-infected oligochaete populations in the
Rhine are: (i) Low infection rates of A. alosa [adults
22.2 % (2/9), young-of-the-year 0 % (0/26)] in contrast
to the French rivers where 100 % of adults and 63.6 % of
juveniles harbor infection, confirming the high preva-
lences typical for myxozoans in riverine habitats with ef-
fective dissemination of infective spore stages in the
water current (e.g. [63]), and (ii) The high genetic diver-
sity and lack of an identical genetic signature of H.
alosae n. sp. isolates from the Rhine. Alosa fallax were not
examined in the course of this project, however, these
circumstances strongly suggest that A. fallax does not
serve as a reservoir host for H alosae n. sp. More likely,
infection in the returning adults results from their con-
tact with different H. alosae n. sp. enzootic watersheds.
Alternatively, oligochaetes in parts of the river may be-
come infected by spores released from straying allis shad
originating from elsewhere or by spores released via the
faeces of migratory piscivorous birds. The importance of
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avian vectors in the translocation of spores is unexplored
to date but M. cerebralis spores are able to infect oligo-
chaetes after avian intestinal passage and are released for
several days after fish consumption [64]. New invasion
and colonization events are generally associated with
founder effects that reduce genetic variation in incipient
populations [65]. However, due to the abundance and di-
versity of myxozoans in different aquatic habitats and a
variety of source localities for de novo invasion this ap-
pears to be the opposite in this group. High SSU rDNA
diversity in H. alosae n. sp. from the Rhine and the pres-
ence of another myxozoan, Ortholinea sp., which was
absent from the French watersheds but present in three
out of nine adult shad in the Rhine, suggests that myx-
ozoan parasite introduction into parasite-free territory is
characterized by a high diversity of species and ‘strains’.
To our knowledge, this is the first time that initial parasite
introduction data are available for myxozoans. Monitoring
of the infections in repatriated allis shad returning to
spawn over following years will allow to obtain real-time
data on within-host competition and the survival and pre-
dominant establishment of the fittest in the Rhine.

Conclusion

To the best of our knowledge, this is the first study on a de
novo introduction of a myxozoan species in a river where
the host fish population was repatriated after 70 years of
absence and loss of infection from the alternate invertebrate
host. The first adults of allis shad returning to spawn in the
Rhine showed low infection prevalence of H. alosae n. sp.
when compared to established fish populations in France,
where all adults were found infected. However, the diversity
of H. alosae n. sp. clones in only two infected hosts varied
as strongly between the Rhine isolates as between the Rhine
and two rivers with established fish populations and H. alo-
sae n. sp. infections in France. Additionally, a second spe-
cies, Ortholinea sp., was only found in the Rhine. This
comparatively high diversity in the newly established host
population can only be explained by the introduction of
spores from genetically diverse sources, most likely via
straying hosts. The allis shad repatriation study in the
Rhine presently offers the unique opportunity for a long-
term study of a de novo settlement of this host-specific
myxozoan and its succession from high diversity as a re-
sult of multiple introductions to a locally established, pre-
sumably successful strain, which characterize each of the
French rivers.
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