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Abstract

with VLPs together with CT adjuvant.

Background: The frequent outbreaks of human trichinellosis globally underscore the need to develop effective
vaccine. We hypothesized that a novel vaccine could improve vaccine efficacy against Trichinella spiralis.

Methods: In this study, we developed virus-like particles (VLPs) containing the 53 KDa excretory/secretory (ES)
protein of T. spiralis and the influenza matrix protein 1 (M1) as a core protein, and investigated the protective
efficacy of the VLPs alone or with cholera toxin (CT) in a mouse model.

Results: Intramuscular immunization induced T. spiralis-specific 1gG, IgG1 and IgG2a antibody responses before and
after challenge infections in the sera. These antibody responses were significantly enhanced in mice immunized
with adjuvanted VLPs. Upon challenge infection, vaccinated mice showed significantly reduced worm burden in the
diaphragm. Protective immune responses and efficacy of protection were significantly improved by immunization

Conclusions: Our results are informative for a better understanding of the protective immunity induced by T.
spiralis VLPs, and will provide insight into designing safe and effective vaccines.
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Background

Trichinellosis is a parasitic infection caused by Trichi-
nella spiralis, which is a serious parasitic zoonosis and a
globally endemic disease [1-3]. Human infection is com-
monly the result of eating raw or undercooked meat
containing Trichinella larvae. Pork and its products are
closely associated with outbreaks of human trichinello-
sis. The global prevalence of trichinellosis is difficult to
evaluate, but as many as 11 million people may be in-
fected. The frequent outbreaks of human trichinellosis
globally underscore the need to develop an effective vac-
cine [4—6]. The development of vaccines would have sig-
nificant impact towards the ultimate goal of disease
elimination [7, 8].
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Natural parasite extracts, recombinant protein, syn-
thetic peptides, attenuated phage display and genetic
immunization have been used for vaccine studies. Radi-
ation, ultraviolet-attenuated or DNA-plasmid vaccines
for Trichinella spiralis were found to be highly protect-
ive in experimental animals. However, such vaccines are
not well suited for field use [5, 6, 9-11].

Recombinant vaccines based on virus-like particles
(VLPs) or nanoparticles have displayed promising safety
and efficacy in preclinical and clinical studies [12].
Virus-like particles resemble viruses, but do not contain
any viral genetic material. Thus, they do not replicate,
having advantages for safety [13—15]. VLPs contain re-
petitive high density displays of viral surface proteins,
which present conformational epitopes that can elicit
strong cellular and humoral immune responses [12].

Immunization with 7. spiralis ES protein elicits a robust
immune response, and resulted in complete protection
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against infective larvae [16]. The 53 kDa protein of T. spir-
alis has been used as an immunomodulatory protein for
treating inflammatory disease such as bowel diseases [17].
The T. spiralis 53 kDa protein is reported to be a novel
serological marker and vaccine candidate [18]. The 53-
kDa recombinant proteins provide early and species-
specific antibody responses in mice infected with T.
spiralis [19]. However, there is no report on vaccine ef-
ficacy of T. spiralis 53 kDa against challenge infection.
Thus, we were interested to test the hypothesis that T.
spiralis 53 kDa protein in virus-like nanoparticle form
could be an important immunogen which could induce
humoral and/or cellular immunity.

To the best of our knowledge, in this study for the first
time VLPs derived from parasite 7. spiralis were pro-
duced. These novel VLPs containing 7. spiralis 53 kDa
protein and influenza matrix M1 as a core protein were
evaluated as a potential vaccine. We also investigated
the effect of CT as an adjuvant for the VLP vaccine.

Methods

Parasite, virus, cells and antibodies

Korean isolate of T. spiralis was obtained from specific
pathogen-free female, inbred Sprague—Dawley (SD) rats,
aged 8 weeks, maintained by serial oral passage. Influ-
enza virus (A/PR/8/34) was used to infect MDCK cells.
Spodoptera frugiperda Sf9 cells were maintained in sus-
pension in serum-free SF900II medium (Invitrogen,
Carlsbad, USA) at 27 °C in spinner flasks at a speed of
130 to 140 rpm. Horseradish peroxidase (HRP)-conju-
gated goat anti-mouse immunoglobulin A (IgA) and G
(IgG), IgG1 and IgG2a were purchased from Southern
Biotech (Birmingham, USA).

Preparation of T. spiralis antigen

Trichinella spiralis excretory/secretory (ES) product was
produced as described previously [20-22]. Larvae of T.
spiralis were isolated from rat muscle tissue by artificial
digestion and washed. Clean larvae were incubated in a
CO, incubator for 24 h at 37 °C in Petri dish containing
RPMI-1640 culture medium without FBS. The culture
supernatants were collected by centrifugation. The
supernatant was dialyzed and lyophilized. The protein
concentration was determined by QuantiPro BCA Assay
Kit (Sigma-Aldrich, St Louis, USA). Trichinella spiralis
ES products were identified by SDS-PAGE (Additional
file 1: Figure S1) and stored at -70 °C until use.

Construction of rBV expressing T. spiralis (T653K) and
influenza M1

Total RNA was extracted from the T. spiralis larvae
using RNeasy Mini Kit (Qiagen, Valencia, USA). The
RNA was reverse transcribed to cDNA using the Prime
Script 1st strand ¢cDNA synthesis kit according to the
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manufacturer’s instructions (Takara, Otsu, Japan). The
c¢DNA was used as a template to amplify the complete
coding sequence of T653K by polymerase chain reaction
(PCR). The primers were designed according to the nu-
cleotide sequence of T653K in GenBank (accession
number: DQ399914): forward (5'-AAA GAA TTC ACC
ATG TTC AGC ATC ACA TTA AA-3’) and reverse
(5'-TTA CTC GAG TTA GAA CAA CAA CTG TAG
T-3") with EcoRI and Xhol restriction enzyme sites. The
PCR product was inserted into the pFastBac vector
(Invitrogen, Carlsbad, USA). For M1 gene cloning,
A/PR/8/34 virus was inoculated into MDCK cells and
total viral RNA was extracted using an RNeasy Mini kit
(Qiagen, Valencia, USA). Reverse transcription (RT) and
PCR were performed on extracted viral RNA using the
One-Step RT-PCR system (Invitrogen, Carlsbad, USA)
with gene specific oligonucleotide primers. The follow-
ing primer pairs were used forward, M1 (5'- TCC CCC
GGG CCA CCA TGA GCC TTC TGA CCG AGG TC
-3"); reverse, M1 (5'- TTA CTT CTA GAT TAC TTG
AAC CGT TGC ATC TG -3") with Smal and Xbal
restriction enzyme sites. Following RT-PCR, a cDNA
fragment containing the M1 gene was cloned into the
pFastBac vector (Invitrogen, Carlsbad, USA). The re-
combinant plasmid was transformed into E. coli DH5-
alpha and transferred into a DH10-Bac. The nucleotide
sequences of M1 (accession number: EF467824) and
T653K (accession number; DQ399914.1) genes in the
pFastBac vector were confirmed by DNA sequencing.

Production of recombinant baculovirus and VLPs
Transfections of DNA containing the above genes were
accomplished using cellfectin II (Invitrogen, Carlsbad,
USA) with Sf9 cells as recommended by the manufac-
turer, followed by transformation of pFastBac containing
T653K or influenza M1 with white/blue screening. The
rBVs were derived by using a Bac-to-Bac expression sys-
tem (Invitrogen, Carlsbad, USA). To produce VLPs con-
taining T653K and M1, Sf9 cells were co-infected with
rBVs expressing T653Kand M1. Cell culture superna-
tants were collected on day 2 or 3 post-infection, cleared
by centrifugation at 6,000 rpm for 30 min at 4 °C to re-
move cells. VLPs in the supernatants were pelleted by
high-speed centrifugation (45,000x ¢ for 30 min). The
sedimented particles were resuspended in phosphate-
buffered saline (PBS) at 4 °C overnight and further puri-
fied through a 20-30-60 % discontinuous sucrose
gradient at 45,000x g for 1 h at 4 °C. The VLP bands
were collected and pelleted by high-speed centrifugation
(45,000% g for 30 min). VLPs were resuspended in 500 pl
phosphate-buffered saline (PBS) overnight at 4 °C and
protein concentration was determined using a QuantiPro
BCA Assay Kit (Sigma-Aldrich, St Louis, USA).
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Characterization of VLPs

VLPs were characterized by Western blots and electron
microscopy. For Western blot analysis, mouse serum
was used to probe T653K protein. Serum was from
BALB/c mice infected with the T. spiralis Korean isolate.
Serum was collected at week 4 after infection. Monoclo-
nal mouse anti-M1 antibody was used to determine M1
protein content. For electron microscopy, negative stain-
ing of VLPs was performed followed by transmission elec-
tron microscopy (Tecnai G2 spirit), (FEL Hillsboro, USA).

VLP immunization schedule and challenge infection
Female, BALB/c mice (6—8 week-old) were divided into
4 groups; naive control, T. spiralis infection control (TS
control), T653K VLP and T653K VLP/CT. Mice were
intramuscularly immunized with T653K VLPs with or
without CT (25 pg VLPs/mouse, 2 pug CT/mouse, 10
mice in each group). All experimental groups were vac-
cinated at weeks 0 and 4. Four weeks after the last
immunization, 10 mice of each group were challenged
orally with 100 T. spiralis (Korea isolate) larvae per
mouse. Mice were sacrificed 6 weeks after challenge in-
fection, larvae were collected from the mouse diaphragm
and counted after the diaphragm was digested with arti-
ficial digestion solution (1 % HCI - 1.5 % pepsin). The
rate of reduction in larval burden was calculated accord-
ing to the recovered larvae per gram muscle. Blood was
collected from the retro-orbital plexus on week 0, 1, 5, 8
before challenge and on week 1, 4 and 6 after challenge
infection. Sera were separated and stored at -20 °C until
analyzed for specific antibodies. All animal experiments
and husbandry involved in these studies were conducted
under the guidelines of the Kyung Hee University
IACUC. Kyung Hee IACUC operates under the National
Veterinary Research and Quarantine Service (NVRQS)
and regulations of the World Organization for Animal
Health (WOAH).

Evaluation of humoral immune responses

Sera from experimental mice were used in an enzyme-
linked immunosorbent assay (ELISA) to measure the
levels of IgG, IgG1 and IgG2a against 7. spiralis antigen.
96 well flat-immunoplate (SPL) were coated overnight at
4 °C with 100 pl of T. spiralis antigen at a concentration
of 4 pg/ml in 0.05 M carbonate bicarbonate buffer
(pH 9.6) per well. Serum samples diluted (1:100) in
PBST (100 pl/well) were then added in duplicate.

Cytokine analysis

Individual mouse spleens were collected 2.5 months
after immunization from the immunized and naive
groups. Single-cell suspensions were prepared from each
spleen. Cells were incubated in 96-well flat culture plates
for 2 days at 37 °C in the presence of 5 % CO,. Cells in
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100 pl of RPMI-1640 were stimulated with 100 pl of
2 ug/ml T. spiralis ES Ag. For the cytokine assay, super-
natants of spleen cell cultures were collected from each
well by separation and stored at -20 °C until use. OptEIA
sets (BD Bioscience, San Jose, CA, USA) were used to
determine the concentration of interferon-gamma (IFN-y),
interleukin (IL)-2, IL-4 and IL-10 in culture supernatants
following the manufacturer’s procedures.

Statistics

All parameters were recorded for individuals within all
groups. Statistical comparisons of data were carried out
using the Kruskal-Wallis test and Paired t-test of PC-SAS
9.3. A P-value < 0.05 was considered to be significant.

Results

Generation of constructs

The T653K gene from 7. spiralis Korean isotype was
amplified by PCR and the influenza M1 gene was ampli-
fied by RT-PCR with primers containing restriction en-
zyme sites (Fig. la, c). Genes were cloned into pFastBac
vectors, and insertion of T653K and M1 in pFastBac ex-
pressing vectors was confirmed by cutting with restric-
tion enzyme sites, T653K: BamHI and Xbal, M1: Smal
and Xbal (Fig. 1b, d). The nucleotide sequences of the
T653K and M1 genes were found to be identical to the
previously published sequences by DNA sequencing.

Production of VLPs

VLPs containing influenza T653K and M1 were pro-
duced as described in Methods. VLPs were harvested
from the culture supernatants of Sf9 cells co-infected
with two individual rBVs that express either T653K or
M1. The size and morphology of VLPs containing
T653K and M1 were examined by electron microscopy.
The morphology of VLPs resembles the shape of influ-
enza virus with spikes on their surfaces (Fig. 2a). The
particle sizes ranged from approximately 40 to 120 nm.
These results show that VLPs expressing T653K and M1
were generated. The incorporation of T653K and M1
into VLPs was confirmed by western blot using anti-
bodies described in the methods (Fig. 2b).

Humoral immune responses induced by immunization
with T653k VLPs

Mouse sera collected at different time points after
immunization were used to measure levels of specific
anti-7. spiralis IgG and subtype (IgG1 and IgG2a) anti-
bodies (Fig. 3a). Higher levels of T. spiralis-specific IgG
were found in mice immunized with T653K VLPs with or
without CT compared to naive controls on week 0, 1, 5
and 8, where T653K VLPs with CT showed better T. spir-
alis-specific 1gG response than T653K VLP without CT,
indicating CT was an effective adjuvant (Fig. 3b; y* = 7.2,
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Fig. 1 PCR identification of T653K and M1 genes and recombinant plasmids pFastBac-T653K and pFastBac-M1 digested. The T. spiralis T653K
gene was PCR-amplified from cDNA synthesized using a Prime Script 1°' Strain cDNA Synthesis Kit using total RNA extracted from T. spiralis
Korean isotype (a). Influenza M1 gene was PCR amplified fromtotal RNA extracted from influenza virus (A/PR/8/34) (c). The T. spiralis T653K
gene and influenza M1 gene were cloned into pFastBac with EcoRI/Xhol and Saml/Xbal enzymes, respectively, resulting in T653K plasmid (b)
and M1 plasmid (d). Marker: DNA marker; size of T653K: 1,239 bp; size of M1: 1,027 bp

df=2, P=0.0273). Higher levels of T. spiralis-specific  Trichinella spiralis-specific antibody response after

IgG1 and IgG2a antibody responses were also detected  challenge infection

in mice immunized with T653K VLPs with CT on To determine antibody response profiles in serum upon
week 0, 1, 5 and 8 after immunization compared to challenge infections, groups of mice were orally chal-
VLPs without CT. Higher level of T. spiralis-specific lenge infected with T. spiralis Korean isolate at week 4
IgG2a was found than 7. spiralis-specific IgG1, indi- after boost. To better understand the protective immune
cating that the IgG2a response was dominant (Fig. 3c, responses induced by T653K VLPs vaccination after
d; 1gG1: x* = 6.4889, df=2, P=0.039; IgG2a: y*=7.2, challenge infection, 7. spiralis-specific IgG, IgGl and
df=2, P=0.0273). Although the IgG2a antibody re- IgG2a were determined in the sera at weeks 1, 4 and 6
sponse was dominant, 7. spiralis-specific IgG1 anti- after challenge infection (Fig. 4a, b, c). IgG, IgGl and
body was also observed (Fig. 3c), indicating that IgG2a antibody isotypes were significantly increased in
T653K VLPs vaccination elicited Th1/Th2 mixed im-  groups of mice that received vaccination compared to
mune responses (Fig. 3¢, d). those in TS control mice (P<0.05 and P<0.01,
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Fig. 2 Characterization of virus-like particles (VLPs). Electron microscopy and VLP size determination. Negative staining of VLPs was performed
followed by transmission electron microscopy (TEM). The size is between 40 and 120 nm (a). Western blot analysis. VLPs (20, 10, 5 ug) were
loaded for SDS-PAGE. Polyclonal mouse anti-T. spiralis antibody was used to probe T653k protein and anti-M1 monoclonal antibody was used to
determine M1 protein (b)
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Fig. 3 Experimental schedule and T. spiralis-specific IgG subtype (IgG1 and IgG2a) responses upon immunization. Mice were immunized twice with
VLPs as indicated with a 4-week interval. Challenge infection was performed at week 4 after last immunization (a). Enzyme-linked immunosorbent
assay (ELISA) plates were coated with T. spiralis antigen, as indicated in Methods. T. spiralis-specific I9G, IgG1 and IgG2a antibody responses in the sera
were determined after prime and boost. Significant differences were found between group VLPs alone and group VLP with cholera toxin (CT) (b, c
and d, *P < 0.05)
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Fig. 4 Trichinella spiralis-specific antibody responses upon challenge infection. Immunized mice were challenge-infected orally with T. spiralis
Korean isotype at week 4 after boost and T. spiralis-specific 1gG, IgG1 and IgG2a antibody responses (a, b and ¢, *P < 0.05; **P < 0.01) and the
ratio of IgG1 to IgG2a in the sera were determined (d)
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respectively), in which VLPs vaccination with CT showed
higher IgG, IgG1 and IgG2a responses. Significant differ-
ences in IgG, IgG1 and IgG2a levels among groups at
week 6 post-challenge were found (IgG: x> =7.2, df=2,
P=0.0273; IgG1: y* =7.2, df=2, P=0.0273; IgG2a: y* =
6.4889, df =2, P=0.039). Significant differences between
before and after challenges (week 6 post-challenge) were
as follows: IgG: TS control: ¢4y = 39.99, P = 0.0006; VLP:
Laa)=16.95, P =0.0035 VLP+CT: f44)=2797, P=
0.0013; IgG1: TS control: f44) =25.7, P=0.0015; VLP:
Laa)=2149, P=0.0022; VLP+CT: {44 =1425 P=
0.0049, and IgG2a: TS control: f(4) =1.08, P =0.3922;
VLP: t(44) =548, P=0.0317; VLP + CT: f(44)=5.09, P=
0.0364. Importantly, IgG, IgGl and IgG2a antibody
levels were also found to be significantly higher in sera
post-challenge than those before challenge, indicating
the establishment of infection of larvae in the muscle
that induces higher immune response. Especially, IgG
on week 4 and 6, IgG1 on week 1, 4 and 6, and IgG2a
on week 6 were found to be significantly higher (Fig. 4a,
b, c¢). The VLPs with CT adjuvant showed increased
antibody responses compared to that without CT.
Interestingly, upon challenge, mice immunized with
T653k VLPs with CT showed IgG1-dominant responses
(Fig. 4d). This suggests that vaccination with T653K
VLPs with CT elicited an IgGl-dominant Th1/Th2-
mixed immune responses.

Protective immunity

To determine the efficacies of T653K VLP vaccine,
groups of mice including naive control and vaccinated
mice were challenged with 100 larvae of T. spiralis at
week 8 after vaccination. Mice were sacrificed at week 6
post-challenge and larvae were collected from the dia-
phragm (Fig. 3a). As shown in Fig. 5 the mice
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Fig. 5 Protection induced by vaccination. The larvae (per gram)
from diaphragm were recovered from vaccinated mice after oral
challenge infection with 100 T. spiralis larvae. Asterisks indicate
statistically significant differences (*P < 0.05; **P < 0.01) in worm
recovery of the immunized groups compared to TS control group
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immunized with T653K VLPs with CT showed 53.2 % of
larval reduction, and the mice immunized with T653K
VLPs showed 34 % of worm reduction, respectively
(Fig. 5, tas) =446, P=0.021 and £ =3.29, P=0.0462,
respectively). The results demonstrated that the intra-
muscular immunization with T653K VLPs vaccine in-
duced partial protection against challenge infection with
T. spiralis Korean isolate larvae, and VLPs with adjuvant
CT showed better protection.

Cytokine responses

The levels of IFN-y, IL-2, IL-4 and IL-10 from cytokine-
secreting cells after immunization were determined as
indicated in Fig. 6. Significantly higher levels of IFN-y
(> =8.9091, df=2, P=0.0116), IL-2 (y* = 9.8462, df=2,
P=0.0073), IL-4 (y* = 8.0563, df=2, P=0.0178) and IL-
10 (y* =8.4049, df=2, P=0.0150) cytokines were pro-
duced in VLP + CT and VLP groups following 7. spiralis
antigen stimulation compared to naive controls, in
which VLP + CT showed higher levels of cytokines com-
pared to a VLP alone group. Since higher levels of Thl/
Th2-like cytokines were found in VLP or VLP+CT
groups, we concluded that Th1/Th2-mixed type of im-
mune responses was induced (Fig. 6; P < 0.05).

Discussion

A VLP-induced protective immune response is different
from DNA vaccine or protein vaccine. VLP vaccines are
genetically engineered and produced in cell cultures.
VLP vaccines contain multiple copies of protein antigens,
inducing strong humoral and cellular immune responses
[12]. DNA vaccines present endogenously expressed anti-
gens to the immune systems, showing relatively low im-
munogenicity [23]. Recombinant protein vaccines consist
of protein antigens produced in heterologous expression
systems, inducing antibody response. Compared to VLP
vaccines, DNA vaccine mainly induces cellular immunity.
F DNA vaccine derived from respiratory syncytial virus
(RSV) was not able to induce detectable levels of antibody
responses [23]. Compared to VLP vaccines, recombinant
H5 HA vaccine is less immunogenic, and vaccination even
with 5-fold higher dose did not induce protective immun-
ity [24]. Overall, VLPs offer many advantages in safety, im-
munogenicity and antigen stability. Taken together, VLP
vaccines are promising vaccine candidates against differ-
ent pathogens.

Virus-like particles (VLPs) represent one of the most
exciting new vaccine technologies. VLPs do not contain
any viral genetic material, and they have significant po-
tential to elicit a strong immune response, without doing
any actual harm [25, 26]. The early vaccines (live, inacti-
vated, subunit) are no longer considered as the most ap-
propriate for new vaccine development [26]. Thus in our
current study, for the first time, we used baculovirus
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expression/VLP technology in a parasite nematode to
produce parasite VLPs containing 7. spiralis T653K and
influenza M1 proteins. Our findings provide evidence
that T653K VLPs with cholera toxin (CT) or without
CT can induce protective immunity against live 7. spira-
lis larval infection. The adjuvanted VLPs vaccine signifi-
cantly improved humoral responses and protection upon
challenge infection compared to VLPs alone.

Trichinella spiralis excretory-secretory (ES) protein
has been demonstrated to induce protective immunity
against T. spiralis infection. Immunization with 7. spira-
lis ES protein elicited T. spiralis-specific 1gG, IgG1 and
IgG2a antibody responses [16]. Vaccination with ES pro-
tein microencapsulated in methacrylic acid copolymers
elevated the antigen-specific serum IgG1l and IgA anti-
body responses, inducing Th1l/Th2 immune responses
that are protective [27]. Recombinant TspSP-1.2 protein
derived from T. spiralis serine protease gene and Ts-ES-
1 (20 kDa) secreted by T. spiralis induced partial

protections, considering it is a potential candidate for
vaccine development against 7. spiralis infection [28,
29]. These recombinant proteins were produced from an
E. coli expression system, and vaccine efficacy was not
successful. In the current study, we used T653K derived
from T. spiralis ES Ag 53 kDa as a surface protein of
VLPs, for which vaccine efficacy has not been studied
previously. Our study indicated that vaccination with T.
spiralis T653K containing VLPs elicited T. spiralis-spe-
cific IgG, IgG1 and IgG2a antibody responses and partial
protection against T. spiralis challenge in mice.

Results shown in the present study indicate that the
pattern of IgG1 and IgG2a immune responses is affected
by challenge infection. T653K VLPs vaccination in-
duced higher level of T. spiralis-specific IgG2a anti-
bodies before challenge and subsequent challenge
infection significantly increased the levels of IgG1 anti-
bodies (Figs. 3, 4). An effective vaccine must direct T-
helper cells toward the development of Thl, rather
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than Th2 responses. Moreover, a humoral response is
necessary because specific antibodies limit the multipli-
cation of parasite by killing extracellular parasite, either
by activating the complement system or by opsonizing
the parasites for phagocytosis and macrophage killing
[30-32]. Importantly, in the present study, IgG1 anti-
bodies before challenge and IgG2a antibody after chal-
lenge infection were also induced, indicating a Thl/
Th2-mixed type of immune response, which is import-
ant for protective immunity against 7. spiralis infection
[33, 34]. Induction of IgG1 antibody responses upon
challenge might be necessary since parasite-specific
antibodies and the associated Th2 responses have been
reported to limit worm establishment and may even
play a role in diminishing the effect of challenge infec-
tions [35]. Further studies are needed for better under-
standing of the immune mechanisms affecting the
pattern of antibody isotypes induced by vaccination.

Cholera toxin (CT) is known to be a potent adjuvant.
CT can induce maturation of dendritic cells and aug-
ment the priming of CD4" T cells and the antigen pres-
entation by dendritic cells and B cells [36—-39]. However,
the role of CT adjuvant in parasite vaccine fields is un-
known. In the present study, for the first time, we inves-
tigated protective efficacy in mice immunized with VLPs
alone or with CT-adjuvanted VLPs. Cholera toxin (CT)
has been widely shown to be effective as a potent muco-
sal vaccine adjuvant. There is a strong supporting report,
in which cholera toxin by nonconventional adjuvant
pathway induces protective memory responses after epi-
cutaneous vaccination [40]. In the present study, mice
intramuscularly immunized with CT-adjuvanted VLPs
showed significantly enhanced T653K VLP-induced T.
spiralis-specific immune response. All immunized mice
were partially protected against challenge infection with
T. spiralis, in which mice immunized with CT-
adjuvanted VLPs showed significant decrease in worm
burden compared to mice immunized with VLPs alone
(Fig. 5), indicating that the adjuvant plays an important
role in enhancing the protective efficacy. Mice immu-
nized with CT-adjuvanted VLPs showed significantly im-
proved protection, indicating the use of a safe and
effective adjuvant would have a significant impact for
developing VLP vaccines. Since a careful selection of ad-
juvant is important depending on specific vaccine anti-
gens and desired types of protective immunity, further
studies are needed for better understanding of the im-
mune mechanisms induced by adjuvants [41].

Conclusions

Overall, the present studies provide new insight into T.
spiralis VLPs-induced protective efficacy. Intramuscular
immunization with VLPs alone or with CT elicited a sys-
temic Th1/Th2-mixed type of immune response and
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produced a partial protection against 7. spiralis infection
in mice. CT-adjuvanted VLPs showed significantly in-
creased immunogenicity.

Additional file

Additional file 1: Figure S1. Trichinella spiralis ES product was separated
by sodium dodecy! sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)
in 12 % polyacrylamide gels using a Mini-PROTEAN Tetra Cell electrophoresis
unit (Bio-Rad, USA). Trichinella spiralis ES product (40, 20, 10, 5 pg) was
loaded and incubated at 150 V for 1 h. To determine the proteins in T.
spiralis ES product, the gel was stained with coomassie blue. Trichinella
spiralis T653k protein was detected in T. spiralis ES product. (PDF 45 KB)
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CT, cholera toxin; ELISA, enzyme-linked immunosorbent assay; ES, excretory/
secretory; HRP, Horseradish peroxidase; PBS, phosphate-buffered saline; SD',
Sprague-Dawley; SDS-PAGE, sodium dodecy! sulphate-polyacrylamide gel
electrophoresis; VLP, virus-like particle
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