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Abstract

Background: Biomphalaria snails are the intermediate host of the blood fluke Schistosoma mansoni, which infect
more than 67 million people in tropical areas. Phenoloxidase enzymes (POs), including tyrosinases, catecholases,
and laccases, are known to play a role in the immune defenses of arthropods, but the PO activity present in
Biomphalaria spp. hemolymph has not been characterized. This study was designed to characterize substrate
specificity and reaction optima of PO activity in Biomphalaria spp. hemolymph as a starting point to understand the
role of this important invertebrate enzyme activity in snail biology and snail-schistosome interactions.

Methods: We used spectrophotometric assays with 3 specific substrates (L-tyrosine for tyrosinase, L-DOPA for
catecholase, and PPD for laccase) and diethylthiocarbarmate (DETC) as specific PO inhibitor to characterize PO
activity in the hemolymph of uninfected snails from two Biomphalaria species, and to determine the impact of the
parasite Schistosoma mansoni on the PO activity of its B. glabrata vector.

Results: We identified laccase activity in hemolymph from uninfected B. glabrata and B. alexandrina. For both
species, the activity was optimal at 45 °C and pH 8.5, and located in the plasma. The Km and Vmax of PO enzymes
are 1.45 mM and 0.024 OD.min-1 for B. glabrata, and 1.19 mM and 0.025 OD.min-1 for B. alexandrina. When the snail
vector is parasitized by S. mansoni, we observed a sharp reduction in laccase activity seven weeks after snail infection.

Conclusions: We employed a highly specific spectrophotometric assay using PPD substrate which allows accurate
measurement of laccase activity in Biomphalaria spp. hemolymph. We also demonstrated a strong impact of the
parasite S. mansoni on laccase activity in the snail host.
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Background
Aquatic snails of the Biomphalaria genus are the inter-
mediate hosts of the blood fluke Schistosoma mansoni
[1, 2], trematodes that infect 67 million people in Africa
and South America [3–5]. When parasite eggs are ex-
pelled with human faeces in water, miracidia larvae hatch
and actively search for its snail vector. Larvae penetrate
the snail head-foot, differentiate into primary sporocysts
and then asexually proliferate to generate secondary
sporocysts. After approximately a month of infection,

secondary sporocysts release the first cercariae, the
human infective larval stage of the parasite, through
the body of the snail, into the water. The Biomphalaria
immune response is mounted both by cellular effectors
(i.e. via the hemocytes, [6–10]) and humoral factors
(for example FREPs [11, 12], SOD1 [13], Biomphalasin
β-PFT [14], and lectins [15]). Many snail humoral factors
have been carefully characterized in the Biomphalaria
genus to identify the resistance mechanisms to schisto-
some infection. However no clear characterization of the
phenoloxidase (PO) activity of the Biomphalaria snail
hemolymph was attempted. This is surprising because PO
activity is considered to be an important component of
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the humoral response [16] and an immunocompetence
parameter in many arthropods [17–19]. The central aim
of this work is to characterize the specific PO activity
present in Biomphalaria hemolymph: this is an essential
prerequisite for studies aiming to understand the role of
PO activity in snail biology.
PO enzymes play a key role in wound healing [16], tissue

pigmentation [20, 21], and reproductive process [22–25].
They are also involved in innate immune defense against
intruding pathogens, being the last component of a reac-
tion cascade called the “proPO activating system” [16, 26].
This cascade is triggered when pathogen molecules are
detected and stimulate the activation of proPO enzymes
into PO enzymes through the action of serine proteases.
The active POs then convert phenolic or amine compounds
in dopachrome and then melanin, which have cytotoxic
activities damaging pathogen cells [16].
PO enzymes are copper-containing enzymes [27] and

fall into three groups defined by their substrate specificity:
(i) tyrosinases catalyze hydroxylation of monophenols and
oxidation of o-diphenols, (ii) catecholases oxidize o-
diphenols and (iii) laccases oxidize o-diphenols, p-diphenol
and p-diamines [28]. Invertebrates possess the 3 different
PO activities in various tissues [29–31], unlike vertebrates
where only the tyrosinase activity is present [32]. Inverte-
brate PO activity can be easily measured and characterized
in vitro using specific substrates. Assays conducted in
the presence of exogenous serine proteases (like trypsin
enzymes) measure all the PO activity present in an in-
dividual (total PO activity), while assays conducted in
the absence of exogenous serine proteases measure the
PO activity that can be activated during infection (intrinsic
PO activity). Among all the substrates used to measure
PO activity, L-DOPA (o-diphenol) is the most frequently
used because it is non-specific and therefore does not
require any prior knowledge about the enzyme involved in
PO activity [28]. However, this substrate has multiple
disadvantages because (i) its non-specific nature may
lead to low oxidation efficiency and inaccurate meas-
urement [28], (ii) it can be metabolized by other en-
zymes such as peroxidases [33, 34] and (iii) is highly
susceptible to auto-oxidation [35].
Several studies have examined PO activity in pulmonate

snails, but importantly all of these studies used L-DOPA,
rather than specific substrates, and have therefore provided
ambiguous results. For example, one study on Lymnaea
stagnalis [36] suggests that peroxidase activity rather than
PO activity is responsible for L-DOPA oxidation but suffers
from methodological limitations, because PO and peroxid-
ase activity cannot be distinguished. In this study the
failure to detect PO inhibition may be due to (i) the ineffi-
cacy of the unique PO inhibitor used (phenylthiourea) and
(ii) an unusually short time to dopachrome formation
measurement for invertebrate hemolymph (5 min). In

another study on Lymnaea, Seppälä and Leicht [37]
quantified PO-like activity but did not use a specific in-
hibitor to verify that the activity observed was due to
oxidation of L-DOPA by PO enzymes. A study on B.
glabrata snails [38] quantified PO activity in hemocytes
six hours after adding L-DOPA, but without an L-DOPA
auto-oxidation control, making it difficult to conclude true
PO activity rather than substrate auto-oxidation. As a
consequence, specific PO activity (tyrosinase, catecho-
lase or laccase) remains poorly understood in snail
hemolymph, and studies using specific substrates are
required. Moreover, while infection with S. mansoni intra-
molluscan stages has a negative impact on the tyrosinase
activity in the B. glabrata albumen gland [39], nothing is
known about the effects of the parasite on the PO activity
in the snail hemolymph, a tissue in intimate contact with
S. mansoni larvae.
To fill this knowledge gap, we characterized PO activity

in the hemolymph of uninfected Biomphalaria spp. (B.
glabrata and B. alexandrina) using three different specific
substrates (L-tyrosine, L-DOPA and p-phenylenediamine
(PPD)) and employed a specific and accurate assay to
measure this activity. We then determined general charac-
teristics of PO activity, including the temperature and pH
optima, the exact location of action, Michaelis-Menten
constant (Km) and maximum velocity (Vmax). Finally, we
measured the impact of S. mansoni infection on PO activ-
ity of the B. glabrata’s hemolymph over the pre-patent
period (during 4 weeks after the exposure to the parasite,
when primary sporocysts grow and produce several gener-
ations of secondary sporocysts in the snail tissues) and
5 weeks over the patent period (when secondary sporo-
cysts produce cercariae released from the snail).

Methods
Ethics statement
This study was performed in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The protocol was approved by the Institutional Animal
Care and Use Committee of Texas Biomedical Research
Institute (permit number: 1419-MA-0).

Maintenance of snails Biomphalaria glabrata and
alexandrina
We characterized phenoloxidase (PO) activity in the
hemolymph of two different Biomphalaria species, both
intermediate hosts of Schistosoma mansoni. We used 385
inbred albino B. glabrata (line Bg26 derived from 13-16-R1
line [40]) and 185 outbred pigmented Biomphalaria
alexandrina (from Theodor Bilharz Research Institute,
Egypt) in the experiments presented.
Uninfected snails were reared in 10-gallon aquaria

containing aerated freshwater at 26-28 °C on a 12 L-12D
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photocycle and fed ad libitum on green leaf lettuce. All
snails used in this study had a shell diameter between
10-14 mm.

Hemolymph collection on Biomphalaria spp. snails
We collected hemolymph immediately before assaying
PO activity. An advantage of Biomphalaria snails is their
large size and the flat shape of their shell allowing an
easy access to the heart and the collection of ~100 μL of
hemolymph. For each individual snail, we disinfected the
shell with 70 % ethanol, and we collected total hemolymph
by heart puncture using a 1 mL syringe and a 22 gauge
needle. The hemolymph collected was immediately placed
in a 1.5 mL microtube on ice.

Characterization of phenoloxidase activity in the
hemolymph of Biomphalaria spp.
Three specific substrates for PO enzymes were tested: (i)
L-tyrosine (monophenol; Sigma) metabolized by tyrosinase
only, (ii) L-DOPA (o-diphenol; Sigma) metabolized by
catecholase, tyrosinase and laccase enzymes, and (iii)
p-phenylenediamine (PPD; p-diamine; Sigma) only me-
tabolized by laccase enzyme [41, 42].
We detected and characterized PO activity in the

hemolymph of Biomphalara spp. by measuring the optical
density (OD) of the colour reaction product (i.e. dopa-
chrome) formed by the oxidation of each substrate. The
OD was measured using a spectrophotometer at λ =
465 nm when using PPD (according to maximum absorp-
tion of the product of PPD oxidation by the PO enzyme,
Additional file 1: Figure S1) and at λ = 490 nm when using
L-tyrosine and L-DOPA [43].
In each sample test well of a 96-well optical plate

(Corning), we added 10 μL of hemolymph to 40 μL of
cacodylate buffer (10 mM sodium cacodylate (Sigma) and
10 mM calcium chloride (Sigma) in distilled water, pH =
8.4). Each sample test was coupled to a control test where
10 μL of the same hemolymph sample was added to 40 μL
of 10 mM diethylthiocarbamate (DETC (Sigma) in caco-
dylate buffer, pH = 8.4). DETC is known to be a specific
inhibitor of PO enzymes [38, 39, 44]. A substrate auto-
oxidation control was also performed, where the hemolymph
sample was replaced by 10 μL of distilled water. The values
obtained for this control were automatically subtracted from
the test and control wells values for each experiment.
In order to measure the total PO activity in the

hemolymph, we added an exogenous protease (40 μL of
trypsin prepared at 1 mg.mL-1 in distilled water) mimick-
ing the action of the serine protease of the PO cascade to
each well (test and control). Following the addition of
trypsin, the assay was incubated 45 min at 37 °C (the
optimal temperature for trypsin protease). Fresh sub-
strates (L-tyrosine, L-DOPA and PPD) were prepared at
10 mM in cacodylate buffer ten minutes before usage

and 120 μL of substrate were added to the wells followed
immediately by a plate reading. We tested each sample
with the 3 substrates. Dopachrome formation was spec-
trophotometrically monitored every 15 min for 6 h at
37 °C and λ = 465 nm and λ = 490 nm, using a SpectraMax
M1 (Molecular Devices). Comparisons between substrates
were done using absorbance values obtained 4 h after
adding the substrates at 10 mM, before reaching the
plateau phase of the PO activity.

Influence of the temperature and pH on the laccase
activity in the hemolymph of Biomphalaria spp.
To assess the effect of temperature on laccase activity in
the hemolymph of Biomphalaria spp., we conducted
laccase assays as described above (using 50 mM PPD,
substrate in large excess). We determined dopachrome
formation every 15 min for 6 h using a temperature
range from 30 to 60 °C at λ = 465 nm.
We also examined the effect of pH on laccase activity.

We used the same assays to those described but using
cacodylate buffers with a pH ranging from 4.5 to 12.5
and spectrophotometric monitoring (every 15 min for 6 h)
at 45 °C (optimum temperature) and λ = 465 nm.

Determination of the Michaelis constant (Km) and the
maximum velocity (Vmax) of the laccase-like enzyme from
the hemolymph
To determine the Michaelis constant (Km) and the
maximum velocity (Vmax) of the laccase-like enzyme in
the Biomphalaria hemolymph, we conducted spectro-
photometric assays as described above using a final PPD
concentration range from 0.891 mM to 14.28 mM. We
monitored the enzymatic kinetics for both snail species
during every 15 min for 6 h at 45 °C (optimal
temperature) and λ = 465 nm. Km and Vmax were obtained
from the Hanes-Woolf equation, a linear transformation
of the Michaelis-Menten equation [45] using the formula:

S½ �
V

¼ S½ �
Vmax

þ Km

Vmax

where [S] is the substrate concentration in mM, V and
Vmax are the velocity and the maximum velocity in
OD.min-1 respectively, and Km the Michaelis constant
in mM.

Location of the laccase activity in the hemolymph of
Biomphalaria spp.
Hemolymph collected from the snail comprises two
fractions: the humoral fraction (plasma) and the cellular
fraction containing the immune cells (hemocytes). Laccase
activity was determined and characterized in the complete
hemolymph, as well as in plasma and hemocytes. We
centrifuged the samples at 300 × g (at 4 °C for 5 min) to
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separate hemolymph into the two fractions. To be sure
that the hemocyte fraction did not contain plasma, the
cells were washed 2 times (300 × g at 4 °C for 5 min) in
PBS (pH 8.5) then resuspended in the same volume of
PBS. We checked for the presence of cells in the hemo-
cyte fraction as well as the integrity of the cells (mean
viability of the hemocytes ± sd: 87 ± 8 %) using an auto-
matic cell counter (BioRad) (10 μL of the cellular fraction
combined with 30 μL of trypan blue 0.4 % (Sigma)). We
used the same approach to check for the absence of he-
mocytes in the plasma fraction.
We conducted spectrophotometric assays both with

trypsin (total laccase activity) and without trypsin (intrinsic
laccase activity), using whole hemolymph and the two
fractions (plasma and hemocyte). Note that our assay
for laccase activity uses 37 °C rather than optimal 45 °C
because trypsin activity is optimal at 37 °C and because
the spectrophotometer works efficiently at this temperature,
and 37 °C allows comparisons with previous PO activity
studies.

Impact of S. mansoni on B. glabrata laccase activity in the
hemolymph, across the infection
To assess the impact of the S. mansoni parasite to its
intermediate host B. glabrata, we infected 100 snails
with S. mansoni parasites from SmLE population. A con-
trol experiment was performed at the same time, using
100 uninfected snails. The SmLE schistosome population
was originally isolated from a patient in 1965 in Belo
Horizonte (Minas Gerais, Brazil), and has since been
maintained in the laboratory [46], using NMRI line B.
glabrata as intermediate host and syrian golden hamster
(Mesocricetus auratus) as definitive hosts. Miracidia were
hatched from eggs recovered from 45-day-infected ham-
ster livers. The livers were homogenized and the eggs were
filtered, washed with normal saline (154 mM calcium
chloride (Sigma), pH 7.5), transferred to a beaker contain-
ing freshwater, and exposed to artificial light to induce
hatching. Snails were individually exposed to 10 miracidia
(to maximize the number of infected snails) then main-
tained in trays for 9 weeks. We covered trays with a black
plexiglass lid after 3 weeks to reduce cercarial shedding.
Four weeks post-exposure and then once a week, we
exposed infected snails to artificial light to induce cer-
carial shedding.
We sampled 10 infected and 10 control (uninfected)

snails per week for hemolymph collection and assessment
of infection status. We collected hemolymph from both
infected and uninfected snails as described above (see
Hemolymph collection on Biomphalaria spp. snails
section). The total and intrinsic laccase activity (with
and without trypsin protease, respectively) was then
spectrophotometrically monitored as described. Time-
lapse series were built using absorbance values obtained

2 h after adding the PPD substrate, before reaching the
plateau phase of the laccase activity.
During the pre-patent period (i.e. the first four weeks

before the first cercarial shedding), we assessed the in-
fection status of each snail after hemolymph collection
by fixing each snail in Railey-Henry solution [47] and
then dissecting them to observe the presence of primary
sporocysts in the head-foot region, and secondary sporo-
cysts in the hepatopancreas.

Statistical analyses
All statistical analyses and graphs were performed using
R software (version 3.0.1). When data distribution did
not follow a normal distribution (Shapiro test, p < 0.05),
results were compared with a Kruskal-Wallis followed
by Dunn’s multiple comparison test or simple pairwise
comparison (Wilcoxon-Mann-Whitney test). When data
were normally distributed, results were compared with
an ANOVA followed by Tukey’s multiple comparison
test or simple pairwise comparison t-test.

Results
Laccase activity characterized in the hemolymph of
Biomphalaria spp.
We found the strongest phenoloxidase (PO) activity (i.e.
dopachrome synthesis) in the hemolymph of both B.
glabrata and B. alexandrina 4 h after adding the p-
phenylenediamine (PPD) substrate, which is the specific
substrate of laccase enzymes (Fig. 1). Test wells (containing
hemolymph) and the inhibition control wells (containing
hemolymph + diethylthiocarbamate (DETC) the specific
competitive inhibitor of PO enzymes) showed a strong
difference for both B. glabrata (t-test, p < 1.10-10) and
B. alexandrina (t-test, p < 0.0001), demonstrating that
no other enzymes (such as peroxidases) were involved
in this reaction.
We detected PO activity after 4 h using the L-DOPA

substrate, which can be metabolized by all three types of
enzyme, on the same hemolymph samples. Test wells and
inhibition control well showed a strong difference for both
B. glabrata and B. alexandrina (t-test, p < 0.0001 and p =
0.004 respectively; Fig. 1). We detected no PO activity
when using L-tyrosine as substrate, showing that tyrosin-
ase enzyme is not present in hemolymph of Biomphalaria
spp. (Fig. 1).
For the two snail species, PO activity measured

using PPD substrate is significantly higher than the
activity assessed with L-DOPA (for B. glabrata, t-test,
p < 0.0001 and for B. alexandrina, t-test, p < 0.0001).
This demonstrates that a laccase-like enzyme is re-
sponsible for the PO activity measured in Biompha-
laria spp. hemolymph.
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General characteristics of the hemolymph laccase activity:
temperature and pH optimum, Michaelis constant (Km)
and maximum velocity (Vmax) of Biomphalaria spp. enzyme
We determined optimal parameters for the laccase-like
enzyme from the hemolymph over a temperature range
from 30 °C to 60 °C and a pH range from 4.5 to 12.5
(adjusted pH of the cacodylate buffer). The maximum
activity of the hemolymph laccase-like enzyme is ob-
tained at 45 °C for both snail species (Fig. 2a). Moreover,
laccase activity was high from pH 6.5-8.5, but was the
greatest at a pH of 8.5 (Fig. 2b), the physiological pH of
Biomphalaria spp. hemolymph [38].
These parameters (temperature of 45 °C and pH of

8.5) were used to determine the Michaelis constant (Km)
and the maximum velocity (Vmax) of the laccase-like
enzyme for both snail species, for PPD concentrations
ranging from 0.891 mM to 14.28 mM. Using the Hanes-
Woolf equation, a Km of 1.45 mM and a Vmax of 0.024
OD.min-1 were calculated for the laccase-like enzyme
of B. glabrata hemolymph, and a Km of 1.19 mM and a
Vmax of 0.025 OD.min-1 were determined for the en-
zyme of the B. alexandrina hemolymph. These enzyme
parameters showed no difference between the two snail

species (χ2 test, p = 0.99 and p = 0.87 for Vmax and Km

respectively).

Laccase activity is located in the plasma of Biomphalaria
spp. and enhanced by trypsin
We measured laccase activity in the hemolymph, plasma
and hemocytes from individual snails of the two species.
Four hours after adding the PPD substrate, laccase activ-
ity was the same in the hemolymph and the plasma frac-
tion for both B. glabrata and B. alexandrina. This was
consistent with or without trypsin (Fig. 3). We detected
laccase activity in the hemocytes for both snail species
(B. glabrata, t-test, p = 0.0077; B. alexandrina, t-test, p =
0.0001; Fig. 3) but this was very low compared to the
hemolymph or plasma (~10 fold less; Kruskal-Wallis test,
p = 1.3.10-9). These results demonstrated that the vast ma-
jority of laccase activity is located in the humoral compo-
nent of the snail hemolymph; the laccase-like enzyme is
circulating in the plasma.

Influence of parasite infection on laccase activity in the
hemolymph of B. glabrata
To investigate the impact of parasitism on B. glabrata
phenoloxidase activity we infected B. glabrata with S.
mansoni (SmLE) parasites and monitored PO activity
over 9 weeks of infection (Fig. 4).
Overall, we observed a strong negative impact of S.

mansoni infection on both total laccase (i.e. with trypsin,
Kruskal-Wallis test, p = 1.03.10-10) and intrinsic laccase
activity (i.e. without trypsin, Kruskal-Wallis test, p= 4.321.10-
7). However, the impact of infection on hemolymph laccase
activity is not immediate. During the first six weeks we
observed minimal differences between the uninfected control
and infected snails with trypsin (Welsh t-test, p= 0.048) and
no differences without trypsin. However, we observed very
strong differences from week 7 (with trypsin: Welsh
t-test, p < 0.0001 for week 7 to 9 and without trypsin:
Welsh t-test, p = 0.0233 for week 7, p = 0.0020 for week
8 and p < 0.0001 for week 9). The differences in laccase
activity between infected and uninfected snails results
from a strong reduction in laccase activity over time after
week 6 in the infected snails both with and without trypsin
(Kruskal-Wallis test followed by a Dunn’s post-hoc test,
with trypsin: p = 1.187.10-10; without trypsin: p =
5.280.10-11). In comparison, we observed no change in
laccase activity over time in the uninfected control
snails with trypsin, and a slight change without trypsin
(Kruskal-Wallis test followed by a Dunn’s post-hoc test,
p = 0.01).
We observed a global increase in the PO activity after

trypsin treatment in both infected (Kruskal-Wallis test,
p = 6.416.10-6) and control snails (Kruskal-Wallis test,
p < 0.0001). This result demonstrates the role played by
serine protease in activation of the laccase-like enzyme
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Fig. 1 Characterization of PO activity in the hemolymph of B. glabrata
(n = 15) and B. alexandrina (n = 15). PO activity in the hemolymph of
both species of snails were assessed with three PO substrates: L-
tyrosine (metabolized by tyrosinase only), L-DOPA (metabolized by
catecholase, laccase and tyrosinase) and p-phenylenediamine (PPD)
(metabolized by laccase only). No PO activity was detected with L-
tyrosine whereas strong activity was measured with PPD, demonstrat-
ing the presence of laccase activity in the hemolymph. Significant in-
hibition of the activity with diethylthiocarbamate (DETC), a specific
inhibitor of PO enzymes, demonstrates the specificity of the activity
measured. Comparisons between substrates were done using ab-
sorbance values obtained 4 h after adding the substrates at 10 mM,
before reaching the plateau phase of the PO activity
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in B. glabrata. However in infected snails, this differ-
ence is only seen during weeks 1 to 6 (Welsh t-test, p =
0.0093). From weeks 7 to 9, there is no difference, sug-
gesting that no extra proPO enzyme can be activated.

Discussion
In this study, we demonstrate that the PO activity from
both B. glabrata and B. alexandrina hemolymph is laccase
activity, and is located in the plasma. We then examined
the impact of S. mansoni infection on the PO activity of B.
glabrata, demonstrating a dramatic reduction from week
7 post-infection.

Characterization of the phenoloxidase activity
We characterized specific PO activity in both B. glabrata
and B. alexandrina using PPD substrate and inhibition
using DETC. PPD substrate is specific to laccase and
laccase-like enzymes, and has been previously used to

demonstrate laccase activity in the hemolymph of the
oyster Crassostrea gigas [43], the clam Venerupis philip-
pinarum [48] and the abalone Haliotis tuberculata [49].
We found no formation of dopachrome with the L-
tyrosine substrate, as seen in oyster [43] and abalone
[49]. Some PO activity was measured with the L-DOPA
substrate but this was significantly lower than with PPD.
This result is most likely explained by the non-specific
nature of the L-DOPA substrate: this is probably metab-
olized by the laccase-like enzyme but at a lower rate
than the PPD. Hemocyanin, another copper-containing
protein present in hemolymph that is known to show
catecholase activity in crustaceans [50], does not show
any phenoloxidase activity in B. glabrata [51] and there-
fore cannot be responsible for L-DOPA oxidation. PO
inhibition by DETC, which chelates copper present in
the enzyme [39, 44, 52, 53], confirms that the enzyme
responsible for the metabolization of the PPD and the
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L-DOPA is a copper-containing metalloenzyme [28]. Our
results illustrate the importance of specific characterization
of PO activity, because this allows development of assays
with much greater sensitivity as shown by the higher detec-
tion of activity with PPD than with L-DOPA. Specificity is
also improved using PPD substrate and DETC inhibitor,
as L-DOPA can be oxidized by peroxidase or can auto-
oxidize [33, 35] resulting in false positive results for PO.
To further characterize PO activity, we determined re-

action optima. The Biomphalaria laccase-like enzyme has
maximum activity between pH 6.5 to 8.5 (with a maximum
at 8.5) and at 45 °C which is consistent with the values re-
ported for other mollusks (Table 1). The explanation for
the high optimal temperatures found in many invertebrates
is not yet known. One hypothesis is that PO temperature
optima may be selected to correspond to the temperature
generated by local inflammation at the wound site. Such
temperature matching would increase the efficiency of
the enzyme reaction while at the same time limit un-
wanted PO-related tissue damage elsewhere in the organ-
ism. These optimal parameters allowed determination of
the Km and Vmax of the laccase-like enzyme for both snail
species. Km and Vmax values were similar between B. glab-
rata and B. alexandrina but lower than other laccase-like
enzyme characterized in gastropods and bivalves (Table 1),
which reveals a higher affinity for the PPD substrate in
Biomphalaria spp.
We localized laccase activity in the plasma (i.e. acellular

fraction of the hemolymph) in Biomphalaria spp. as ob-
served in some other mollusks [48, 54, 55]. In comparison,
Bahgat et al. [38] reported PO activity in hemocyte lysates,
although no data was shown in their manuscript, and PO
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Fig. 3 Location of the laccase activity inside the hemolymph of B.
glabrata (n = 15) and B. alexandrina (n = 15). PO activity was measured
in (i) the hemolymph, (ii) the acellular compartment (i.e. plasma) and (iii)
the cellular compartment (i.e. hemocytes) of both snail species, with and
without trypsin as protease activator. Diethylthiocarbamate (DETC) was
used as inhibition control. Activity was measured as the amount of
dopachrome formed from the oxidation of PPD substrate (10 mM), 4 h
after the substrate addition. No difference in laccase activity was found
between hemolymph and plasma for both species, and minimal activity
was detected in the hemocytes
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Fig. 4 Impact of S. mansoni infection on laccase activity in the hemolymph of B. glabrata, across the infection (9 weeks). PO activity was
measured as the amount of dopachrome formed from the oxidation of PPD substrate (50 mM), with and without trypsin as protease activator,
2 h after the substrate addition. Total (with trypsin activation) and intrinsic (without trypsin activation) laccase activity are shown in solid and
dotted lines respectively. Grey lines refer to uninfected control snails and black lines to infected snails. S. mansoni has a strong impact on snail
laccase activity (both total and intrinsic). This effect was not immediate but appeared after 6 weeks of infection
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Table 1 Summary of the general characteristics of PO enzymes determined from hemolymph of several mollusks

Class Species Substrate used for
PO assays

PO optimum temperature (°C) PO optimum pH Michaelis constant (Km) of PO
enzyme identified (mM)a

Vmax of PO enzyme
identified (OD.min-1)a

References

Gastropods Biomphalaria glabrata PPD 45 6.5-8.5 Max:8.5 1.45 0.024 Present study

Biomphalaria alexandrina PPD 45 6.5-8.5 Max:8.5 1.19 0.025 Present study

Halitotis tuberculata PPD ND 8.2 13.5 0.029 Le Bris et al., 2014 49]

Bivalves Saccostrea glomerata L-DOPA 37 8 NA NA Aladaileh et al., 2007 [64]

Crassostrae virginica L-DOPA ND 6-7.5 NA NA Jordan and Deaton, 2005 [44]

Crassostera gigas PPD ND ND 45 0.00059 Luna-acosta et al., 2011 [58]

Ruditapes philippinarum L-DOPA 40 7 NA NA Cong et al., 2005 [53

Venerepis philippinarum PPD 40 8.4 14.46 0.23 Le Bris et al., 2013 [48]

Chlamys farreri L-DOPA 45 6 NA NA Sun and Li, 1999 [65]

ND Not determined
NA Not applicable
aMichaelis constant (Km) and maximum velocity (Vmax) of PO enzyme are strongly dependent to the substrate used. We mentioned Km and Vmax values when they are assessed using PPD substrate only, as in the
present study
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activity was tested in neither whole hemolymph nor
plasma. Furthermore, their PO measurements were per-
formed with the non-specific L-DOPA substrate 6 h after
adding the substrate, at 405 nm (a suboptimal wavelength
to quantify dopachrome formation which has a maximum
of absorbance at 490 nm) and with no control for
auto-oxidation of the L-DOPA substrate. No L-DOPA
oxidation was identified in the hemocytes of another fresh
water snail, Lymnaea stagnalis [36]. In our study, we
detected very low laccase activity in the hemocytes of
Biomphalaria. This may be due to the high sensitivity of
our assay, allowing detection of residual activity from the
cells’ membrane, as hypothesized in the oyster C. virginica
[44]. These results demonstrate the importance of testing
both cellular (hemocytes) and acellular (plasma) fractions
in order to accurately localize the PO activity.
In other arthropods such as insects or crustaceans, PO

activity is mainly localized in the hemocytes and is typic-
ally tyrosinase activity, using tyrosine present in the
hemolymph [16, 56]. The differences in the type of PO
activity (tyrosinase vs laccase) and the enzyme localization
(hemocyte vs plasma) in arthropods and mollusks raise
intriguing questions about the evolution of PO enzymes
in these two phyla.
Addition of trypsin, a serine protease enzyme, demon-

strated the presence of circulating prolaccase-like enzyme
in the snail hemolymph. One possible alternative explan-
ation, that trypsin makes the active site of the laccase-like
enzyme more accessible [57], is unlikely because trypsin
had no impact on laccase activity of infected snails (7-9
weeks). Prolaccase-like enzymes may be activated by en-
dogenous serine proteases produced by the snail [38] or
by exogenous serine proteases produced by pathogens
[17, 58]. Non-activated PO enzymes are common in all
PO systems characterized [56]. In arthropods, comparisons
of intrinsic PO activity (PO enzymes activated by endogen-
ous proteases) and the total PO activity (intrinsic PO + PO
enzymes activated by exogenous proteases) provide an
important parameter used to assess immunocompetence
and health status in an ecological context [17].

Impact of S. mansoni on B. glabrata PO activity
We examined the impact of S. mansoni infection on B.
glabrata laccase activity over 9 weeks. Our results
demonstrate a strong reduction in laccase activity in
the snail hemolymph starting 7 weeks post-infection.
Similar negative impacts of parasitic infection on PO
activity were found in the oyster C. virginica and the
mussel Geukensia demissa infected by Perkinsus marinus
[44], while PO activity of the abalone H. diversicolor was
reduced by infection with Vibrio parahaemolyticus [59].
Susceptibility to QX disease (caused by the paramyxean
protozoan Marteilia sydneyi [60, 61]) in the Sydney rock
oyster Saccostrea glomerata is also associated with a rapid

decrease in PO activity [62]. During the late stage of
infection (7-9 weeks) trypsin had no effect on laccase
activity. We interpret this result to mean that that total
PO activity drops to the same level as intrinsic PO ac-
tivity in infected snails, because laccase-like enzyme
production has collapsed.
The decrease in PO activity in the snail hemolymph is

correlated with the development of the S. mansoni sec-
ondary sporocysts in these experiments. This intramol-
luscan parasite stage metabolizes snail tissues, such as
the hepatopancreas and the albumen gland, organs that
are involved in the protein production [63], potentially
including the laccase-like enzyme. However, parasite growth
does not have any negative impact on snail PO activity
during the first 6 weeks. These results are consistent to
those obtained by Seppälä and Leicht [37] in the fresh-
water snail Lymnaea stagnalis. They observed no change
in PO activity after the injection of trematode (Plagiorchis
sp.) infected gonads compared to the injection of un-
infected gonad. In contrast, injection of bacteria (E.coli or
Micrococcus lysodeikticus) led to a decrease in PO activity.

Conclusion
We report and characterize laccase activity in the
hemolymph of B. glabrata and B. alexandrina, inter-
mediate hosts of the human blood fluke S. mansoni.
Based on these findings, we employed a sensitive and
specific spectrophotometric assay using PPD as substrate.
This paves the way to better understanding of the role of
PO enzymes in molluscan biology and host defense. Infec-
tion of snails with S. mansoni had a severe impact on
PO production, but only after 6 weeks of infection. This
strong negative effect of the parasite may be explained
by the fact that secondary sporocysts of S. mansoni
metabolize snail tissues involved in protein production,
during their development and cercariae production.

Additional file

Additional file 1: Figure S1. Absorption spectrum of the product of
PPD oxidation by the laccase-like enzyme in the hemolymph of Biomphalaria
spp. The absorption spectrum was determined using continuous wavelength
scanning from 375 to 675 nm. The maximum absorption, after 2 h of reaction
with 50 mM of PPD, corresponds to wavelength of 465 nm. (PDF 4 kb)
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