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Abstract

PCR and end-point PCR for genotype characterization.

R. r. rupicapra and assemblage A/Alll in R. p. ornata.

zoonotic and non-zoonotic genotypes.

Background: Although chamois Rupicapra spp. are the most abundant mountain ungulates in Europe, no data are
available on the presence of Giardia duodenalis infecting these species.

Methods: A total of 157 fecal samples from Alpine Rupicapra rupicapra rupicapra and Apennine Rupicapra pyrenaica
ornata chamois were tested for the presence of G. duodenalis by immunofluorescence test, quantitative Real Time

Results: G. duodenalis was detected in R. r. rupicapra and R. p. ornata, with a percentage value of 4.45 (5.82 and
1.85 %, respectively), and a cyst burden of up to 31,800 cysts/g of feces. Assemblages A/Al and E were identified in

Conclusions: The present study represents the first record of Giardia duodenalis in Rupicapra spp., suggesting that
these wild bovids can play an epidemiological role in environmental contamination and transmission of both

Keywords: Giardia duodenalis, Rupicapra rupicapra rupicapra, Rupicapra pyrenaica ornata, IF, gPCR, end-point-PCR

Background
The flagellate Giardia duodenalis is one of the most com-
mon intestinal parasites in humans and several animal
species worldwide [1, 2]. At present, eight assemblages
have been genetically recognized (A-H), which differ in
host specificity: zoonotic assemblages A and B infect
humans and a wide variety of domestic and wild mam-
mals; assemblages C and D are typically isolated from
dogs; assemblage E is associated with hoofed livestock;
assemblage F infects cats; assemblage G infects rats [3],
and assemblage H infects marine mammals (pinnipeds)
[4]. It is now believed that at least some of these assem-
blages should be considered “true species” [5, 6].

Given this great genetic heterogeneity, it is hard to
determine the role of animals as a source for human in-
fection, and viceversa [7]; this is possible only by
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performing detailed genetic analysis [8, 9], even as far as
the sub-assemblage level. While the role of domestic an-
imals (pets and livestock) in G. duodenalis epidemiology
has been thoroughly studied, wild animals have only re-
cently been considered as having a potential role. In
addition to being a possible source of infection for
humans, wild animals can be endangered by the spill-
over of parasites from domestic animals and even people
[10], especially in the case of small populations which
are important for wildlife conservation [11].

G. duodenalis has been recorded in wild ungulates
wordwide [8, 9, 12—15]. Most of these records refer to cer-
vids, in which the presence of zoonotic and non-zoonotic
genotypes have been documented (reviewed by [6]).

The chamois (Artiodactyla: Bovidae) is the most abun-
dant mountain ungulate in Europe and the Near East.
Two species are recognised in the genus Rupicapra: the
Northern chamois, Rupicapra rupicapra, with seven
subspecies, including the Alpine chamois R. r. rupicapra,
and the Southern chamois, Rupicapra pyrenaica, with
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three subspecies, including the Apennine chamois R. p.
ornata (16, 17].

Despite the geographical abundance of Rupicapra spe-
cies in Europe, no data are available on the presence of
G. duodenalis infecting chamois. This study aimed to
determine the presence of G. duodenalis, and to quantify
and characterize isolates from two subspecies of cham-
ois: R. r. rupicapra living in northern Italy (Alps) and R.
p. ornata, living in central Italy (Apennines).

Methods

Study areas, animals and collection of fecal samples

The study took place in three areas of Italy. The first is
in the Lecchesi Alps and Pre-Alps, a hunting territory in
Lombardy region, with an area of 253 km* (45°59'N, 9°
32’E), ranging from 300 to > 2000 m a.s.l. Here the R r.
rupicapra population in 2014 was estimated as 2077
individuals, giving an average population density of
8.2 chamois/km®> (Province of Lecco, unpublished
data). The second area is in the Lepontine Alps, in
the hunting district of Piedmont region (VCO2-
Ossola Nord), with an extent of 72,740 ha (46°07° N,
8°17° E), ranging from 700 to 2400 m a.s.l. Here the
chamois population was estimated as 1328 individuals
in 2014, with an average density of 6.7 subjects/km>
[18]. The third area is in central Italy, in the
Abruzzo, Lazio and Molise National Park (ALMNP,
497 km?, 41°44'N, 13°54°E), where samples were col-
lected in Val di Rose, Mt. Meta, and Mt. Amaro sub-
areas, ranging from 1650 to 2242 m a.s.l. In ALMNP,
about 600 individuals of R. p.ornata were counted in
2014 [19], with local population densities of up to
over 20 individuals/km? [20, 21].

Between August 2013 and January 2014, 103 fresh fecal
samples were collected from R. r. rupicapra chamois har-
vested during the hunting season, whereas the 54 fecal
samples from R. p. ornata were collected from the ground
soon after defecation. To avoid the risk of collecting feces
from the same individuals, sampling was carried out
on different slope sites and took into account, as far
as possible, the animals’ sex and age. Fresh fecal spec-
imens were collected and put into plastic bags, which
were labeled and immediately packed in an insulated
container with ice or cold packs. Specimens were
then transported to the laboratory and processed
within 1-3 days after collection.

Giardia detection
All 157 faecal samples were examined using an immuno-
fluorescence (IF) test for the detection of G. duodenalis
(Kit Merifluor® Meridian Diagnostic, Cincinnati, OH,
USA).

The positive samples were frozen and subjected to
Real-Time PCR for quantitative analysis (¢PCR) using
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the SSU-rDNA gene, and to end-point PCR for genotyp-
ing using two genes i.e. SSU-rDNA and gdh.

DNA extraction

LF. positive fecal samples were washed three times with
PBS and subjected to 5 cycles of freezing with dry ice
and thawing at 95 °C (5 min each step). DNA extraction
was automatically performed by EZ1 BioRobot (Qiagen,
Germany) following the manufacturer’s instructions. To
obtain a high quality DNA, samples were purified by
Amicon Ultra-0.5 Centrifugal Filter Unit (Millipore) fol-
lowing the manufacturer’s instructions.

Quantitative (qPCR) and melting curve analysis

A sequence of G duodenalis SSU-rDNA gene
(KJ888984) [22] was selected as reference target to de-
sign the plasmid control. The pEX-A vector (Eurofins,
MWG/Operon, Ebersberg, Germany) was used to insert
a fragment of approximately 293 bp of G. duodenalis
SSU-rDNA gene.

The concentration of the pEX-A2 G. duodenalis plasmid
was measured using a fluorometer, and the corresponding
copy number was calculated using the following equation:

PEX-A2 G. duodenalis (copy numbers)=6.02 x 10*
(copy/mol) x pEX-A2 G. duodenalis amount (0.31 x 10
g/ml)/pEX-A2 G. duodenalis length (293 bp + 2450 bp) x
660 (g/mol/bp) [23].

Ten-fold serial dilutions of the pEX-A2 G. duodenalis
plasmid (from 1.03 x 107 to 1.03 x 10 copies/ul) were
used to assess the sensitivity, repeatability and reprodu-
cibility parameters of the assay, and to determine the
quantity of the unknown samples based on linear regres-
sion calculations of the standard curve.

Amplifications and melting analysis were performed in
the CFX-96 Real Time Instrument (BioRad, Italy). G. duo-
denalis ssRNA primers were GiarF (5- GAC GCT CTC
CCC AAG GAC-3) and GiarR (5- CTG CGT CAC GCT
GCT CG-3') [24].

The PCR mixture (final volume 20 pl) contained 1 ul
of the plasmid-based control (or 5 pl of genomic DNA
sample from 1 to 5 ng), 5X EvaGreen® Reagent (cat. No.
172-5201; BioRad, Italy) and 0.5 uM final concentration
of each forward and reverse primer. Samples without
genomic DNA (negative controls) were included in each
PCR run. The cycling conditions in a CFX-96 thermocy-
cler (BioRad) were as follows: initial denaturation at 98 °
C for 2 min, followed by amplification for 35 cycles of
98 °C for 5 s and 55.6 ° C for 15 s.

Fluorescence data were collected at the end of each
cycle as a single acquisition. After amplification, the
PCR products were melted by raising the temperature
from 70 to 95 °C, with an increment of 0.5 °C/5 s, in
order to denature and re-anneal before the high reso-
lution melting; changes in fluorescence were recorded
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with changes in temperature (dF/dT) and plotted against
changes in temperature. The resolution melting curve
(MC) profile was then analyzed using Precision Melt
Analysis™ software version 1.2, with fluorescence (MC)
normalization by selecting the linear region before and
after the melting transition. The melting temperature
(Tm) was interpolated from the normalized data as the
temperature at 50 % fluorescence. Samples’ melting curves
were distinguished by plotting the fluorescence difference
between normalized melting curves. 7m and standard de-
viation (SD) were recorded for each positive control.

Test-positive samples were identified on the basis of a
single melting peak, which was consistent with that of
the homologous plasmid control. The melting peak was
92.50 °C for G. duodenalis SSU-rDNA.

The copy number for each positive sample was calcu-
lated by relating the Ct mean value of each sample
obtained in gPCR to a standard curve obtained from the
respective plasmid control. Since the number of copies
of the SSU-rDNA gene ranges from 60 to 130 in one
Giardia nucleus [25], we considered an average of 95
copies in one nucleus and a total for 4 nuclei of 380 cop-
ies in one cyst. The number of cysts in each sample was
calculated as the number of copies obtained in gPCR
divided by 380 in 1 pl and then in 100 pl (since the vol-
ume of DNA after extraction is 100 pl). Finally, since the
number of cysts in each sample was obtained in 200 mg
of fecal sample, the results were transformed for cysts
per gram (CPG) with the formula: number of cysts
obtained in 200 mg of fecal sample X 5.

End-point PCR

A nested PCR was performed to amplify a 130 bp region
from the SSU-rDNA gene, using the primers RH4 and
RH11 for the first step, and the primers GiarR and GiarF
in the second amplification round, as used for gPCR
[24]. An additional analysis was carried out by using a
semi-nested PCR to amplify a 432 bp fragment with the
primers GDHeF and GDHIR in the primary reaction,
and GDHIF and GDHIR in the secondary [26]. In all
PCR reactions, positive (Giardia DNA) and negative (no
template added) controls were added. All PCRs were
carried out in a 25 pL volume containing 12.5 puL PCR
master mix 2X (Promega), 5 pL template DNA, 0.6 mM
of each primer and 0.1 mM BSA, 4 % dimethyl sulfoxide
(DMSO), and were performed in a TProfessional Basic
Thermocycler (Biometra GmbH, Goéttingen, Germany).
PCR products were visualized by electrophoresis on 1 %
agarose gel stained by SYBR Safe DNA gel stain (Invitro-
gen). Amplicons were purified using the mi-PCR Purifica-
tion Kit (Metabion GmbH). Both strands were sequenced
by Bio-Fab Research s.r.l. (Rome, Italy). Sequences were
edited with FinchTV 1.4 software (Geospiza, Inc, Seattle,
WA, USA). To assign Giardia isolates to the correct
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assemblage, a comparison of the SSU-rDNA sequences by
multiple alignments was performed using ClustalW2 soft-
ware against known sequences available in GenBank. To
test the significance of the results and to identify the sub-
assemblage, a phylogenetic analysis was performed using
MEGAG6 software to compare the SSU-rDNA and gdh
sequences with those of reference strains from different
hosts. The best-fit model and parameters for tree con-
struction were selected using the jModeltest software by
the Akaike Information Criterion (AIC).

Results

G. duodenalis was detected by microscopy in seven out
of the 157 fecal samples examined, (4.45 %; CI =1.8-9.1).
In R r. rupicapra and R. p. ornata, a percentage of 5.82 %
(6/103) (CI=2.2-12.5) and 1.85 % (1/54) (CI=0.5-9.8)
were registered, respectively. All samples which tested
positive to microscopy were also positive to gPCR and
end-point PCR to one or both genes (i.e. SSU-rDNA, gdh).
Overall, two assemblages i.e. A (with sub-assemblages Al
and AIIl) and E were identified (Table 1), and combined
analysis of the two loci revealed no discrepancies in assem-
blage assignment.

At the SSU-rDNA locus, G. duodenalis assemblage A
sequences (chamois no.s 10, 55, and 71) were identical
to those from different hosts, including white-tailed deer
in the USA (Genbank accession number KJ867494) pre-
viously reported by [27], dairy cattle (KF843922) in
China [28] and Dutch patients (AY826206) [29] (Fig. 1).
The isolates from chamois no.s 26, 32 and 93 matched
with several assemblage E isolates from livestock (100 %
similarity). These assignments were confirmed by the
phylogenetic analysis as evidenced in Fig. 1.

Phylogenetic analysis of gdh sequences showed that iso-
late no. 71 from R r. rupicapra clustered within sub-
assemblage A/AI, sharing the same sequences as those
from a large number of isolates from humans (L40509)
[29, 30], several domestic animals, including cattle
(EF507642) [31], and also from water (KM190761) [32],
whereas isolate no. 10 from R. p.ornata clustered within
the sub-assemblage Alll, together with a Giardia isolate
from roe deer in the Netherlands (DQ100288) [29] and red
deer in Poland (HM150751) [9] (Table 1; Fig. 2). Bootstrap
analysis indicated strong statistical support for these group-
ing. PCR based on gdh locus failed for the other Giardia
isolates. The nucleotide sequences obtained in this
study have been deposited in EMBL/GenBank database
under accession number from LN875379 to LN875384
for the SSU-rDNA gene and KT270858-KT270859 for
the gdh gene.

The number of Giardia cysts in test-positive samples
were predicted to range from 263 to 31,800 per gram of
feces (Table 1).
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Table 1 Number of individual chamois (Rupicapra r. rupicapra and Rupicapra p. ornata) investigated and test-positive to Giardia duo-
denalis by microscopy, gPCR and end-point PCR analysis

Collection Species Animal Giardia duodenalis Assemblage/ No. of
sites number Microscopy qPCR PCR zgsz_mblage Po
ALPS Rupicapra r. rupicapra 1-3 _ _ _ _ _
4 + + + A 382
5-25 _ _ _ _ _
26 + + + E 326
27-31 _ _ _ _ —
32 + + + E 587
33-54 _ _ _ _ _
55 + + + A 263
56-70 _ _ _ _ _
71 + + + A/Al 31,800
72-92 _ _ _ _ —
93 + + + E 11,200
94-103 _ _ _ _ _
APENNINES Rupicapra p. ornata 1-9 _ _ _ _ _
10 + + + A/Alll 618
10-54

CPG cysts per gram of faeces calculated by gPCR

Pig (AF113902)
Goat (AF199448)
Calf (AY297957)
Assemblage E
Rupicapra r. rupicapra (LN875383)
Rupicapra r. rupicapra (LN875382)
Rupicapra r. rupicapra (LN875381)
Cat (AF113901)
-I_ Assemblage F
Cat (AF199444)
[ | Rupicapra p. ornata (LN875379)
Rupicapra r. rupicapra (LN875380)
Rupicapra r. rupicapra (LN875384)
Human (AY826206)
White-tailed deer (KJ867494)
Dairy cattle (KF843922)

Rat (AF199450)
-I: Assemblage G
Rat (AF113896)
Human (AF199447) } pssemblage B

79l Human (AF113897)

Dog (AY775200)
Assemblage C
Dog (AF113899)

Dog (AY775199)
Assemblage D
70 ' Dog (AF113900)

G. muris (AF113895)

Assemblage A

0.05

Fig. 1 Neighbor-Joining tree of the SSU-rDNA Giardia sequences. Six sequences from the present study (in bold) and 16 reference sequences
representing assemblages A-G were included in the analysis for comparative purposes. Accession numbers of publicly available reference sequences are
indicated. The evolutionary distances were computed using the Tamura 3-parameter method and a bootstrap test based on 1000 replicates. Bootstrap
values at nodes <70 are not indicated. Giardia muris (AF113895) represents the outgroup
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95

0.01

purposes. Accession numbers of publicly available reference sequences

Human (AY826195) Assemblage A/All
Human (L40510)

4100{ Red deer (HM150751)
Roe deer (DQ100288)

00 Goat (AY826198)
95 L Sheep (EU769231)

—— Human (AF069059)
10— Human (L40508)

Fig. 2 Neighbor-Joining tree of the gdh Giardia sequences. Two sequences from the present study (in bold) and 12 reference sequences
representing assemblage/sub-assemblages A/Al, A/All, A/Alll, B/BIII, B/BIV and assemblage E were included in the analysis for comparative

Tamura 3-parameter method and a bootstrap test based on 1000 replicates. Bootstrap values at nodes <70 are not indicated

Rupicapra r. rupicapra (KT270858)
Human (L40509)

Water (KM190761)

Cattle (EF507642)

Assemblage A/Al

Rupicapra p. ornata (KT270859)
Assemblage A/Alll

Fallow deer (EU769232)
Assemblage E

Assemblage B/BIII
Assemblage B/BIV

are indicated. The evolutionary distances were computed using the

Ethics

This research did not involve purposeful killing of animals.
All fecal samples were gathered from dead free-ranging
chamois legally shot by hunters in accordance with
the Italian Law (157 of 11/02/1992) which implies that
hunters have to carry culled wild ungulates to the control
centres where, for each subject, age, sex, the shooting area
and morpho-biometric measures are registered. Thus, no
animals were killed specifically for this study.

Discussion
This is the first report of G. duodenalis in Rupicapra
spp. Noticeably, the protist was found both in R. r. rupi-
capra and R. p. ornata, two different chamois subspecies
living in quite distinct geographical areas, with an overall
percentage value of 445 % (5.82 and 1.85 %, respect-
ively), and a cyst burden of up to 31,800 cysts/g of feces.
Assemblages A (AI and AIIl) and E were detected.
Regarding the G. duodenalis genetic groups, it is known
that assemblage A recognizes four sub-assemblages (Al,
AllL, AIIl and AIV) [3]. Sub-assemblages AI and All are
found in both humans and animals; sub-assemblage Al —
the zoonotic subtype — is preferentially found in livestock
and pets, but has also been found in wild hoofed animals
worldwide [6]; in Europe it has mostly been detected in
cervids, i.e. fallow deer (Dama dama) in Italy [8], and red
deer (Cervus elaphus) and roe deer (Capreolus capreolus)
in Croatia [15]. Sub-assemblage AIl is predominantly
found in humans, whereas sub-assemblage AIII appears to
be specifically associated with wild ungulates [6]; it has
been isolated from cervids, i.e. red deer and roe deer in
Croatia [15] and Poland [9], but also from cats [5, 33], and

in a few cases from cattle [7]. AIV is almost exclusively
found in domestic ungulates, and similarly to AIII it is only
animal-related; therefore, both sub-assemblages are consid-
ered non-zoonotic [6].

Assemblage E is relatively host-specific, or rather
‘group-specific; since it is limited to ‘hoofed livestock’ i.e.
cattle, sheep, goats and pigs [6, 34—36], and for this rea-
son it is known as the ‘livestock genotype’ [6]. However,
assemblage E has been also detected in a wild hoofed
cervid, i.e. fallow deer [33].

In the present study, the detection of assemblages A and
E in chamois living in the Italian Alps and Apennines was
not unexpected. It shows that also R. r. rupicapra and R.
p. ornata chamois harbor assemblages/sub-assemblages
A/AI/AIIL and confirms that assemblage E is associated
to wild hoofed mammals, not only cervids [33] but also
wild bovids, such as chamois Rupicapra r. rupicapra. In
view of this, the term ‘livestock genotype’ commonly used
to classify genetic group E may be considered outdated
and could possibly be replaced with the term ‘hoofed ani-
mal genotype'.

The presence of both assemblages A/Al and E in Alpine
chamois can be related to their sharing of pastures with
cattle and/or sheep and/or goats, as well as with cervids.
In summer, farmers move their livestock up to high alti-
tude alpine pastures, thus facilitating interaction with wild
mountain ungulates [37]. Moreover, in addition to cham-
ois, other species of wild ungulates are present in the
alpine areas investigated; therefore, it is not only red deer
and roe deer — cervid species found harbouring sub-
assemblage Al Giardia in Croatia [15]- which may have
an epidemiological role for Giardia trasmission, but also



De Liberato et al. Parasites & Vectors (2015) 8:650

alpine ibex (Capra ibex), a bovid species as yet uninvesti-
gated for the presence of Giardia.

Furthermore, unlike other Alpine areas (i.e. the Dolo-
mites), which attract thousands of human visitors involved
in trekking and mountaineering, and where “tourist-borne”
arrival of Giardia may be considered possible [14], the pos-
sibility of human-borne contamination by sub-assemblage
Al appears unlikely in the R r. rupicapra sampling areas,
due to the remoteness of this territory accessible only to a
few shepherds in summer and hunters in autumn. This
seems to confirm that domestic and wild animals play a
greater role in the dissemination of sub-assemblage Al than
humans [6].

Conversely, in the Apennine area investigated where
one positive chamois was detected (Val di Rose), the R.
p. ornata population is totally isolated from domestic ru-
minants and never shares pastures with them [38]; more
importantly, red deer and roe deer are present. Both spe-
cies were reintroduced to ALMNP in 1972-1987 [39];
however, while red deer are present at high densities in
the chamois range (with peaks of 0.5-1 deer/ha, in the
grasslands of Val di Rose and Mt. Amaro), roe deer
density is very limited, at least in summer [21, 38]. Based
on this, and coupled with AIII detection in red deer and
roe deer in Croatia [15] and in Poland [9], detection of
wild ungulate-related sub-assemblage AIII [6] in the Ap-
ennine chamois can be fully justified.

Finally, although none of the investigated positive sub-
jects showed signs of diarrhea, since only formed feces
were collected, and the Giardia cyst burden was up to
31,800 cysts/g of feces, the pathogenic role of Giardia in
wildlife remains unclear.

Conclusions

The findings of the present study indicate that Rupicapra
spp. chamois harbor G. duodenalis. This is the first report
of assemblage A/AI and assemblage E in R. r. rupicapra
and AIIl in R p. ornata. The epidemiological roles that
these wild bovids play in environmental contamination
(including watercourses and watersheds) and transmission
to other wild and domestic mammals or even humans, of
zoonotic (A/AI) and/or non-zoonotic assemblages/sub-as-
semblages (E, AllI), require further investigation, as does
the impact of Giardia on the health and sustainability of
chamois populations, together with the possible cumula-
tive effects of other pathogens [11].

Abbreviations
ALMNP: Abruzzo, Lazio and Molise National Park; gPCR: Quantitative real time
PCR.
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