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Abstract

Background: Rhipicephalus haemaphysaloides, a hard tick, is a common ectoparasite and can be found in many
countries. It is recognized as the primary vector of bovine babesiosis in the south of China. During blood feeding,
the tick's salivary glands secret numerous essential multifunctional proteins. In this study, a R. haemaphysaloides
salivary gland transcriptome was described following the production and analysis of the transcripts from the two
cDNA libraries of unfed and fed female ticks. The study focused on the differentially expressed genes and cysteine
proteases, which play essential roles in the tick life cycle, that were detected most commonly in the up-regulation
libraries.

Methods: The sialotranscriptome was assembled and analyzed though bioinformatic tools and the cysteine protease
which is differentially expressed form sialotranscriptome were confirmed by Real-time PCR in salivary glands and different
developments of ticks.

Results: On the basis of sequence similarities with other species in various databases, we analyzed the unfed and fed
sialotranscriptome of R. haemaphysaloides to identify the differentially expressed proteins secreted from the salivary glands
during blood feeding and to investigate their biological functions. There were 25,113 transcripts (35 % of the
total assembled transcripts) that showed significant similarity to known proteins with high BLAST from other
species annotated. In total, 88 % and 89 % of the sequencing reads could be mapped back to assembled
sequences in the unfed and fed library, respectively. Comparison of the abundance of transcripts from similar
contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes. In
total, there were 1179 up-regulated genes and 574 down-regulated genes found by comparing the two libraries. Twenty-
five predicted cysteine proteases were screened from the transcript databases, whereas only six protein molecules were
confirmed by gene cloning and molecular expression in E.coli which all belonged to the cysteine protease family.
Bioinformatic evolutionary analysis showed the relationship of cysteine proteases in ticks with those of other species,
suggesting the origin and conservation of these genes. Analysis of sequences from different tick species indicated the
further relationships among the proteases, suggesting the closely related function of these genes. Thus, we confirmed
their changes in unfed, fed and engorged ticks and salivary glands. The dynamic changes revealed their important roles
in the tick life cycle.
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Conclusions: Our survey provided an insight into the R. haemaphysaloides sialotranscriptome. The dynamic changes of
cysteine proteases in ticks will assist further study of these proteases, which may contribute to the development of anti-
tick vaccines or drugs, as well as improving understanding of the roles of cysteine proteases in the tick life cycle.

Keywords: Sialotranscriptome, Rhipicephalus haemaphysaloides, Cysteine proteases, Dynamic change

Background

As a kind of blood-feeding arthropod, ticks can transmit
viruses, bacteria and protozoa in their meals [1]. Up to
now, there are over 800 species described worldwide
which are classified in Ixodidae (hard ticks) and Argasi-
dae (soft ticks) primarily [2]. Rhipicephalus haemaphysa-
loides is a three-host tick belonging to the Ixodidae and
is widely distributed in China, India, and other South
Asian countries [3]. This tick is a major vector of bovine
babesiosis in China [4] and can also transmit the Kyasanur
Forest disease virus [5].

Within the blood-feeding, ticks possess salivary glands
that secrete bioactive substances, which can exhibit a
range of pharmacological properties to thwart the host
defense mechanisms in response to attachment [6, 7].
The components of the saliva are of major importance
for the tick’s survival, helping it feed and evade host de-
fenses, hemostatic factors and the inflammatory re-
sponse [8]. Proteases are one of the most important
components of tick saliva and essential for the life cycle
of the ectoparasite.

Cysteine proteases are ancient conserved proteases
that are involved in different physiological processes [9].
Most of these proteases belong to the papain-like super-
family and are associated with the development of
hematophagous arthropod ectoparasites [9]. Ticks ex-
press cysteine peptidases with important roles in physio-
logical events that are crucial to the ectoparasitic
lifestyle, including the digestion of host blood, embryo-
genesis and innate immunity [9].

In this study, we analyzed the sialotranscriptome of
the salivary glands of unfed (unattached) and fed (3 or
4 days after attached) adult ticks (Additional file 1).
There were 1179 up-regulated genes and 574 down-
regulated genes detected from the differential expression
databases. For functional annotation of the unique tran-
scripts, we used BLASTx, comparing them against differ-
ent databases and, finally, four up-regulated and two
associated cysteine proteases, namely cathepsin B
(CATB, KT194088), cathepsin L (CATL, KT194089),
caspase—1 (CASP1, KT194090), caspase-8 (CASPS,
KT194091), autophagy protease 4B (ATG4B, KT194092)
and autophagy protease 4D (ATG4D, KT194093), were
cloned successfully from the cDNA library of the salivary
glands of R. haemaphysaloides. The confirmation of
these genes will contribute to further research in vitro.

The dynamic analysis of these target genes was shown in
different developmental stages of R. haemaphysaloides
by Q-PCR, and suggests their important roles during
blood feeding. To our knowledge, this is the first analysis
of the transcriptome of the salivary glands of female R.
haemaphysaloides ticks. The characterization of the
components of tick saliva, especially the proteases (cyst-
eine proteases), is likely to be of value in the design of
novel methods or drugs for the control of ticks and tick-
borne diseases, as well as when searching for proteins
that may have potential use in research on medical and
veterinary diseases.

Methods

Collection of ticks and salivary glands

The R. haemaphysaloides colonies were maintained in
the laboratory as described previously [10]. For tissue
collection, the salivary glands were dissected under a
light microscope [10]. The sample materials were stored
at —80 °C until use.

cDNA library construction and sequencing

Total RNA was extracted from the unfed and fed saliv-
ary glands of female R haemaphysaloides using TRIzol
Reagent (Invitrogen, The Netherlands) according to the
manufacturer’s protocol. The cDNA from two RNA-seq
sequencing libraries was sheared to an average fragment
size of about 300 values and was purified with Ampure
beads. RNA-seq libraries were constructed according to
the Illumina manufacturer’s instructions for 100-bp
paired-ends, and sequenced. Raw reads were filtered to
produce clean reads prior to assembly. Initially, the
RNAs were extracted and constructed for two Illumina/
Solexa cDNA libraries.

Data analysis

De novo assembly of transcriptome data

Low-quality regions in raw reads and adaptors were
trimmed with ea-utils [11] prior to analyses. Read quality
was then assessed, revealing that the mean quality scores
of sequence reads was around 37 values, which sug-
gested high sequencing quality. Transcriptome assembly
was performed with Trinity assembles software [12] to
obtain high-quality contigs. The Trinity assembly pro-
gram first combines reads with a certain length of over-
lap to form longer fragments without N; these are called
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contigs. The sequencing reads are then mapped back to
contigs; with paired-end reads it is able to detect contigs
from the same transcript as well as measuring the dis-
tances between these contigs. Subsequently, Trinity con-
nects the contigs using N to represent unknown
sequences between each pair of contigs, following which
Scaffolds are made.

Bioinformatic tools used and differential expression analysis
The BLASTn [13], CAP3 assembler [14] and ClustalW/
software [15] were used to compare, assemble, and align
high quality expressed sequence tags, ESTs, respectively.
For functional annotation of the transcripts we used
BLASTx [13] to compare the nucleotide sequences with
the non-redundant (NR) protein database of the
National Center of Biological Information (NCBI) and to
the Gene Ontology (GO) database [16]. The gene ex-
pression profiles were compared by mapping RNA-seq
reads using Bowtie 2 2.1.0 [17]. Assembled sequences
with high BLAST similarity to known protein sequences
(E-value cut-off of 1E-6) from other species were anno-
tated and the GO functional annotations were extracted
using the Swiss-Pro (http://www.uniprot.org/) BLAST
result by comparing with EMBL Uniprot eggNOG/GO
Pathways databases. Analysis of GO terms was subse-
quently performed using a custom script. The GO terms
belonging to cellular components, biological processes
and molecular functions were listed. Bi-directional best
hit (BBH) was used to search against the KEGG database
[18] to obtain the KO (Reference pathway) number of
the KEGG Annotation [18]. The KO (Reference path-
way) number of the transcriptome was also obtained,
according to KEGG Annotation.

To detect the changes in global gene expression in the
different tissues, we applied the MA-plot-based method
with a random sampling model [19] to identify the dif-
ferentially expressed genes by comparing the unfed
library with the fed library. Genes with fold change >3
and P value <0.001 were regarded as differentially
expressed genes.

Analysis of relative expression by quantitative real-time PCR
Total RNAs were purified from different developmental
stages of ticks (eggs, larvae, nymphs and adult females)
and from unfed (unattached), fed (3 or 4 days after at-
tached) and engorged (blood feeding completely) female
tick salivary glands. The cDNAs were synthesized from
200 ng RNAs using random 6-mer primers with the
PrimeScript RT reagent kit (Perfect Real Time) (Takara,
Shiga, Japan) in the following program: 37 °C for
15 min, 85 °C for 7 s, and finally 4 °C. Quantitative real-
time PCR was performed using SYBR Premix Ex Taq
(Takara, Japan) with a StepOnePlus Real-Time PCR Sys-
tem (Applied Biosystems, USA), with cycling parameters
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of 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s
and 60 °C for 30 s. The primers are listed in Table 1.
Gene-specific standards were the respective plasmids.
All samples were analyzed three times.

The data were normalized to the elongation factor-1
gene (EF-1) (accession number AB836665) [20]. Relative
gene expression data were analyzed using the 27°¢
method [21, 22], and ACt values were calculated by sub-
tracting the average EF-1 Ct values from those for the
average target gene.

Mean + SE values for each group (1 = 4) were calculated,
and two-tailed t tests were used to compare differences
between groups with Graphpad PRISM 5 software
(GraphPad Software Inc., La Jolla, California).

Results

Comprehensive data

In total, more than 83 million paired-end reads were ob-
tained from Illumina/Solexa sequencing (Table 2). The
transcriptome assemble yielded 71,539 transcripts be-
longing to 29,932 genes. There were 42,789 transcripts
(60 % of the total assembled transcripts) which had a
length greater than 1 kb and 25,113 transcripts (35 % of
the total assembled transcripts) showed significant simi-
larity to known proteins with high BLAST (E-value cut-
off of 1E-6) from the other species annotated (Table 3).

In total, 88 % and 89 % of the sequencing reads could
be mapped back to assembled sequences in the unfed
and fed library, respectively. The raw count for each as-
sembled sequence was calculated on the basis of the
alignment files, and the gene expression levels were
measured and normalized as reads per kilobase of the
exon model per million mapped reads (RPKM) [23],
which indicates that the total transcripted region of a
gene has been detected. The distribution of expression
values for the unfed and fed libraries was examined
(Fig. 1).

The average RPKM value in the fed and unfed mutant li-
braries was 20 and 21, respectively. In total 10,760 and
10,928 genes were detected that had RPKM >3 in the unfed
and fed library, respectively (Table 3). Low-abundance tran-
scripts were also detected by the RNA-seq, which suggested
that the RNA-seq in this study provided high resolution for
detecting the level of gene expression. In total, 1179 up-
regulated genes and 574 down-regulated genes were found
by comparing the two libraries (Table 3 and Fig. 2).

To investigate the functions of these differentially
expressed genes, all the differentially expressed genes
were mapped to the GO database and compared with
the whole transcriptome background. BINGO [24] was
used to identify enrichment GO terms by using custom
annotation files from the transcriptome on the basis of
the hypergeometric test (P-value <0.01) (Additional file
1). All the enrichment GO terms from the up-regulated
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Table 1 The Primers used in real-time PCR
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Target gene Forward primer (5-3)

Reverse primer(5'-3") GeneBank number

CATB GCACCACCATTGGCGAGATTC
CATL CTGAGGGCTTTGAGGATTTGC
ATGAB GGCACCTTGGGAAAGACTGGC
ATG4D AAGCAGGCGGGTGACTGGTAT
CASP1 TCCACGGTGCCAGGCTTCTAC
CASP8 GCAGGCACGCTCTACCAGTC

CTCGTAGTTGCCGCCCGTG KT194088
GACCACCCTCGCAGCCG KT194089
GCGTCTGTTGTCTCCACTCTGCAT KT194090
AATGTATGTGGTGTTGAGCTGTTCC KT194091
CCAGTCGGGTCAGAGTGGAGGAG KT194092
GCTCCTCTCATACAGCAGCACTA KT194093

expressed genes could be categorized into 135 GO terms
(29 cellular component terms, 33 molecular function
terms, and 73 biological process terms). The enrichment
GO from down-regulated expressed genes could be cate-
gorized into 15 GO terms (5 cellular component terms,
9 molecular function terms, and 1 biological process
term) (Table 3).

Among all the GO terms there were 7 annotations
which contained 39 contigs related to protease (Table 4).
The transcript databases showed 25 predicted molecules
that may have the molecular function of cysteine peptid-
ase activity, on the basis of molecular function GO terms
(GO:0008234).

Bioinformatic evolutionary analysis

From the transcript library, 6 genes (4 up-regulated
genes (CATB, CATL, ATG4B and CASP1) and 2 as-
sociated genes (ATG4D and CASP8) were chosen as
target genes. They all belong to the cysteine proteases
family and the levels of gene expression were detected
with RPKM. Although the ticks have great evolution-
ary distance from other animals, the sequences and
phylogram of the target genes showed a close rela-
tionship with the cysteine proteases from other
species (Fig. 3), suggesting an ancient origin for these
genes and a high degree of conservation during
evolution. Despite the dispersion of different species,
all the sequences in ticks indicate the close relation-
ship among the proteases. The distinction between
caspases and autophagy proteases seems to be blurred
and indistinct; suggesting that the origin or function
of these genes may be closely related in ticks (Fig. 4).
All the sequences mentioned above can be found
in Additional file 2.

Table 2 Statistics sequencing amount for two fastq files

Samples Clean reasd  Total Sequence GC
nucleotides length percentage

Unfed 46,707,727*2 9,341,545,400 100 nt*2 51 %

Fed 36,571,011*2  7,314,202,200 100 nt*2 50 %

Total Reads and Total Nucleotides are actually clean reads and clean nucleotides;
Total Nucleotides = Total pair-end Reads1 x pair-end size + Total pair-end Reads2
x pair-end Read2 size; GC percentage is proportion of guanidine and
cytosine nucleotides among total nucleotides

Dynamic profiling of cysteine proteases in salivary glands
of ticks

Analysis of cysteine proteases mRNA expression in
salivary glands is presented in Fig. 5. All the target genes
are unregulated after blood feeding and arise their peaks.
While the up-regulation genes between unfed and fed are
CATB, ATG4B, ATG4D and CASPS8, the CATL and
CASP1 are down regulated in the fed status. This is differ-
ent form the report of transcriptome. It seems that the
transcriptional levels of 4 up-regulation genes are in-
creased constantly during the blood feeding. CATB, CATL
and ATG4D mRNA expression in engorged ticks was sig-
nificantly higher (P < 0.01) than that for unfed ticks.

Dynamic profiling of cysteine proteases in different
developmental stages of ticks

Analysis of the mRNA expression of cysteine proteases
in egg, larva, nymph and adult is presented in Fig. 6.
Almost all of target genes have a down regulation at fed
status for the larva and nymph. The same situation
occurred for CATL, ATG4D and CASP8 in the adult.
CATB appeared to show a declining trend in the larva,
and was significantly lower (P<0.01) than that in the
unfed ticks. For the nymph, the transcription peak
occurred during engorgement, despite its significant

Table 3 The summary of transcripts of salivary glands of
R.haemaphysaloides

Total number of reference transcripts 71,539

The number of transcripts with BLASTX-hit 25,113

The number of transcripts with KEGG annotation 4723

The number of transcripts detected with RPKM 10,760(unfed)/
10,928(fed)

The number of up-regulated genes 1179

The number of down-regulated genes 574

GO from up-regulated expressed genes 135

GO cellular component /molecular function 29/33/73

/biological process (up-regulated expressed genes)

GO from down-regulated expressed genes 15

GO cellular component /molecular function 5/9/1

/biological process (down-regulated expressed genes)

RPKM Reads Per Kilobase of exon model per Million mapped reads, KEGG Kyoto
Encyclopedia of Genes and Genomes, GO gene ontology
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reduction (P <0.01) in the fed state. It seems that in the
adult the transcription of CATB increases persistently and
is significantly higher (P < 0.05) than that in the unfed adult.
CATL shows a similar tendency to CATB. For the larva
and adult, the transcription peak occurred during engorge-
ment. However, the expression in fed larvae and nymphs
was significantly lower (P < 0.01 and P < 0.001, respectively)
than that in the unfed stages. ATG4B and ATG4D are
regarded as two different isotypes of autophagy-protein as-
sociated genes. In the larva and nymph, they appear to
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show almost the same tendency in unfed, fed and engorged
ticks. In the adult, however, ATG4B and ATG4D are at
significantly higher levels (P <0.05) than in the unfed
tick. This parallels its changes in the salivary glands.
The mRNA expression of CASP1 in the larva and
adult seems to increase persistently, especially in the
adult, where the mRNA expression during engorge-
ment is significantly higher (P<0.01) than that for
unfed ticks. However, in fed and engorged nymphs,
its transcription is significantly lower than that in un-
fed nymphs (P<0.001 and P<0.01, respectively).
There was low transcription for the mRNA expression
of CASP8 in fed larvae and adults, and no obvious
regularity was shown in the test.

Discussions

Most of the proteins displayed in Fig. 3 have been func-
tionally characterized in mammals, while few studies
have described the exact function of caspases and au-
tophagy proteases in ticks, although they possess only
innate immunity. Almost all the cathepsins in ticks are
involved in the process of blood digestion [25]. The pep-
tidases identified from different tick species with a pro-
posed role in hemoglobin digestion are mainly cysteine
peptidases, with some serine and metallopeptidases
[25, 26]. As in humans, the caspases have the ability
to regulate three alternative cell death pathways:

40 =

30 =

20 =

-log10(p value)

Significant
down
FALSE

RN . - up

0.0
log2(Fold change)

Fig. 2 Volcano plots of differential expressed genes. A scatter plot showing differentially expressed genes. The X axis and Y axis show the fold changes on
a log2 scale and the p-value on -log10 scale, respectively. The up-regulated genes and down-regulated genes are shown in green and blue, respectively
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Table 4 The summary of GO terms about proteases

GO term Forecast function
G0:0002020 protease binding
(The number of related  (3)
gene)
GO:0004843 ubiquitin-specific protease activity
(The number of related  (29)
gene)
GO:0016505 apoptotic protease activator activity
(The number of related (1)
gene)
GO:0016929 SUMO-specific protease activity
(The number of related  (3)
gene)
G0:0019783 small conjugating protein-specific protease
activity
(The number of related (1)
gene)
GO:0019784 NEDD8-specific protease activity

(The number of related (1)
gene)

GO0:0035800

(The number of related (1)
gene)

ubiquitin-specific protease activator activity

apoptosis, pyroptosis, and necroptosis [27]. Moreover,
recent work has shown that cathepsin B and cathep-
sin D regulate the inflammasome-dependent and -in-
dependent macrophage responses induced by cytosolic
flagellin [28]. The research also revealed that cathep-
sin B contributes to NAIP5/NLRC4 inflammasome-
induced pyroptosis and interleukin-la (IL-1a) and IL-1
production in response to cytosolic flagellin [28]. Unfortu-
nately, there is little knowledge about the relationships
among the cathepsins, caspases and autophagy proteases
in ticks. It will be of great value to identify the function
of these cysteine proteases because of their important
roles, and this may contribute to the development of
candidate vaccines or drugs for tick control by RNA
interference.

When feeding on their hosts, ticks need to deal
with host hemostasis, inflammation and immunity.
Although recent progress in transcription research on
hard ticks has shown that hundreds of different pro-
teins are expressed in their salivary glands, many of
them are known only as salivary proteins with un-
known function [8].

Tick feeding is a slow and uninterruptible process,
and blood digestion takes place in the gut epithelium,
which is different with insect blood-feeders that feed
and digest blood in the gut lumen rapidly with neu-
tral pH [29, 30]. In this progress, the salivary glands
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act as a “pivot” in which anti-host defense molecules
and digestion proteases are secreted and released to
the host vasculature and to the tick’s midgut with the
blood. Pathogens such as Babesia [31, 32], Anaplasma
[33] and Borrelia [34, 35] infect tick salivary glands and are
injected into the host during their meals [36]. Ticks possess
defense mechanisms that allow them to maintain patho-
gens and commensal microbes at a certain level that does
not impair their fitness and further development. Whether
any of the proteases also play a role in immune defense is
unknown. However, evidence from insects suggests that
metalloproteases may be important in cellular immune
defense [37]. In mosquitoes, serine proteases are reported
to be up-regulated in response to invasion of the
hemolymph by malarial parasites, contributing to the nor-
mal innate immune response [38].

Cysteine proteases are a component of the multi-
enzyme hemoglobinolytic model for hard ticks; its
numerous members play different roles in tick life cy-
cles. To our knowledge, CATB and CATL are believed
to be involved in the digestion of blood [26]; caspases
seem also to participate in this process. In mammals,
caspases lead to apoptosis and inflammation and may
be associated with autophagy proteases, which are also
involved in inflammation and cell death [39]. Unfortu-
nately, their functions in ticks are still unclear. After
engorgement, the salivary glands become withered and
apoptotic and may even vanish. This process is similar to
apoptosis in mammals, but whether caspases and autoph-
agy proteases are involved in this mechanism requires fur-
ther confirmation.

Cathepsins, another component of the tick multiple
enzyme system, are believed to be involved in the diges-
tion of blood. The current knowledge of the molecular
characteristics of tick digestive enzymes began to be as-
sembled in the 1980s to 1990s by isolation and partial
characterization of acidic aspartic peptidases of cathepsin
D from soft and hard ticks [40, 41]. Later, Mendiola et al.
reported that aspartic (cathepsin D-like) and cysteine
(cathepsin L-like) peptidases are the major hemoglobino-
lytic enzymes in R. microplus. Two cathepsin L-type cyst-
eine peptidases were partially characterized and cloned
from the midgut of Haemaphysalis longicornis (H. longi-
cornis) [42]. Another cysteine peptidase gene homologous
to cathepsin L (BmCL1) was shown to be expressed in the
gut of partially engorged R. microplus females, and recom-
binant BmCL1 was optimally active against bovine
hemoglobin at acidic pH [43, 44]. The research on Ixodes
ricinus shows more detail about the cathepsins. There is a
mechanistic model of the proteolytic pathway of
hemoglobin degradation in the digestive vesicles of I
ricinus gut cells [26]. Cathepsin D (CATD), supported
by cathepsin L (CATL) and legumain (AE), is respon-
sible for the primary events in the cleavage of
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SPIPO7688ICATE_BOVIN Gathepsin B OSBos taurus GNCTSB PE1 SV5

SPIATE2BSICATE_PIG Cathepsin B OSSus scrofa GNCTSS PE1 SV1

SpIP1060SICATE_MOUSE Gathepsin B OSMus musculus GNGisb PET SV2

SPIP00787ICATE_RAT Gathopsin B OSRattus nonegicus GNGisb PE1 SV2

SPIPO78S8ICATE_HUMAN Cathepsin B OSHomo sapiens GNCTSE PE1 SV3

SPIQSAED1ICATE_PONAB Gathopsin B OSPongo abelil GNCTSS PE2 SV1

SPIQ4RSM2ICATE_MAGFA Gathopsin B OSMacaca fascicularis GNGTSB PEZ SV1

SpIP43233ICATE_GHICK Cathepsin B OSGallus gallus GNCTS PE2 SV1

GAEEL Catnepsin proteinase 5 slegans GNopr-s PE2 SV1
PIQ26534ICATL_SGHMA Gathepsin L OSSchistosoma mansoni GNGLT PE2 SV1

SPIQOA714ICATLI_PARTE Gathopsin L 1 OSParamesium tetraurelia GNGSPATT00020990001 PE1T SV1

SPIAGESSEICATLE PARTE Cathepsin L 2
SpIP19092/GYSP1_HAEGO Gathepsin B-ike cysteine prot

SpIP25793ICYSP2_HAEGO Gathopsin Bike cysteine proteinase 2 OSHasmonchus contortus GNAG-2 PE2 SV1
SPIP25802ICYSP1_OSTOS Cathepsin B-like cysteine proteinase 1 OSOstertagia ostertagl GNCP-1 PE3 SV3
- DROME Cathepsin L Gnop1 PE2 SV2

SpIP43E0BICPR4_CAEEL Cathopsin B-like cysteine proteinase 4 OSCaenorhabditis elegans GNepr4 PE2 SV1
SPIPO2132ICATB2_GIAIN Cathopsin B-like CP2 OSGiardia intestinalis GNCP2 PET SV2.
SPIPE213SICATES_GIAIN Cathepsin B-like CP3 OSGlardia intestinalls GNCPS PE2 SV2.

[ sPic240491CATLL FASHE Gainensin Like proteinase OSFascioi nepatica GNCat-T PE1 SV1

slegans GNepr-3 PE2 SV1

QI0O73B7ICATLL PHAGE Gathepsin Lriike proteinase OSPhaedon cochleariae PE2 SV1
PIO17473IGATL_BRUPA Cathepsin Liiike OSBrugia pahanai PE1 SV1
[ PIP43157ICYSP_SGHJA Gathepsin B-iike cysteine proteinase OSSchistosoma aponicum GNCATS PEZ SV1

L 4pip257021GYSP_SGHMA Gathepsin B-iike cysteine proteinase OSSchistosoma mansoni PE2 SV1
1095020.

p L 21GATL_DROME Isoform A of Gathepsin L OSDrosophila melancgaster GNGp1

PIQT0991ICATLI_SHEER Gathepsin L1 OSOvs arios GNGTSL PE1 SV1
5pIQ0B544ICYSP3_OSTOS Gathopsin B-iike cysteine proteinase 3 (Fragment) OSOstertagia ostertagi GNGP-3 PES SV1

L 2pIQSNET6ICATLS HUMAN Putative inactive cathepsin L-iike protein CTSLAP OSHome sapiens GNCTSLAP PES SV1

A

SpIP20452ICASP1_MOUSE Caspase-1 OSMus musculus GNCasp1 PE1 SV1

SPIQIMZV7ICASP1_CANFA Gaspase-1 OSCanis familiaris GNCASP1 PE2 SV1
SPIQONZITICASP1_PIG Caspase-1 OSSus scrofa GNCASP1 PE2 SV1

SPIP29466-4ICASP1_HUMAN Isoform Delta of Gaspase-1 OSHomo sapiens GNCASP 1
A XENLA lacus GNcaspi-a PE2 SV1
ENLA laevs GNeasp1-b PEZ SV1

DROME Caspase-1 GNDep-1 PET SV
SPIP29466-5ICASP1_HUMAN Isoform Epsilon of Gaspase-1 OSHomo sapiens GNCASP1
IRY7-4ICASPS_DROME Isoform alpha of Caspase-8 OSDrosophila melanogaster GNDredd

1_SPOFR Caspase-1 frugiperda PET SV1

SPIO14790-4ICASPE_HUMAN Isoform 4 of Gaspase-8 OSHomo sapiens GNCASPS,

SPIQ14790-9ICASPE_HUMAN Isoform © of Caspase-8 OSHomo sapiens GNCASPS
[ SPI20M7ICASPS_DROPS Caspase-8 OSDrosopnila pasudoobacura paeudocbacura ONOredd PES SV1
rp\cevavwmspe,nacyws Gaspase-8 OSDrosophila melanogaster GNDredd PE1 SV3

SPIQBIRY7-2ICASPE_DROME Isoform D of Caspase-8 OSDrosophila melanogaster GNDradd
SPIGBIRY7-3ICASPB_DROME Isoform F of Gaspase-8 OSDrosophila melanogaster GNDredd

B

C

Fig. 3 (See legend on next page.)
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Fig. 3 Relationship of Rhipicephalus haemaphysaloides cysteine protease (marked by red box) to other species proteins. a, the evolution of
cathepsins (mainly cathepsin B, cathepsin L and their associated proteins); b, the evolution of caspases; ¢, the evolution of autophagy proteins. The circular
phylogram is based on the alignment of sequences derived from this study using MEGA by maximum likelihood and similar sequences obtained from the

Swiss-Prot database from UniProt

hemoglobin. Subsequently, cathepsin B (CATB) and
cathepsin L (CATL) participate in the secondary
digestion, to generate smaller fragments. After the di-
peptidase activities of CATB and cathepsin C (CATC),
small fragments are degraded into dipeptides. Most
CATB and CATL have been identified in the midgut
in different tick species: for example, IrCB1 from 1L
ricinus [25, 26, 45], longipain from H. longicornis
[46], and BmCL1 from R. microplus [43, 44, 47, 48].
In L ricinus, IrCL1 was identified in the midgut, saliv-
ary glands, ovary and malpighian tubes [26, 49, 50].
Based on our report of the sialotranscriptome, we
have identified for the first time that CATB and
CATL existed in salivary glands from R. haemaphysa-
loides. These two peptidases may be involved in
hemoglobin digestion, and therefore their mRNA ex-
pression reaches a peak in engorged ticks and their
salivary glands. Given that digestion takes place in the
gut epithelium, the midgut of R. haemaphysaloides
may also contain CATB and CATL. When the blood
flows into the gut lumen, it may stimulate and trigger
the transcription of peptidases in gut epithelium.
Under this circumstance, the mRNA expression in
salivary glands may be affected and this may be the
reason that there is always low transcription level in
the fed state.

Recently, most of the knowledge about caspases has
been derived from research on the human or mouse.
There is little known about their function in insects, and
much less in ticks. However, in-depth analysis on human
caspases shows much more detail and offers suggestions
for further research in other species. As a member of
cysteine proteases family, Caspases have primary specifi-
city for aspartic acid (Asp) residues; they cleave their
substrates after tetrapeptide sequences containing Asp
in the P1 position. All caspases are synthesized as in-
active single-chain zymogens (procaspases) initially, and
then processed into their active forms. Additional signals
are required to the initiation of caspase activation path-
ways [27]. Protein interaction domains are component
of long prodomains in initiator caspases. For example,
CARDs are contained in caspases—1, -2, -4, -5, -9, - 11,
and -12, and death effector domains (DEDs) are in
caspases-8 and —-10 [51]. Caspase—8 as an initiator caspase
is activated via their DED-mediated interactions within
the death-inducing signaling complex (DISC) in the ex-
trinsic pathway. Ultimately the downstream effector

caspases—3, -6, and -7 are activated and responsible for
the classical phenotypic changes associated with apoptosis
[27]. Caspase-1 is regarded as the prototypical inflamma-
tory caspase [27], and is responsible for the processing of
prolL-1p and prolL-18 [52]. Caspase—8 is a mediator of
inflammation [27]. Recent studies have revealed distinct
roles for caspase-8, which are associated with the extrin-
sic apoptotic pathway. It is involved in the regulation
of inflammation and is also proposed to have an anti-
inflammatory role [53]. In addition, caspase-8 is pro-
posed to cleave prolL-1f into its active mature form
[54-61], to be incorporated and activated within
inflammasome complexes [62, 63], and to activate
caspase-1 directly in an inflammasome-independent
manner [64, 65].

As mentioned above, it is believed that there is only an
innate immune system in ticks. This innate immunity
plays really important roles in the tick life cycle,
although it may not be as complex and complete as that
in mammals. The sialotranscriptome of R. haemaphysa-
loides shows at least 3 or 4 caspases in this tick species,
but only caspase-1 and caspase-8 were cloned success-
fully from the ¢cDNA library. CASP8 reached its peak
level after engorgement in our experiment; at this time,
ticks are full of host blood, which contains cytokines and
perhaps pathogens. As an initiator caspase, CASP8 may
trigger and enhance the innate immunity, with CASP1,
to defend against harmful effects as described above.
The incomplete immune system of the tick may have re-
stricted function when compared with that in mammals.
It is still unclear how ticks deal with the cytokines
ingested in blood, and whether caspases participate in
the management of cytokines and in the mechanism of
pathogen defense. Western blot showed that, in female
adult R haemaphysaloides, CASP1 may contain
~35 kDa monomers and ~70 kDa dimers (unpublished
data), coinciding with that in humans. With reference to
studies on human caspases, we will undertake further
research on the function of caspases in R. haemaphysa-
loides using RNAI.

Autophagy related (ATG) genes are a complex and mys-
terious family containing numerous members. There were
more than 30 of these genes characterized in yeast origin-
ally, and many orthologs have been identified as autophagy
regulators in higher eukaryotes [66, 67]. Proteases partici-
pate in several stages of autophagy. In the initial steps of
macroautophagy, the formation of autophagic vesicles
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Fig. 4 Relationship of Rhipicephalus haemaphysaloides cysteine proteases (marked by red box) to other related tick proteins. a, the relationship of
cathepsins (cathepsin B, cathepsin L and their associated proteins) in ticks. b, the relationship of caspases and autophagy proteins in ticks. The circular
phylogram is based on the alignment of sequences derived from this study using MEGA by maximum likelihood and similar sequences obtained from

the Swiss-Prot database from UniProt

requires the conjugation of phosphatidylethanolamine with
ATGS8 [68]. Following translation, ATGS8 is cleaved by
ATG4 (the cysteine family protease) in yeast cells. Subse-
quently, the resulting ATG8M® is involved in a ubiquitin-
like conjugation reaction catalyzed by ATG7 and ATG3
[68]. Similarly, ATG4 participates in processing of three
mammalian homologs of ATG8 in mammalian cells, which
is crucial for the autophagic pathway [39, 69, 70]. In the sia-
lotranscriptome of R haemaphysaloides, we found only
two autophagy-related (ATG) genes; these were classified
into ATG4B and ATG4D on the basis of their sequences in
BLAST databases. After engorgement, the mRNA expres-
sion of ATG4B and ATG4D rises to a peak in adult ticks
and their salivary glands, when the salivary glands are
approaching apoptosis. It is thought that the ATG-protein
may be involved in this process, and that the constitution
of autophagosomes in ticks may be much simpler than that
in yeast for the limited ATG genes, although its mechanism
of action is still unknown.

It is generally suggested that the major function of
lysosomal proteases is to maintain cellular homeostasis
and differentiation by recycling cellular content [71].
Cathepsin B and Cathepsin L, as the most abundant
lysosomal proteases [71], are involved directly in the
execution of autophagy [72, 73]. Cathepsin B has also
been reported to regulate the activity of caspases [28]. In
addition, autophagy-related proteins are acknowledged to

be involved in inflammation, infection and cancer [39],
meaning that apoptosis and pyroptosis are closely associ-
ated with caspases. In view of these findings, it is thought
that there must be a closely regulated relationship among
the cysteine proteases.

Conclusions

Analysis of the sialotranscriptome of R. haemaphysa-
loides using two cDNA libraries, from unfed and fed
ticks, identified many transcripts coding for different
proteins. On the basis of the database of differentially
expressed genes, we identified four up-regulated cysteine
proteases and two associated genes for further study.
Using Q-PCR, the up-regulated genes were found to be
CATB, ATG4B, ATG4D and CASP8, which is slightly
different from results of the sialotranscriptome, although
mRNA expression of all six target genes reached a peak
after engorgement. Moreover, the phylogenetic trees
showed that the R. haemaphysaloides cysteine protease
sequences are dispersed into different clades, which con-
tain sequences from other species, suggesting an ancient
origin for these genes. The phylogram of different tick
species demonstrates the close relation between caspases
and autophagy-related proteins. Furthermore, we ob-
served dynamic changes of mRNA expression in differ-
ent developmental stages of R haemaphysaloides,
suggesting their multiple functions during blood feeding.
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Fig. 5 Dynamic cysteine proteases changes in salivary glands of unfed, fed and engorged ticks. Salivary glands were isolated during the different
blood feeding statuses and cysteine proteases expression was analyzed by quantitative real-time reverse transcription polymerase chain reaction.
Gene expression was calculated using the ACt method. Elongation factor served as the endogenous control. Data are represented as LS
means (n = 4 ticks). Significant difference analysis was compared the results of unfed, fed and engorged ticks (*means P < 0.05, **means P < 001, and
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Taken together, these results improve our knowledge Ethics statement
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proteases of R haemaphysaloides that will make a con- Care and Use Committee of the Shanghai Veterinary
tribution to further study, and may help in the research  Research Institute, and followed the misconduct policy of
to identify candidate antigens for anti-tick vaccines and BMC Genomics, and authorized by the Animal Ethical
to discover drugs to treat inflammation and cancer. Committee of Shanghai Veterinary Research Institute.
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