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Abstract

Background: Mathematical models of parasite transmission can help integrate a large body of information into a
consistent framework, which can then be used for gaining mechanistic insights and making predictions. However,
uncertainty, spatial variability and complexity, can hamper the use of such models for decision making in parasite
management programs.

Methods: We have adapted a Bayesian melding framework for calibrating simulation models to address the need
for robust modelling tools that can effectively support management of lymphatic filariasis (LF) elimination in diverse
endemic settings. We applied this methodology to LF infection and vector biting data from sites across the major
LF endemic regions in order to quantify model parameters, and generate reliable predictions of infection dynamics
along with credible intervals for modelled output variables. We used the locally calibrated models to estimate
breakpoint values for various indicators of parasite transmission, and simulate timelines to parasite extinction as a
function of local variations in infection dynamics and breakpoints, and effects of various currently applied and
proposed LF intervention strategies.

Results: We demonstrate that as a result of parameter constraining by local data, breakpoint values for all the
major indicators of LF transmission varied significantly between the sites investigated. Intervention simulations
using the fitted models showed that as a result of heterogeneity in local transmission and extinction dynamics,
timelines to parasite elimination in response to the current Mass Drug Administration (MDA) and various proposed
MDA with vector control strategies also varied significantly between the study sites. Including vector control,
however, markedly reduced the duration of interventions required to achieve elimination as well as decreased the
risk of recrudescence following stopping of MDA.

Conclusions: We have demonstrated how a Bayesian data-model assimilation framework can enhance the use of
transmission models for supporting reliable decision making in the management of LF elimination. Extending this
framework for delivering predictions in settings either lacking or with only sparse data to inform the modelling
process, however, will require development of procedures to estimate and use spatio-temporal variations in model
parameters and inputs directly, and forms the next stage of the work reported here.
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Background
A major requirement for designing and managing effective
population-level strategies to interrupt self-sustaining para-
site transmission from communities is the reliable quantifi-
cation of the expected dynamical responses of parasite
populations to applied interventions [1–5]. A second key
need is the identification of the measurable infection or
transmission-related variables that can serve as reliable
thresholds for indicating with high certainty that parasite
transmission is interrupted or no longer self-sustaining in
any given setting [6–9]. Beyond these requirements, two
other important needs are the quantification and
understanding of how parasite control dynamics and trans-
mission thresholds or breakpoints may: 1) vary due to the
uniqueness of a given ecological setting, and 2) are influ-
enced by the extant uncertainty and stochasticity sur-
rounding the system processes that may govern any such
local variations in dynamics [10–12]. It is also important to
recognize that parasite transmission systems are complex,
adaptive and evolvable, whose behaviour emerges from the
interaction of adapting components [11, 13]. Their behav-
iour is thus frequently nonlinear, sometimes managing
to resist large perturbations and other times trans-
forming because of small perturbations [7, 13–15].
These considerations imply that the design and man-
agement of parasite elimination programs, and indeed
assessment of the controllability of a given parasite
system, are primarily tied to gaining a better under-
standing as well as incorporation of the underlying
complexity, uncertainty and heterogeneity inherent in
the transmission dynamics effectively into manage-
ment practice [8, 10, 16–18]. The dynamical nature of
the problem also highlights that insights from empir-
ical field or clinical trial results alone will not provide
the information required to make the programmatic
decisions regarding the best strategies to identify
thresholds, break transmission and when to stop para-
site interventions [8, 19–23].
The vital roles that mathematical models of parasite

transmission can play in addressing these questions and
hence support the effective design and assessment of
community-based intervention programs have long been
noted ([1, 24]), and yet the actual use of these process-
based tools for guiding parasite elimination has so far
been limited [25]. Partly, we indicate that this is linked to
the fact that the application of any modelling construct
involves substantial variabilities, contributed partially by
epistemic uncertainties regarding model structure and
parameters, and in part by the often limited quantity and
quality of data inputs [10, 18, 26, 27]. This difficulty is fur-
ther exacerbated when local transmission dynamics vary
between communities owning to variations in boundary
or initial conditions, which will lead to misleading locality-
specific control predictions by models that base their

parameters on averaged universal values [28, 29]. A sec-
ond difficulty is that most models developed to depict
the average behaviour of a system are inadequate for
addressing the type of percentile- or probabilistic-based
outcomes needed by policy makers in order to make deci-
sions that can reliably accommodate the variability that
may occur in system response to different interventions
applied variously across diverse transmission settings.
These challenges suggest that to enhance the credibility
and value of using transmission models for guiding deci-
sion support, both the uncertainty in model predictions as
well as the full range of expected system responses across
different local settings must be rigorously quantified if we
are to provide the type of dynamics-based policy informat-
ics required to more effectively achieve successful parasite
control everywhere [10, 18].
This report is of work in progress in our laboratory

aimed at developing a modelling framework that can
effectively address each of the above issues, in the con-
text of improving the use of mathematical models of the
major vector borne macroparasitic disease, lymphatic fil-
ariasis (LF), as tools for guiding the design of manage-
ment strategies for the many locations where the disease
is endemic. In particular, we illustrate and highlight fea-
tures of a Bayesian methodology that can facilitate the
combination of LF transmission models with data in a sta-
tistically rigorous way so as to constrain model parameters
and system states, identify and quantify model errors, and
improve predictions of parasite transmission and control
in different ecological settings [10, 18, 26, 30]. Our chief
rationale in developing this methodology stems from the
belief that to be most useful for predictive epidemiology,
we need both process or mechanistic models to represent
the key biological structures, components and processes
that determine the dynamical behaviour of a parasite
transmission system, and also data, to quantify these pro-
cesses and components, and thereby constrain the result-
ant model parameters and state variables via data
assimilation [31–33]. A feature of such modelling schemes
is how they can also incorporate information that pertains
to uncertainty of both the model and the observations,
and thus permit better estimates of the true state of a
dynamical system in a locality [34]. Additionally, as esti-
mates of model output uncertainty are calculated in
accordance with the observed data, model predictions of
quantities of interest (eg. thresholds, infection patterns,
timelines to elimination) are also correlated to their asso-
ciated probabilistic density functions derived from the par-
ticular method used to match sets of model simulation
outputs to data [26, 28, 34, 35]. This expression of model
outputs as a probability distribution is crucial to allowing
policy makers to make decisions that accommodate the
natural variability of dynamical systems, as well as the un-
certainty inherent in model predictions due to incomplete
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understanding of infection dynamics in any given endemic
setting.
The analysis reported here begins with a presentation of

the specifics of the Bayesian data calibration framework
we have developed for supporting LF modelling based on
field data. This is followed by describing results from the
model calibration exercise, and examination of the ability
of vector-specific LF models to adequately reproduce the
infection patterns observed in human communities from
across settings representing the major LF endemic regions
of the world. We then use these locally calibrated models
to address several critical questions regarding the design
of LF management strategies for successfully achieving
parasite elimination, including: 1) what types of eradica-
tion thresholds, and what would the values of these
thresholds be, that provide the best means to assess LF
elimination and which therefore may adequately serve as
elimination targets for LF intervention programs; 2) are
the values of these thresholds consistent across different
local settings, and what might the implications of any het-
erogeneity be for the frequency and durations of interven-
tions required to break parasite transmission in any given
site; and 3) which of the current LF strategies and what re-
medial measures may best overcome these heterogeneities
in extinction dynamics so that the likelihood of achieving
LF elimination may be accomplished within a reasonable
time frame across all settings? We end by discussing the
importance of our results for the global LF elimination
programme, by assessing the probabilities of both achiev-
ing infection elimination and reducing risk of infection re-
crudescence locally using the globally-set World Health
Organization (WHO) thresholds and recommended mass
treatment regimens and schedules.

Methods
Data
The data used in this analysis were compiled from pub-
lished pre-control cross-sectional surveys of microfilar-
iae (mf) prevalence and mosquito abundance carried out
in 22 geographically-distinct communities across the
major LF endemic settings of Africa, Southeast Asia and
Papua New Guinea in the Pacific region. These datasets
were selected on the basis that they provide human age-
mf prevalence data, stratified by age-classes of individ-
uals sampled and numbers of mf-positives out of these
samples, information on the dominant vector species,
and measurements of the corresponding annual biting
rates (ABR) of mosquitoes indicating the vector transmis-
sion intensity prevailing in each site. Five out of these 22
sites also have age-profile data on circulating filarial anti-
gen (CFA). Details of the data - sample sizes and % mf
and CFA positives, along with sampling blood volumes
used to assess infection prevalence, dominant vector spe-
cies and ABRs - for each of the 22 survey sites are given in

Table 1. Information on the drug regimen used for simu-
lating the effects of interventions in each of these sites by
MDA without/with vector control (VC) are also given,
reflecting the current WHO guidelines and use of drug
combinations advocated for these sites.

The mathematical model of LF transmission dynamics
We extended the recently developed mosquito genus-
specific LF transmission model [3, 7, 10, 18, 22] to carry
out the modeling work in this study by including two
new state variables into the model. The first variable is
included to capture the effect of pre-patency (time inter-
val between infection establishment and the age at which
worms become sexually mature and female worms begin
to produce microfilariae) in mf production, which in LF
is thought to generally last for a period of 6–9 months
[36]. Such lengthy pre-patent periods can introduce a
significant lag into the worm dynamics, including influ-
encing system breakpoints and responses to perturba-
tions [37]. The second state variable is included to
capture and investigate the dynamics of a key proposed
indicator of LF infection in a population, viz. Circulating
Filarial Antigen (CFA), which is thought to be a better
marker of infection than mf particularly when parasite
populations are reduced to low levels by repeated in-
terventions. As in the previous version, the state vari-
ables of this extended system vary over age (a) and/
or time (t), representing changes in the pre-patent
and patent worm burden per human host, respectively
denoted by P(a, t) and W(a, t); the mf level in the hu-
man host modified to reflect infection detection in a
1 ml blood sample (M(a, t)); the average number of
infective L3 larval stages per mosquito (L); a measure
of immunity (I(a, t)) developed by human hosts
against L3 larvae; and intensity of CFA (denoted by
A(a, t)). These states of the model are represented by
the following coupled system of partial and ordinary
differential equations:
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The quantity L* denotes the equilibrium density of
infective L3 larvae, and Ω(a, t) = L*ψ1ψ2g1[I(a,
t)]g2[WT(a, t)] is the establishment rate of larvae in
the human host moderated by the effects of acquired
immunity (as modelled by function g1[I(a, t)]) and/or
immune tolerance (modelled by function g2[WT(a,
t)]) [10, 18]. The above equations involve partial de-
rivatives of five state variables (P and W - pre-patent
and adult worm loads; M - microfilaria intensity; I -
immunity to acquiring new infection due to the
pre-existing total worm load (WT = P +W); and A -
intensity of circulating filarial antigen (CFA)),
whereas given the faster time scale of infection

dynamics in the vector compared to the human
host, the infective L3-stage larval density in the
mosquito population is modeled by an ordinary dif-
ferential equation, essentially reflecting the signifi-
cantly faster time-scale of larval infection dynamics
in the vector hosts. This allows making the simpli-
fying assumption that the density of infective stage
larvae in the vector population reaches a dynamic
equilibrium (denoted by L*) rapidly [7, 10, 18, 38,
39]. Note that we capture the effects of worm pa-
tency by considering that at any given time t,
human individuals of age less than or equal to pre-
patency period, τ, will have no adult worms or

Table 1 Description of baseline survey data. The study sites are given with the baseline sample size and microfilariae (mf)
prevalence (%), blood volumes collected during the survey to test for mf positivity, annual biting rate (ABR) of vector mosquitoes,
dominant vector species and drug regimen used for simulating the chemotherapeutic interventions by mass drug administration
(MDA) without/with vector control (VC)

Study
villages

Mf Sample
size

Blood
volume(μl)

cMf
(%)

dBaseline
ABR

CFA sample
size

CFA
(%)

Mosquito species
(genus)

aDrug
regimen

bDrug’s efficacies
(ω, ε, TP)

Source

Peneng 63 1000 66.67 8194 - - An. DEC + ALB (55, 95, 6) [10, 18, 78, 79]

Albulum 50 1000 80 42328 - - An. DEC + ALB (55, 95, 6) [10, 18, 78, 79]

Yauatong 131 1000 92.37 37052 - - An. DEC + ALB (55, 95, 6) [10, 18, 78, 79]

Nanaha 211 1000 54.98 11611 - - An. DEC + ALB (55, 95, 6) [10, 18, 78, 79]

Ngahmbule 346 1000 51.16 4346 - - An. DEC + ALB (55, 95, 6) [10, 18, 78, 79]

Tawalani 367 100 35.72 12850 - - An. IVM + ALB (35, 99, 9) [80]
eJaribuni 1007 100 25.35 15677 - - An. IVM + ALB (35, 99, 9) [81, 82]

Tingrela 699 20 63.89 4156 - - An. IVM + ALB (35, 99, 9) [83]

Chiconi 245 20 58.90 10586 - - An. IVM + ALB (35, 99, 9) [84]
eMasaika 848 100 28.61 6184 837 52.2 An. IVM + ALB (35, 99, 9) [85]
eKirare 919 100 28.18 2090 90 53.3 An. IVM + ALB (35, 99, 9) [86]
eAlebtong 739 100 33.47 58292 890 29.1 An. IVM + ALB (35, 99, 9) [87]
eLwala 572 100 21.05 16341 896 18.3 An. IVM + ALB (35, 99, 9) [87]
eObalanga 799 100 34.62 4587 900 30.1 An. IVM + ALB (35, 99, 9) [87]
eKingwede 825 100 3.07 1548 - - Cx. IVM + ALB (35, 99, 9) [85]
eMao 546 100 27.8 25439 - - Cx. IVM + ALB (35, 99, 9) [80]
eMambrui 787 100 24.99 4964 - - Cx. IVM + ALB (35, 99, 9) [81, 82]

Pondicherry 1549 20 34.74 88500 - - Cx. DEC + ALB (55, 95, 6) [88]

Calcutta 861 20 26.72 115942 - - Cx. DEC + ALB (55, 95, 6) [89, 90]

Vettavallam 7976 20 22.83 100375 - - Cx. DEC + ALB (55, 95, 6) [91]

Pakistan 1443 20 31.49 1607 - - Cx. DEC + ALB (55, 95, 6) [92, 93]

Jakarta 922 20 12.27 223000 - - Cx. DEC + ALB (55, 95, 6) [94]

An.: Anopheles mosquitoes; Cx.: Culex mosquitoes; Drug’s efficacies (ω,ε, TP): (instantaneous kill rate (%) for adult worms, instantaneous kill rate (%) for mf, drug’s
efficacy period in months); mf (%): mf prevalence in percentages calculated from the number of mf-positive samples out of the total individuals sampled (sample
size) in a study site; DEC: diethylcarbamazine citrate; IVM: Ivermectin; ALB: Albendazole.
aThe combination drug regimens used for MDA simulations in each site areas are as recommended for each site region by the WHO [95, 96].
bDrug efficacy values are taken from [3].
cAll mf prevalence values were standardized to reflect sampling of 1 ml blood volumes using a transformation factor of 1.95 and 1.15 respectively for values
originally estimated using 20 or 100 μl blood volumes [49].
dBaseline ABR are used to obtain the monthly biting rate (MBR = ABR/12), which is used as inputs into the LF models described in the text. The symbol (−)
indicates that the baseline CFA data are either not available or available but not broken by age-groups.
eThese sites have mixed vector species: here they are represented by the dominant vector species.
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microfilariae, ie. W a; tð Þ ¼ M a; tð Þ ¼ 0 for a ≤ τ, and
the rate at which pre-patent worms survive to be-
come adult worms in these individuals at a > τ is
given by ζ = exp(−μτ). The term f[M(a, t)] describes
the functional form relating the L3-stage larval up-
take and development in the vector population,
which is known to differ significantly in the two
major genus of mosquito vectors implicated in LF
transmission [40–43]. The derivation of these two
larval uptake and development functions are given
elsewhere [7]. This basic immigration-death model
structure as well as recent extensions have been
discussed [7, 10, 18, 38, 39]; see Additional file 1:
Table S1 for the description of all the model pa-
rameters and functions.

The Bayesian melding method
Notation
Following [28], we begin by denoting the collection
of model inputs about which information is uncer-
tain by Θ. These can include model parameters
and starting values of a system. We note that this
collection of model inputs may represent a subset
of the set of model inputs, and does not consist of
those inputs that, based on expert knowledge and
experience, are taken to be known or fixed in the
model. We represent the collection of model out-
puts about which we have observed information
(such as the number of mf positives from the base-
line LF surveys) by Φ. This collection will be a
subset of all the model outputs, and can include
values of a few or all state variables of the system
of interest at various time-points. Note, in the case
of a deterministic system, we can derive a mapping
function by MΦ such that Φ =MΦ(Θ), ie. the out-
puts are fully expressed in terms of the inputs.
The third notation represents the quantities of pol-
icy or research interest, and is denoted by Ψ.
These quantities of interest can be functions of ei-
ther model inputs or outputs, or of both, such
that: Ψ =MΨ(Θ,Φ) =MΨ(Θ,MΦ(Θ)), which shows
that Ψ can be represented as a function of the in-
puts alone. Finally, data collected from affected

populations/communities provide information about
the model outputs. Collection of such data is rep-
resented by y.

Bayesian melding
The basic idea under this method is to combine or fuse
all available information about model inputs and
model outputs via Bayesian synthesis, in order to yield
a Bayesian posterior distribution of the quantities of
interest, Ψ. The first step under the BM method is thus
to translate and encode the available information about
model inputs and outputs in terms of probability dis-
tributions. This can be done as follows. We represent
the available information about the inputs, Θ, by a
prior probability distribution q(Θ). We specify a condi-
tional probability distribution of the data y given the
outputs Φ, and this yields a likelihood for the outputs,
which can be represented as L(Φ) = Prob(y|Φ). As an
aside, in the case of the modelling of LF infection age-
profiles, this likelihood can be evaluated using a bino-
mial probability function:

Pr Y ¼ yð Þ ¼ n!
y! n−yð Þ! p

y 1−pð Þn−y

where y is the number of mf-positive blood samples
out of the total n blood samples collected during the
baseline survey conducted in a LF endemic site with
p being the probability of such observation in differ-
ent age-classes. In order to obtain a joint fit of the
model to parallel CFA and mf age-data where both
are available, this binomial probability function was
modified and used following the proposal made in
[44] by:

Pr Y 1 ¼ y1;Y 2 ¼ y2ð Þ ¼ n1!
y1! n1−y1ð Þ! p1

y1 1−p1ð Þn1−y1

� f y2jy1ð Þ;

where

f y2jy1ð Þ ¼ 1þ αmixð Þ−n1
X

j1;;j2;;j3ð Þ∈S
y1!

j1! y1−j1ð Þ!
n1−y1ð Þ!

j2! n1−y1ð Þ−j2ð Þ!
n2−n1ð Þ!

j3! n2−n1ð Þ−j3
� �

!
p2 þ αmix p2−p1ð Þ þ αmixf gj1

� 1−p2 þ αmix p2−p1ð Þf g y1−j1ð Þ p2 þ αmix p2−p1ð Þf gj2

� 1−p2 þ αmix p2−p1ð Þ þ αmixf g n1−y1−j1ð Þp2
j3 1−p2ð Þ n2−n1−j3ð Þ;
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with S = {(j1, j2, j3) : j1 + j2 + j3 = y2; j1 = 0, 1,…, y1; j2 = 0, 1,
…, n1 − y1; j3 = 0, 1,…, n2 − n1}.
In the above, y2 and y1 are represented by CFA and mf

positives in different age-classes, with n2 ≥ n1 respectively
representing the CFA and mf samples collected during the
survey. The term αmix is a mixing parameter. As per the
proposal in [44], the alternate case, n1 ≥ n2, can also be
similarly derived. The use of this joint likelihood function
for fitting the LF model simultaneously to these two vari-
ables (ie. CFA and mf) is justified as these are both func-
tions of the underlying adult worm burdens (see the LF
system equations) and thus are correlated.
As for outputs (see above), a conditional likelihood for

the inputs is expressed as follows: L(Θ) = Prob(y|MΦ(Θ)).
As we have both a prior probability density function
(q(Θ)) and a likelihood function (L(Θ)) for the inputs,
following Bayes’s theorem we can obtain a posterior dis-
tribution of the inputs given all the available informa-
tion. This posterior distribution density is proportional
to the prior density times the likelihood of the inputs
given data, and can be expressed as:

π Θð Þ∝q Θð ÞL Θð Þ:
A constant of proportionality can be defined given this

expression such that π(Θ) becomes a probability density.
In other words, it integrates to 1 over the joint space of
the inputs with a suitable choice of proportionality con-
stant. As the quantities of policy/research interest (Ψ)
can be expressed in terms of the inputs, the posterior
probability distribution of the inputs yields a posterior
distribution of the quantities of interest, which is de-
noted as π(Ψ). This posterior distribution π(Ψ) thus
combines all the available information on the inputs and
outputs of a system in a statistically coherent way, and
therefore may provide a comprehensive basis for carry-
ing out risk assessments and decision-making about a
dynamical entity [29].

Simulating the posterior distribution
It is clear that for a complex model and due to various
mapping functions, namely MΦ and MΨ, the posterior
distribution π(Θ) will not have an analytic form. How-
ever, since these mapping functions can be evaluated via
computer simulations, the use of a Monte Carlo method
based on the sampling importance resampling (SIR)
algorithm can approximate this posterior distribution
[10, 18, 29, 35]. This works as follows:

1. Draw a sample {Θ1, ⋯,ΘI} of values of the inputs
from the prior distribution q(Θ) with I = 200000.
Note that, each element (referred to as a parameter
vector in this paper) of this collection comprises of
all model parameters, and, in practice, the value of I

can vary between 50,000 and 200,000 [10, 18, 45]. In
other words, this sample of Θ has a set of I
parameter vectors. The random values of the inputs
can be drawn for the appropriate distributions. In
our case the inputs are drawn from the uniform
distribution with the extremes set by the known
minimum and maximum values of the model
parameters based on expert knowledge and
experience. See Additional file 1: Table S1 for the
maximum and minimum of the model parameters.

2. Obtain the collection of the corresponding model
outputs {Φ1, ⋯,ΦI} with the mapping function of Φi

=M(Θi) as defined above. In other words, the
collection of the outputs is generated by simulating
the dynamic model for all elements of the input
collection {Θ1, ⋯,ΘI}.

3. Compute weights for each of the elements in the
collection of the outputs given data using wi =
L(y|Φi). Employing the mapping function which
relates the outputs with the inputs, we thus get the
weights (ie., wi = L(y|MΦ(Θi))) for all Θi.

4. Use the SIR algorithm to approximate the posterior
distribution of the inputs with values {Θ1, ⋯,ΘI} by
resampling them (at least, a set of l = 500 [10, 18,
45]) from the collection with probabilities
proportional to {w1,⋯,wI}.

5. Use the posterior distribution of the inputs to
approximate the posterior distribution of the
quantities of interest. The approximated posterior
distribution has values {Ψ1, ⋯,ΨI} where Ψi =
MΨ(Θi,Φi) and probabilities proportional to {w1, ⋯,
wI}. In practice, the posterior distribution of the
quantities of interest is obtained by re-running the
dynamic model of the system under investigation
over the resampled set (cf. Step 4) of the inputs. For
example, we obtain the model fits to the observed
mf age-profile data by re-running the model using
the posterior distribution of the inputs. Similarly, the
posterior is used to calculate the infection break-
points and/or threshold biting rates (TBRs), which
are then used to calculate the timelines of LF elimin-
ation under a set of intervention scenarios as dis-
cussed below.

Numerical stability analysis for quantifying infection
breakpoints and vector biting thresholds
A previously developed numerical stability analysis pro-
cedure, based on varying initial values of L* to each of
the SIR selected model parameter sets or vectors, was
used to calculate the distribution of mf, and for the first
time, CFA, prevalence breakpoints and the correspond-
ing threshold biting rates (TBR) that may be expected in
each study community [10, 18], as follows. Briefly, we
begin by progressively decreasing V/H from its original
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value to a threshold value below which the model always
converges to zero mf prevalence, regardless of the values
of the endemic infective larval density L*. The product
of λ and this newly found V/H value is termed as the
threshold biting rate (TBR). Once the threshold biting
rate is discovered, the model at TBR will settle to either
a zero (trivial attractor) or non-zero mf prevalence de-
pending on the starting value of L*. Therefore, in the
next step, while keeping all the model parameters un-
changed, including the new V/H and by starting with a
very low value of L* and progressively increasing it in
very small step-sizes we estimate the minimum L**below
which the model predicts zero mf prevalence and above
which the system progresses to a positive endemic infec-
tion state. Here, thus, L** represents the L3 breakpoint
density in the vector population. This value can be con-
verted to a prevalence value using the relationship: P(Z,
k) = 1 − (1 + Z/k)− k, where P is the L3 infection preva-
lence, Z is the L3 density (ie., L**) and k is the aggrega-
tion parameter of the negative binomial distribution
[46]. The mf prevalence at the L** value is termed as the
worm/mf breakpoint in this study [7]. Similarly, given
the coupling to CFA predictions, we may also evaluate
the corresponding CFA prevalence at L**, which is
termed as the CFA breakpoint. The collections of mf
and CFA breakpoints, and the L3 breakpoint preva-
lences, from the SIR selected parameter vectors in a site,
are then used to get the LF infection extinction thresh-
olds signifying various probabilities of elimination fol-
lowing the method outlined in [47]. Note, however, that
here we focus on the 95 % elimination probability
threshold to serve as targets for the intervention simula-
tions described below.

Modeling intervention by mass drug administration
Intervention by MDA was modeled based on the as-
sumption that anti-filarial treatment with a combination
drug regimen acts, firstly, by killing certain fractions of
the populations of adult worms and mf instantly follow-
ing drug administration. These effects are incorporated
into the basic model by calculating the drug-induced re-
moval of worms and mf:

W a; t þ dtð Þ ¼ 1−ωCð ÞW a; tð Þ
M a; t þ dtð Þ ¼ 1−εCð ÞM a; tð Þ

o
at time t ¼ TMDAi

where dt is a short time period since the time point
TMDAi when the ith MDA was administered. The param-
eters ω and ε, are drug killing efficacy rates for the two
life stages of the parasite while the parameter C repre-
sents the drug coverage. Apart from instantaneous kill-
ing of mf, the drug is also thought to continue to kill the
newly reproduced mf by any surviving female adult

worms for a period of time Tp. We model this effect as
follows:

∂M a; tð Þ
∂t

þ ∂M a; tð Þ
∂a

¼ 1−εCð Þαsϕ W a; tð Þ; kð ÞW a; tð Þ−γM a; tð Þ ;

for TMDAi < t≤TMDAi þ Tp:

Simulating LF MDA interventions
We simulated the effects of MDA interventions by run-
ning the model with fixed-values of the three drug-
related parameters (ω, ε and Tp) for MDA coverage
levels ranging from 60 to 100 %. The values of worm
and mf kill rates for the drug regimens studied here, viz.
DEC+ ALB and IVM +ALB (Table 1) were taken from
[3]. The first MDA round is implemented in the model
by applying the above equations to the parameter vec-
tors obtained from the baseline fits describing the pre-
control worm (W) and mf (M) loads in each site, and
subsequent interventions are simulated as periodic
(yearly and 6-monthly, respectively, for annual and
biennial MDAs) events acting on parasite loads resulting
from each sequentially applied MDA. We investigated
the impact of annual and biennial MDAs on the years of
mass treatment required to reduce mf prevalence from
baseline to below the elimination threshold estimated
for each site. In the model, the effect of drugs was mod-
elled in the subpopulation of 5 years old and above.

Modeling vector control by LLINs
We modelled supplemental vector control (VC) applica-
tions in terms of the impact of long lasting insecticidal
nets (LLINs) by assuming that population-level coverage
of LLINs would reduce the vector biting rate to the same
degree regardless of the mosquito genus present in a
study site. Insecticides used in LLINs have three import-
ant effects on vector mosquitoes [4, 48]: they deter mos-
quitoes from entering human dwellings; inhibit them
from taking human blood meals; and kill them. These
three effects can be combined for modelling the effect of
VC applications on the prevailing ABR. Note that the
VC efficacies decay over time, for example, due to wear
and tear of bed nets used in the households [4, 48]. We
also assume that the LLINs applications in households
are regularly replenished or renewed over a recom-
mended time-period [48]. In this study, we consider this
period to be of three years for LLINs. Taking into ac-
count the decay and periodic replenishment of insecti-
cides, the impact of VC in this work is modelled by
extending our previous formulation [3, 39]; whereby we
replace V

H in the model equation by the term: V
H

1−η1 exp −Λt½ �CVCð Þ 1−η2 exp −Λt½ �CVCð Þ 1−η3 exp −Λt½ �CVC
� �

,
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where CVC is the mean annual coverage level in terms
of the fraction/percentage of households using LLINs
in a LF endemic setting. The parameters η1; η2; η3; re-
spectively, denote the level of deterrence, feeding in-
hibition and toxicity of the insecticides used in the
manufacturing of LLINs, whereas Λ is the efficacy
decay rate of the insecticides. The efficacy values of
these parameters vary depending on the insecticides
used in LLINs [4, 48]; see Additional file Table S2 in
[48]. In this study, the values of three efficacy parame-
ters (ie., η1, η2, η3) used are (0.2, 0.9, 0.95) for LLINs,
which were obtained by averaging across the set of in-
secticides used in the manufacturing of LLINs for
which we have the data for the three efficacy variables.
The decay rate (Λ) was fixed at 0.26/year which yields
the average half-life of the chemicals used in LLIN in-
secticides of about 3 years (ie. LLINs remain, at least,
50 % efficacious before they are replenished with new
ones). In this study, all VC results are presented for the
household LLIN coverage of 80 %.

Calculating extinction and recrudescence probabilities
We calculated the probability that LF extinction has
been achieved in each study site using the WHO-
recommended threshold of 1 % mf by first deriving the
empirical inverse cumulative density functions (ICDFs)
for the ensemble of mf breakpoint prevalence values
obtained in each site. The site-specific probability of LF
extinction was then estimated by calculating the exceed-
ance probability of crossing below the 1 % threshold
given the derived ICDFs in each of the present sites [47].
These calculations were carried out using the model-
estimated mf breakpoint values at both the prevailing
ABRs and TBRs in each site. The recrudescence prob-
ability for a given study site was calculated simply as the
percentage of the total SIR selected model runs in which
the community-level mf prevalence after treatment had
been stopped managed to revive and sustain itself above
the WHO threshold of 1 % mf prevalence by the end of
the period of intervention simulation.

Results
Model fits to baseline mf age-prevalence data
The 500 SIR generated fits by the genus-specific LF
models (cyan curves) to the respective baseline mf prev-
alences in different age-groups (red squares representing
the means with 95 % binomial confidence intervals)
from each of the 22 study sites are shown in Fig. 1. All
mf prevalence values were standardized to reflect sam-
pling of 1 ml blood volumes using a transformation fac-
tor of 1.95 and 1.15 respectively for values originally
estimated using 20 or 100 μL blood volumes [49]. The
results show that the BM-based data-model assimilation

procedure is able to reproduce the age-stratified mf
prevalences consistent with observed data in each of the
study communities (overall (ie. goodness of fit of the
model to data across all age-classes) Monte Carlo p-
values >0.9 in each case), although the fits to the mf
baseline data are comparatively better for the study sites
that have the least amount of variability in mf prevalence
across all age-cohorts; for example, the modelled age-
profiles for the study site Jakarta have a comparatively
wider spread partly reflecting the higher variability ob-
served in the data from this site (Fig. 1).

Posterior distributions of model parameters
Figure 2 shows the marginal posterior distributions of
those model parameters (9 out of the total 20 parame-
ters) which significantly differed from their initially
assigned non-informative or flat priors across the major-
ity of the 22 study sites (identified based on assessing
differences between the values of prior and posterior
distributions of each parameter using a Kolmogorov-
Smirnov (KS) two-sample test). Among these nine pa-
rameters, the exposure/worm establishment parameters
(ψ1,ψ2,HLin) and immunity-related parameters (c, IC)
were consistently found to be changed from their initial
uniform priors for 19 out of the 22 study sites, indicating
both that substantial amount of knowledge was gained
regarding these parameters after the Bayesian updating
of the respective LF models with data, and that local var-
iations in these parameters might constitute the key fac-
tor governing the heterogeneity in the LF mf age-
prevalences observed between the present study sites.
The parameters IC and kLin stand out in terms of the up-
dated model preference for smaller values in the ranges
assigned to them initially, implying that immunosup-
pression may play only a small role in LF transmission
dynamics, and that infection aggregation was highly
skewed across all these study sites respectively (Fig. 2).
All other updated parameters varied unevenly between
the study sites, and thus may represent the major trans-
mission variables that constrained LF infection locally in
these sites.

Mf, L3 and TBR extinction threshold values
As described in Methods, we used the SIR-selected par-
ameter vectors in conjunction with a numerical stability
analysis procedure to calculate the values of these
thresholds in each of our study sites [7]. Given this en-
semble nature of our models, we obtained a range of
breakpoints for each of these variables, rather than a sin-
gle point estimate, in each study site, implying that the
probability of LF elimination or extinction will vary
across the values of such threshold distributions. Here,
we used the complementary or inverse cumulative dens-
ity function (ICDF) of the estimated threshold values, in
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conjunction with exceedance calculations [47], to derive
the mf and L3 breakpoint threshold values (both in
terms of community-level prevalences) signifying a 95 %
probability of LF elimination, for use as extinction tar-
gets for all the intervention simulations carried out in

this study. Table 2 provides the actual numerical values
estimated for all the 3 thresholds (ie. the TBR and mf/L3
infection breakpoints) for all 22 sites. Note that Mf
breakpoints and the L3 breakpoints in mosquitoes were
estimated at both the prevailing ABR as well as at the

Fig. 1 Observed and fitted microfilariae (mf) age-prevalences of lymphatic filariasis (LF) for twenty-two study sites. The cyan lines denote the SIR
BM model fits to observed baseline mf prevalences in different age-groups (red squares with binomial error-bars) from each of the 22 study sites.
The age-groups in the figures are represented by the mid-point of the groups studied in each community. Study sites and details of survey data
are described in Table 1. All mf prevalence values were standardized to reflect sampling of 1 ml blood volumes using a transformation factor of
1.95 and 1.15 respectively for values originally estimated using 20 or 100 μL blood volumes [49]
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model-derived TBRs in each community; these break-
point values (including the estimated TBRs) varied sig-
nificantly between the present study sites irrespective of
the transmitting vector (p-values < 0.0001 in either of
the Anopheles or Culex settings, Table 2).

Joint modelling of CFA and mf age-prevalence data
Figure 3 presents our model fits to the joint baseline
CFA and mf age-profile data that were available for ana-
lysis from 5 out of 22 sites (Table 1). The resulting esti-
mates of the production and decay/clearance rates of

Fig. 2 Prior and posterior model parameter distributions for the data from each site. Results are shown for nine parameters (labels on top of each
column), which were identified by a formal Kolmogorov-Smirnov (KS) two-sample test, to be significantly different from their flat priors across the
majority of the study sites. Distribution plots for a parameter shown in gray denotes that the parameter did not differ significantly from the
assigned flat priors for a study site
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CFA in each community from these joint model fits are
displayed in Table 3. These results show that the average
production rate (in units of per worm per month) ranged
from 3.8 to 7, while the CFA clearance rate (in units of
per month) varied from 0.015 to 0.045 across the 5 study
sites. The average survival period of CFA in these com-
munities thus ranged from a little less than two years in
3 of the study sites but to over 3–5 years in the other 2
(see the survival period estimates in Table 3). Apart from
signalling the likely longevity of CFA, these results thus
indicate intriguingly that a significant clustering of these
rates also occurred between the 5 sites. Table 4 presents
the joint estimates of the mean TBRs, the threshold
values of CFA breakpoints at the community-level as
well as in 6 to 7 years old cohort, and values of mf
breakpoint, in the 5 study sites. Comparison with the

TBR and mf breakpoint values obtained by the single bi-
nomial likelihood fits to the mf data for these sites as
given in Table 2, indicates that the breakpoint estimates
for all 3 thresholds from the joint model fits were dis-
tinctly smaller in values (up to in general 3 times for in-
fection thresholds and by at least an order of magnitude
for TBR). Note that the estimated CFA breakpoint values
are also markedly lower (by order of magnitude of nearly
2) than the WHO recommended values of using either 1
to 2 % in the overall population or <0.1 % in children be-
tween 6 and 7 years for assessing disruption of LF trans-
mission in treated communities. These findings may be
the outcome of model fitting to parallel infection indica-
tor data, ie. to more than one outcome variable, which
could lead to a better constraining or estimation of
model parameters and hence more reliable predictions

Table 2 Model-estimated mf and L3 breakpoint values for achieving the successful interruption of LF transmission in each of the
study sites investigated. Breakpoints are listed in terms of mf and L3 prevalences (%) at 95 % probability of elimination for two
situations: 1) at the prevailing vector biting rates (ie., at the observed ABRs) and 2) at the threshold biting rate (TBR) at or below
which LF transmission process cannot sustain itself regardless of the level of the infection in human hosts (see text). The first set of
the threshold values (at study-specific ABR) is used in modeling the impact of mass drug administration (MDA) alone, while
the 2nd set (ie., mf breakpoint values estimated at TBR) is applied for modeling the impact when MDA is supplemented by
vector control (VC)

Study villages Mean TBR Mf bpts at ABR L3 bpts at ABR Mf bpts at TBR L3 bpts at TBR

Peneng 5635 0.035429 0.001116 0.435501 0.021181

Albulum 11025 0.004885 0.000028 0.094346 0.010902

Yauatong 6185 0.002985 0.000021 0.066789 0.008942

Nanaha 9309 0.066568 0.001827 0.919664 0.022993

Ngahmbule 3365 0.058476 0.001996 0.45293 0.02599

Tawalani 10503 0.085207 0.001871 1.07946 0.02192

Jaribuni 13451 0.077864 0.002772 1.112716 0.022068

Tingrela 3310 0.042786 0.001659 0.559656 0.02453

Chiconi 7315 0.033768 0.000781 0.677308 0.018855

Masaika 5390 0.053393 0.002915 0.451975 0.451975

Kirare 1016 0.018212 0.000805 0.721577 0.061739

Alebtong 18703 0.007344 0.000088 0.22969 0.014427

Lwala 6201 0.015075 0.000217 0.259451 0.021331

Obalanga 1600 0.010066 0.000349 0.907932 0.047025

Kingwede 1363 0.022236 0.0021 0.089295 0.014983

Mao 20062 0.019268 0.002728 0.384838 0.038674

Mambrui 4445 0.075622 0.007421 0.885393 0.065253

Pondicherry 40223 0.000476 0.000025 0.041653 0.007822

Calcutta 86719 0.017295 0.001197 0.178704 0.019703

Vettavallam 66478 0.002706 0.000147 0.110904 0.017511

Pakistan 1311 0.034034 0.00316 0.659793 0.047162

Jakarta 88494 0.000171 0.000015 0.028576 0.00373
aP-value (An) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
aP-value (Cx) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
aP-values are from results of Kruskal-Wallis rank sum tests for assessing differences in TBRs, L3 and mf breakpoints among sites within each of the Anopheline (An)
and Culicine (Cx) LF settings
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of variables of interest. While plausible, it is clear that
future work with more data sets providing information
on parallel infection measures than currently obtainable
is needed to fully evaluate the magnitude of the error
that is generated by modelling only mf data versus ana-
lysis using simultaneous/joint model fitting to both CFA
and mf, and indeed other, indicator data.

Impact of local dynamics and interventions on LF
elimination
We used the locally calibrated LF models together with
their corresponding site-specific mf prevalence break-
point values signifying a 95 % probability of elimination
to simulate the impacts that various LF strategies may
have on the durations (in years) required to eliminate LF
from the communities under investigation. We consid-
ered the following set of intervention scenarios: 1) an-
nual MDA (a) without and (b) with VC, and 2) biennial
MDA (a) without and (b) with VC. Two main drug regi-
mens were considered: DEC-ALB (for the study sites
from PNG and in Southeast Asia), and IVM-ALB for the
African sites (cf. Table 1). These scenarios were chosen
to facilitate a comparison of the existing WHO recom-
mended strategy of using annual MDA alone, versus the
prospects that including vector control into MDA

programs and switching to biennial MDA may have in
potentially accelerating elimination of the disease locally.
The analysis was carried out by subjecting each of the
500 SIR-resampled parameter sets estimated from a site
to the drug regimen (ie. either DEC+ ALB or IVM +
ALB) recommended for use in that setting, and assessing
the number of years of intervention which would be re-
quired for all the ensemble model vectors to cross below
their respective mf % breakpoint thresholds signifying a
95 % probability of LF elimination. Mf % breakpoint
thresholds at ABR were used as targets when modelling
the impact of MDA alone, whereas breakpoint preva-
lence values at TBR were used when modelling the im-
pact of including VC, given that reducing the vector
population will push the system towards the TBR break-
point and hence raise mf breakpoints to their maximal
values (Table 2). Note also that when modelling the im-
pact of MDA alone, we assume that the prevailing ABR
in a site does not change significantly over the entire
period of the MDA. We have previously shown that any
year-to-year change in ABR will need to be >50 % if such
changes are to impact the transmission dynamics in a
site [18]. We assume here that changes of this magni-
tude are unlikely to have occurred in our sites either due
to natural or development-related causes.

Fig. 3 Observed and fitted circulating filarial antigen (CFA) and microfilariae (mf) age-prevalences of lymphatic filariasis (LF) for five study sites.
The model fits (cyan lines) to the observed baseline CFA and mf age-data (red squares with binomial error-bars) were obtained using a bivariate
binomial likelihood function as derived and discussed in [44]. Note that both CFA and mf data were available only for five study sites
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Figs. 4 and 5 show the changes in model-predicted
community-level mf prevalences arising from the appli-
cation of annual MDA, without (Fig. 4) and with supple-
mental use of VC (Fig. 5), respectively. Results are
shown for coverage levels of 80 % for MDA and VC
where appropriate, with drug interventions simulated for
each of the SIR selected parameter vectors until the time
points when predicted mf prevalences crossed below the
mf breakpoint threshold values representing the 95 %

probability of elimination (95 %-EP, henceforth) in each
site. In the figures, the horizontal dashed lines represents
the site-specific 95 % EP mf threshold value, while the
vertical dotted line depicts the time point when all the
SIR vectors cross below the 95 % EP mf threshold value
in a site. The results depicted in Fig. 4 for annual MDA
alone, indicate, firstly, that for all 22 sites this strategy
even at 80 % drug coverage will require to be applied for
more than a decade, and in some cases beyond 30 years,
before all the parameter vectors cross the estimated
95 % EP mf value in a site. This maximum duration (ie
the time point when all site-specific SIR vectors cross
the 95 % EP mf value for that site) required for the stop-
ping of MDA also varied across the 22 sites, with time-
lines to extinction varying strikingly from 13 to over
30 years. When VC is used as a supplement to annual
MDA, the maximum duration of interventions is re-
duced drastically (Fig. 5). For example, for Chiconi,
while using the annual MDA alone strategy required
about 25 years to bring about parasite elimination
(Fig. 4), this was brought down to a much more manage-
able 10 years when VC was included into this MDA
strategy (Fig. 5). The most drastic reductions, however,
were achieved by the addition of VC for those sites
which exhibited initially low baseline mf prevalences
compared to the sites that began with high baseline mf
prevalences. Thus, for the PNG villages of Albulum
(80 % mf) and Yauatong (92 % mf) which exhibited the
highest baseline prevalences, among these sites, the re-
duction in the maximum duration by the introduction of
VC was moderate (about 8 years), meaning that more
than 20 years would still be required to bring about LF
elimination in these sites with annual MDA even with
the inclusion of VC (Fig. 5).
Table 5 gives the mean durations (ie. the average time

that all SIR parameters in a site took to cross its esti-
mated 95 % EP mf breakpoint value) of drug administra-
tions required to achieve LF elimination in each of 22

Table 3 The production and decay/clearance rate parameters
for the Circulating Filarial Antigen (CFA) of LF

Study villages Average Median 2.5th 97.5th

Production rate

Masaika 5.69 6.61 4.47 6.61

Kirare 6.49 6.57 4.89 6.66

Alebtong 3.81 3.85 2.51 4.61

Lwala 5.50 5.73 2.97 6.77

Obalanga 7.02 7.09 6.84 7.16

Decay rate

Masaika 0.028 0.029 0.027 0.029

Kirare 0.015 0.015 0.015 0.024

Alebtong 0.045 0.045 0.037 0.05

Lwala 0.043 0.044 0.031 0.047

Obalanga 0.042 0.042 0.032 0.049

Survival period

Masaika 35.48 34.78 34.78 37.67

Kirare 65.28 66.51 42.06 67.00

Alebtong 22.49 22.34 20.29 26.81

Lwala 23.63 22.87 21.40 31.76

Obalanga 24.36 23.84 20.56 31.68

These values were obtained from the joint model fits to CFA and mf
age-profiles data from five African LF endemic communities. The
production and decay rates are, respectively, given in units of per worm
per month and per month, while the survival period (ie., the inverse of
the decay rate) is in the unit of month

Table 4 Model-estimated CFA (at community-level as well as in 6–7 years age-cohort), and mf breakpoint values for achieving the
successful interruption of LF transmission in each of the five study sites that have both CFA and mf baseline age data. As in Table 2,
breakpoints are listed in terms of prevalences (%) for CFA and mf at 95 % probability of elimination for two situations: 1) at the
prevailing vector biting rates (ien, at the observed ABRs); and 2) at the threshold biting rates (TBRs) at or below which LF transmission
process cannot sustain itself regardless of the level of the infection in human hosts

Study
villages

Mean
TBR

95 %-EP Breakpoint values at ABRs 95 %-EP Breakpoint values at ABRs

CFA bpts CFA6to7 bpts Mf bpts CFA bpts CFA6to7 bpts Mf bpts

Masaika 731 0.067185 0.004926 0.012826 0.146865 0.047919 0.136688

Kirare 497 0.089053 0.014116 0.026547 0.204496 0.056584 0.116281

Alebtong 6653 0.049452 0.002917 0.006474 0.112308 0.024612 0.05454

Lwala 3729 0.060131 0.005485 0.014214 0.12293 0.043296 0.090148

Obalanga 867 0.071218 0.010358 0.019089 0.150288 0.060039 0.127721

EP: elimination probability; bpts: breakpoints; CFA6to7: Circulating Filarial Antigen in 6 to 7 years old.
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study sites under all four strategies considered here. The
results are shown for three drug coverages, viz., 60, 80
and 100 %, and indicate that mean durations of drug
treatments required to disrupt LF transmission in each
site will vary according to MDA coverage but also with
the type of intervention applied. Thus, while increasing
MDA coverage reduced the calculated mean years of in-
terventions required across all sites and for all interven-
tion scenarios (Table 5), the most significant reductions
in intervention years were achieved either when MDA
alone is switched from yearly to 6 monthly (ie. a shift
from annual to biennial MDA) or when mass treatment

is supplemented with VC applications, most dramatically
when included in the biennial MDA strategy (the mean
number of years of intervention reducing from between
10 to 23 years for the MDA alone strategy to between
only 2 to 8 years for the biennial MDA plus VC strategy
at 80 % drug coverages). The supplemental use of VC
not only reduced the mean duration of the required
years of mass treatments across all the communities
considered here for both types of MDA, it also sup-
pressed the variance in the model predictions of the
mean number of years of mass treatments required to
achieve LF elimination across sites (Table 5).

Fig. 4 Impact of annual mass drug administration (MDA) alone at 80 % coverage on the model-predicted community-level microfilariae (mf)
prevalences of lymphatic filariasis (LF) for each study site. Note that the prevalence values on the y-axis are on a logarithmic scale. Simulations at
MDA coverage of 80 % were carried out for three decades using the best-fit parameter vectors obtained by model-fitting to the baseline mf
age-prevalence data in each site (cf. Fig. 1). The MDA start time is indicated by 0 on the x-axis. The horizontal dashed line in each plot represents
the model-derived extinction threshold signifying 95 % probability of elimination (site-specific numerical values are provided in Table 2), whereas
the vertical dashed line denotes the time-point since the start of mass treatment at which the modelled community-level mf prevalences had
reduced/crossed below their respective 95 %-EP threshold values for all the best parameter vectors. Note that in these simulations, models were
run forward for each site without the effect of drug treatments after the time-points indicated by the vertical lines were crossed
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Impact of LF MDA intervention on CFA
The derivation of SIR parameter vectors following the
joint fitting of the relevant LF model to parallel CFA and
mf age-profile data available from 5 of our African study
communities has allowed us to undertake a first analysis
of the relative impacts of using breakpoint values from 3
LF infection indicators, viz. mf, L3 and CFA, as targets
in interventions aiming to break LF transmission. The
results on the impact of the annual MDA alone strategy
on timelines for each of these indicators to cross their
respective 95 % EP values estimated in each site are
depicted in Fig. 6 (similar results were obtained qualita-
tively for the other 3 scenarios, and so not shown). As in
Figs. 4 and 5, the horizontal lines in each plot shows the
site-specific 95 % EP value estimated for each respective
indicator, while the vertical lines denote the time points

at which the annual MDA alone strategy caused all
prevalence curves pertaining to each indicator to cross
below their corresponding 95 % EP values. The major
result depicted in the figure is that whereas elimination
using annual MDA was shown to occur earlier and at
around the same times when mf and L3 thresholds were
deployed to serve as elimination targets in all the 5 study
sites, none of the CFA prevalence trajectories crossed
their respective site-specific 95 % EP thresholds by the
end of the simulations (ie. by 30 years) in each of these
sites (Fig. 6).

Assessment of extinction and recrudescence probabilities
from applying the WHO mf elimination threshold
Table 6 presents the probabilities of LF extinction ex-
pected in each of our 22 study sites as a result of using

Fig. 5 Impact of annual mass drug administration (MDA) at 80 % coverage with supplemental vector control (VC) on the model-predicted
community-level microfilariae (mf) prevalence of lymphatic filariasis (LF) for each study site. The supplemental VC was implemented at the
population-level coverage of 80 %, and its effect was continued throughout the model simulation period, ie. even beyond the MDA stopping
time-point indicated by the vertical lines. All other details as described in Fig. 4
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the WHO-recommended threshold of 1 % mf prevalence
for signifying the achievement of LF transmission inter-
ruption in treated populations [50]. The results show
that the probability of LF extinction using this 1 %
threshold to decide if transmission has stopped in rela-
tion to the model-predicted mf breakpoint values esti-
mated in each individual site (Table 2) was markedly low
at their prevailing unperturbed ABRs, ranging from 0 %
to only 31 % across these sites (Table 6). By contrast, as
site-specific mf breakpoint values per site will increase
to maximal values at TBR, the extinction probability
using the WHO threshold of 1 % mf also increased sig-
nificantly in these sites at their TBR values (range of

25 % to as high as 96 %), providing a further added im-
petus for the need to consider including vector control
in MDA programs, viz. that such a strategy will also
yield the possibility of using higher and more easily
measurable breakpoints to determine if parasite elimin-
ation has occurred. The implications of using the WHO
threshold for risk of LF recrudescence after MDA is
stopped following the crossing of the simulated
community-level mf prevalences below the 1 % WHO
target in each study are displayed in Figs. 7 and 8.
Figure 7 depicts the resulting trajectories of the model-
predicted community-level mf prevalences for the an-
nual MDA alone intervention strategy, while Fig. 8

Table 5 Model-predicted required mean number of years of mass treatments for different intervention scenarios for achieving the
successful interruption of LF transmission in each of the study sites investigated. The required years of mass treatments were
determined by evaluating whether as a result of intervention, the model-predicted community-level mf prevalence had reduced
below the mf elimination threshold signifying 95 % probability of elimination for the four scenarios: 1) intervention by annual mass
drug administration (MDA) alone; 2) annual MDA with supplemental vector control (VC); 3) biennial MDA alone; and 4) biennial MDA
with supplemental VC. VC, where applicable, was implemented at the community coverage of 80 %. The results in this table are
shown for three MDA coverages: 60, 80 and 100 %

Annual MDA alone Annual MDA + VC Biennial MDA alone Biennial MDA + VC

Study villages 60 % a80% 100 % 60 % a80% 100 % 60 % a80% 100 % 60 % a80% 100 %

Peneng 17 12 9 10 7 6 9 6 5 5 4 3

Albulum 26 20 15 17 12 9 15 11 10 9 7 6

Yauatong 28 23 18 19 14 11 18 14 13 10 8 7

Nanaha 15 10 8 8 6 4 8 5 5 4 3 2

Ngahmbule 15 10 8 9 7 5 8 5 4 5 3 2

Tawalani 18 13 10 9 7 5 10 7 4 5 3 1

Jaribuni 17 13 9 8 6 4 9 6 4 4 2 1

Tringela 20 14 11 10 8 6 11 7 4 5 3 1

Chiconi 22 16 13 12 9 7 12 9 5 6 4 2

Masaika 18 13 10 10 8 6 10 7 4 5 3 1

Kirare 21 16 12 8 6 4 12 8 4 4 2 1

Alebtong 25 19 14 12 9 7 15 10 6 7 4 2

Lwala 20 14 11 9 7 5 11 8 4 5 3 1

Obalanga 22 16 13 7 5 4 13 9 5 3 2 1

Kingwede 16 11 8 10 8 6 8 6 3 5 3 1

Mao 21 16 12 11 8 6 12 8 5 6 4 1

Mambrui 17 12 9 8 6 4 9 6 4 4 2 1

Pakistan 15 10 8 8 6 4 8 5 5 4 3 2

Pondicherry 24 18 13 15 11 8 13 9 8 8 6 5

Calcutta 15 11 8 9 7 5 8 5 4 5 3 2

Vettavallam 19 13 10 11 8 6 10 7 6 6 4 3

Jakarta 25 21 16 17 13 9 16 12 9 9 6 5
bTotal variance(An) 3.52 2.66 1.37 1.15
bTotal variance(Cx) 1.52 1.20 0.51 0.49
aThe required years of mass treatments at the MDA coverage of 80 %, without and with vector control, significantly differed within Anopheline and Culicine
settings (Kruskal-Wallis test p-values <0.0001)
bTotal variance denotes the overall variance in the required years of mass treatments estimated from all sites within each of the Anopheline and Culicine settings.
Data are provided for 80 % coverage for annual and biennial MDAs without and with vector control at 80 % coverage
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portrays the results for the most effective strategy stud-
ied here, viz. the biennial MDA supplemented with VC
strategy. The simulations show that the risk of recrudes-
cence can be quite high, with probability values ranging
from 33 to 100 %, in the case of the annual MDA alone
strategy (Fig. 7). By contrast, for the intervention strat-
egy of biennial MDA supplemented with VC, the risk of
recrudescence was found to be significantly much lower
(<5 %) to zero for the majority of the sites, with only 2
highly endemic PNG sites (eg., Albulum and Yauatong)
showing a substantial risk of recrudescence (Fig. 8).

Discussion
We have introduced a data-model assimilation method-
ology founded on the Bayesian calibration of mechanistic

simulation models to address the urgent need for develop-
ing robust modelling tools that can effectively support the
management of parasitic disease elimination programs.
The developed framework is based on a parameter estima-
tion and calibration technique called Bayesian Melding
(BM) which aims to combine the advantageous features of
both mechanistic and statistical approaches to yield
models that are based on mechanistic understanding yet
remain with the bounds of data-based parameter estima-
tion [10, 18, 28, 29, 35, 45, 51–55]. Such data-model as-
similation approaches have been shown to significantly
improve making inferences from simulation models, and
in their predictions, for a wide range of modelling applica-
tions in natural systems, including in ecology, climatology,
fisheries and increasingly infectious diseases [31, 32, 56].

Fig. 6 Impact of annual mass drug administration (MDA) alone at 80 % coverage on the model-predicted community-level microfilariae (mf),
third-stage larvae (L3) and circulating filarial antigen (CFA) prevalences of lymphatic filariasis (LF) for the five study sites that provided both mf
and CFA baseline age data. The intervention simulations were carried out with the best model parameters obtained by joint fitting to both CFA
and mf baseline data. The horizontal dashed line in each plot represents the model-derived extinction threshold signifying 95 % probability of
elimination for the respective state variables, whereas the vertical dashed line denotes the time-point since the start of mass treatment at which
the modelled prevalences had reduced/crossed below their respective 95 %-EP threshold values for all the best parameter vectors in the case of
mf and L3 prevalences; beyond this time-point model runs were carried out without the effect of drug treatments as in Figs. 4 and 5. Note that
for CFA, thresholds were crossed only much after 30 years (data not shown)
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In particular, this body of work has shown how these
approaches, by using data to constrain a model during
simulation to yield results that approximate reality as
closely as possible, can allow better inference or predic-
tions of the most likely future state of a natural system,
while at the same time also adequately facilitating the
capture of the impact that local variations might have on
system dynamics [10, 18, 26, 27, 57, 58]. This is a more
stringent set of requirements than applied to models for
producing plausible futures consistent with theoretical un-
derstanding alone, which are also generally based on the
assumption of constancy in rate parameters over time and
space. If biological understanding, assumptions and par-
ameter values of such averaged models are incorrect, then
the resulting predictions may be inadequate to capture the
dynamics of an ecological system, especially in the local
context. Furthermore, besides limited epistemic under-
standing, when ecological complexity is high and data are
limited, as is often the case with parasitic infection and
intervention data, efficient data-model integration to sup-
port inference and predictions is crucial [31].
Here, our contribution is to illustrate how a BM based

data-model assimilation framework may offer a platform

for reliably integrating LF transmission models with di-
verse infection data, including site-specific information
on the key drivers of parasite transmission, for the pur-
pose of: 1) improving learning about the transmission
process, and 2) aiding the assessment of the effectiveness
of alternative disease elimination management strategies
for breaking transmission with high levels of confidence
across disparate community settings. BM is a versatile
framework for coupling dynamic models with data that
has the chief feature that it retains the desirable properties
of standard Bayesian inference for permitting the drawing
of robust conclusions from deterministic models via
effective synthesis of information from models and
data, but modifies the process so as to avoid the Borel
paradox that can affect such synthesis, ie. the situation
where postmodel distributions are dependent on or
biased by how the simulation model is parameterized
[35, 59]. The BM approach we have developed is also
efficient because model calibrations can be carried out
reasonably fast mainly because we use the relatively
simple SIR algorithm to simulate from the posterior
distribution [35, 60]. While Markov Chain Monte Carlo
(MCMC) methods, eg. the Gibbs sampler [61], or more
generally, the Metropolis-Hastings algorithm [62], have
been developed for this purpose in recent years, com-
puting the analytic posterior density is known to be
cumbersome for such approaches. Besides this, the
posterior parameter distributions for complex systems,
such as the LF system, are invariably also likely to exhibit
strong dependencies [26, 27]; these are again difficult to
resolve using common MCMC algorithms [29]. For these
reasons, and given that we are able to simultaneously
accomplish the various goals we set out to undertake
using the BM formulation we have developed, ie. offer
insights into the degree of information that typical survey
data contain about model inputs and parameters, and the
obtaining of satisfactory predictions along with uncer-
tainty bounds for modelled output variables of chief inter-
est, we believe the approach described here works well
and is simpler and efficient to apply.
Our first major result from this study based on the

BM calibration of LF models to the most extensive para-
sitological and entomological field data assembled to
date on community infection patterns, is that, as a result
of effective parameter constraining by local transmission
conditions (see model fits to data and parameter calibra-
tion results given in Figs. 1 and 2), significant variations
in population dynamics and in the resultant transmission
and infection breakpoints occurred between the 22 LF
endemic communities investigated (Table 2). This pattern
was observed irrespective of the LF endemic region or
vector species implicated in the transmission of the para-
site (Tables 1 and 2), and re-emphasizes our previous
conclusion, based on the modelling of a smaller subset of

Table 6 Probability of LF extinction at the WHO threshold of
1 % mf prevalence. See text for details of estimation

Study villages Probability of
extinction at ABR

Probability of
extinction at TBR

Peneng 7.75 89.59

Albulum 0.43 40.86

Yauatong 0.54 36.93

Nanaha 16.67 95.24

Ngahmbule 14.55 92.99

Tawalani 16.3 96.3

Jaribuni 21.79 96.15

Tingrela 15.38 79.49

Chiconi 7.94 93.33

Masaika 23.6 89.89

Kirare 16.71 36.86

Alebtong 0.95 71.43

Lwala 0 74.49

Obalanga 0 78.89

Kingwede 3.67 48.93

Mao 4.44 90

Mambrui 31.31 95.96

Pondicherry 6.9 34.48

Calcutta 2.73 66.36

Vettavallam 0 55.77

Pakistan 9.45 93.44

Jakarta 18.98 24.82
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these data [10], regarding the important need for effectively
assimilating locality-specific infection data into process-
based mathematical models as a strategic framework for
determining and analysing LF elimination endpoints. Fur-
ther, the demonstration that the values of thresholds are
ultimately linked to the dynamical processes that cause a
parasite system to shift to alternate stable states, either the
extinct or the endemic state, also underscores how an
understanding of parasite transmission and extinction

dynamics, rather than merely using empirical field
evaluations, will be vital to any attempt to define
breakpoints, regardless of the transmission or infec-
tion indicator, for assessing LF elimination [7, 8, 19,
22, 46, 63–65].
Inspection of Table 2 further clarifies how given that a

transmission model, by being able to couple and address
all the relevant state variables together and thus is able
to provide predictions of simultaneous changes in such

Fig. 7 Risk of recrudescence of LF in communities as a result of the stopping of mass treatment following the WHO-recommended threshold of
1 % community-level microfilariae (mf) prevalence. Results shown in gray are for the LF intervention scenario when mass treatments (annual
MDAs at 80 % coverage with no supplemental vector control) were stopped after the overall modelled mf prevalences crossed below the
WHO-recommended threshold of 1 % (shown by solid horizontal line) in each site, whereas in the case of green curves, mass treatments were
stopped after the modelled prevalences had reduced below the model-derived 95 %-EP thresholds (depicted by dashed horizontal line, for values
cf. Table 2) in a site. Note that MDA stopping times for these thresholds varied within each site, with the vertical dotted line denoting the time-point
when all model runs in a site had crossed the 95 %-EP threshold estimated for that site. Note that when modelled prevalences cross the 95 % EP in a
site, all further simulated prevalences decayed steadily to the 0 state attractor, as predicted by theory [7]. The recrudescence probabilities (calculated as
the percentage of the total model runs in which the mf prevalence rose above the 1 % threshold by the end of the simulation period) are provided in
parentheses beside the names of the study sites
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interlinked variables, can in addition provide informa-
tion on the values of the many different thresholds that
could be used to assess parasite elimination for a par-
ticular transmission system [6, 8, 18, 22]. As we have
shown previously [8, 22, 66], such thresholds in LF,
reflecting the general dynamics of the vector-borne
transmission process, can include both the threshold
vector biting rate as well as thresholds arising from in-
fection in the human as well as vector host populations
[1, 6–8, 10, 18, 67]. Further, it is clear that the latter
infection thresholds can also be quantified by a trans-
mission model for any specific diagnostic tool that can
be used to estimate infection prevalence or levels, eg. in
the present case whether by microscopy or PCR-based
techniques to detect mf in human blood samples or L3
larvae in mosquitoes, or via the use of immunological

tests to measure circulating filarial antigens (CFA). The
values in Tables 2 and 4 portray another important
dynamical feature of infection breakpoint values, which is
not fully appreciated by disease control managers, and
that is that the maximal value of these variables is attained
at the transmission threshold (TBR) and will be signifi-
cantly smaller than this maximal value (itself typically
small) at the prevailing vector biting rate ABR, particularly
if such ABRs in a site are large. Note this result
immediately indicates how adding vector control to mass
treatments, by increasing infection breakpoints as ABR is
reduced, can enhance the prospects of LF transmission
interruption.
The Monte-Carlo-based sampling technique used in our

BM procedure for model fitting as well as for deriving
results by taking samples from the postmodel distribution

Fig. 8 Risk of recrudescence of LF in communities as a result of the stopping of mass treatment following the WHO-recommended threshold of
1 % community-level microfilariae (mf) prevalence. These results are shown for the biennial MDA with supplemental vector control. The coverage
levels in this set of intervention runs, for both MDA and VC, were kept at 80 %. All other details, including color codes, are as given in Fig. 7
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has elucidated how, rather than being a single estimate,
both infection-related and vector biting abundance
thresholds in LF may exist as a range of values within and
between village sites. This supports the notion that uncer-
tainty and stochastic variability in transmission parame-
ters will invariably give rise to a distribution of these
variables in natural communities [10, 68–70], an outcome
which clearly has significant strategic implications for
elimination programs, as it implies that any one value
from such distributions in a site may be chosen to serve
as an infection breakpoint target. However, as each value
from the ensemble will be associated with a probability of
elimination if crossed, this finding also clarifies that the
choice of which of these values to use is ultimately driven
by how risk of program failure is perceived and accepted
by the relevant policy makers, ie. whether management or
the decision maker is risk averse (and hence opts for high
confidence (eg. 95 % probability) of achieving elimination)
or risk tolerant (and so is tolerant of using values signify-
ing lower confidences of achieving elimination). Typically,
choosing higher values from such a distribution will pro-
vide lower probabilities of elimination, while choosing and
using lower values from the same distribution will give
higher probabilities of elimination [11, 70]. Here, thus,
while we focus on the use of infection values reflecting a
95 % probability of elimination as breakpoint targets, it is
important to bear this trade-off in mind when interpreting
the conclusions presented in the following.
The values of breakpoints tabulated in Tables 2 and

4 are the first estimates produced for all the various
transmission and infection variables that could serve
as extinction targets for LF [8, 19, 22, 23]. Perusal of
the results indicates that a key feature of these esti-
mates is that apart from exhibiting significant site-to-
site heterogeneity, their actual numerical values are
typically very small, even in the case of TBR values
when compared to the prevailing ABR values of each
site. By comparison, the WHO appears to recommend
the use of reducing mf to below 1 % and CFA to
below 2 % in the overall population in all sites fol-
lowing interventions and post-surveillance [50], as cri-
teria for determining if sustained LF has occurred in
a region. If the breakpoint values we have estimated
in this paper are correct- and we have previously pro-
duced the first empirical evidence that these model-
estimated thresholds could indeed occur around at
the levels reported here in endemic communities [47]
- then clearly applying the WHO thresholds would
severely overestimate the possibility that transmission
has been achieved in each of our sites. This likelihood
is illustrated by the results presented in Table 6,
which give the probability that LF elimination has
been met in each of our study site by applying the
WHO criterion of reducing mf prevalence to <1 %,

given the distribution of mf breakpoint prevalence
values estimated in each of these sites. The results il-
lustrate that if the model-estimated mf breakpoint
values hold, then using the globally set WHO thresh-
old of 1 % will have significantly overestimated the at-
tainment of LF transmission cessation in the majority
of these sites, with the most dramatic impact on the
resultant elimination probabilities occurring where the
WHO criterion is used uncritically in cases where the
prevailing vector populations are not disturbed, ie.
when MDA is used alone (the use of the 1 % mf
prevalence threshold yielding between 0 % to at best
only 31.31 % probabilities of elimination). This is be-
cause mf breakpoint values at the prevailing ABR rep-
resent the targets for assessing elimination using
MDA interventions, and these are considerably lower
in numerical values compared to those obtaining at
TBR (Table 6). While the situation of using the
WHO criterion is markedly improved when compared
to model-estimated mf breakpoint values at TBR, the
occurrence of between-site heterogeneity in break-
point values means that in some settings this could
still give rise to a low (<50 %) probability of elimin-
ation. These results further underline a significant but very
little appreciated impact of including vector control into
MDA programs, viz. that as ABR is reduced towards
TBR as a result of vector control, breakpoint values
will be raised to their maximal values and thus the
use of a judiciously chosen higher breakpoint target
(closer to the WHO target of 1 %) could be used for
assessing LF transmission cessation under such cir-
cumstances (Table 6).
Recently, considerable empirical work has been

expended in investigating the use of CFA as a marker of
infection, and as an indicator for determining transmis-
sion interruption in communities undergoing MDAs
[63–65]. This has led to various suggestions regarding
the threshold prevalence of CFA that could be used for
signifying a break in LF transmission, ranging from a
value of <1 to 2 % in the overall population [19, 50, 65]
to <0.1 % CFA prevalence in children between the ages
of 6 and 7. The implicit rationale behind these argu-
ments is that these comparatively higher target values
would be easier to achieve and quantify than using a mf-
based threshold, largely owing to the widely expected
higher sensitivity of the antigen test especially in the
case when population infection levels are reduced to
very low levels by MDA programs. Here, we have used
the availability of parallel age-dependent CFA and mf
prevalence data from five individual published studies
to investigate the value of using CFA in LF elimination
assessments based on quantifying the dynamics of
change in this indicator as a function of variations in
the underlying worm population [8]. Tables 3 and 4
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show the results obtained from a joint fit of the rele-
vant vector-specific LF model to the parallel CFA and
mf age-prevalence data (model fits to observations
given in Fig. 3) from each of the five published studies.
The parameter estimates for the observed CFA dynam-
ics in each site are given in Table 3; these provide infor-
mation firstly on a key ongoing controversy in the use
of antigen tests as markers of live parasitic infection,
viz. the rates of production and decay of the antigen
used for measuring infection. These show in particular
that the monthly decay rates for LF CFA are likely to
be low, yielding typical persistence times of between
22.5 to up to as high as 65 months in the different
study communities. Although based on only 5 studies,
these estimates imply not only can CFA persist for signifi-
cant periods of time but also, as for other transmission
parameters, that these periods may vary substantially
between sites, presumably reflecting variations in the
underlying worm burdens but also possibly the effects
of other types of heterogeneities that are likely to affect
antigen clearance, eg. host immunity and/or other host
physiological factors related to parasite transmission
[71]. Besides persistence, a second major feature -
highlighted by the estimates listed in Table 4 - is that
CFA breakpoint values can, as in the case of mf, also be
significantly lower (orders of magnitude of between 1
and 2) than the empirical values recommended by
WHO as CFA breakpoint targets for current elimination
programs. As for using mf thresholds, this result again
suggests the possibility that using the WHO CFA
threshold values would overestimate the achievement of
parasite elimination in each of the present sites. One
last impact of CFA dynamics, particularly the influence
of decay rates, on the utility of using CFA for assessing
LF elimination, is portrayed in Fig. 6, which depicts and
compares the timelines to parasite elimination using an-
nual MDA based on the use of mf, L3 and CFA thresh-
old values. The results show that while the use of mf
and L3 prevalence thresholds would result in meeting
transmission interruptions earlier and for around the
same durations of MDA (between 20 to 25 years gener-
ally), CFA prevalence curves will decline much more
slowly than either, reaching their estimated elimination
thresholds only much later (>30 years). This indicates that
there will be a lag in the intervention response of CFA,
with antigen circulating in the host population long after
actual transmission has been broken leading to the possi-
bility of making severe underestimations of the effective-
ness of an intervention for breaking LF transmission and
hence decisions to continue with unwarranted treatments.
These results highlight the vital need for considering the
inherent dynamics of an infection indicator in order to
establish and test values that would signify parasite trans-
mission interruption in a community reliably.

The intervention simulations carried out in this study
primarily focussed on gaining insights into two key
questions regarding the impact of current or proposed
interventions for eliminating LF transmission, viz. 1)
what is the likely impact of site-specific heterogeneity
in transmission dynamics, including variable commu-
nity breakpoints, on the prospects of interrupting para-
site transmission using the WHO-recommended drug
treatment strategies alone, and with the inclusion of
supplemental vector control, in different settings and 2)
what the implications would be for the long-term dy-
namics of LF, particularly for infection recrudescence, if
interventions are stopped following the achievement of
the WHO-recommended threshold of 1 % community-
level mf prevalence. With regard to the first question, our
analysis shows unequivocally that as a result of strong,
variable, localized transmission dynamics, the durations
of interventions required to cross the locality-specific
elimination breakpoints predicted in this work varied
significantly across each of our study sites (Figs. 4 and
5; Table 5). These durations were also generally the
longest and much more variable when using the annual
MDA alone strategy (between 10 to 23 years at 80 %
coverage, for example (Table 5)), compared to the
biennial MDA and the MDA plus vector control strat-
egies. Interestingly, the results show that overall an
annual MDA plus vector control intervention and a
biennial MDA alone strategy are likely to produce a
similar outcome, with the simulations showing that
between 5 and 14 years of interventions will be enough
to achieve the interruption of transmission in the
present sites, irrespective of which of these strategies is
deployed (Table 5). This is a major new finding, and
indicates that in settings where vector control will be
difficult to implement, it might be worthwhile seriously
considering moving from annual to biennial MDA if LF
elimination is to be accomplished within a reasonable
timeframe. The most effective strategy, however, clearly
is where biennial MDA can be coupled with vector
control, with the results showing that it will markedly
reduce the durations of control required to achieve
elimination (to between 2 to 8 years only at 80 % MDA
coverage). The comparison of these results with that of
the annual MDA alone strategy shows that such an
intervention may well be a necessity particularly in
those anopheline settings that exhibit the highest en-
demicity rates at baseline (Tables 1 and 5); this also
implies that if a set or fixed timeframe, eg. the WHO
target of meeting LF elimination by 2020, for achieving
parasite elimination is to be followed, then a flexible
strategy that adapts specific interventions to local
transmission patterns in different geographic settings
may well be prove to be the most cost-effective method
for achieving LF elimination in a region.
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The results given in Table 5 highlight a further signifi-
cant strategic impact of adding vector control to MDA
programs, viz. that incorporating such combination con-
trol will also allow the overcoming of the negative im-
pact of failing to meet a high MDA coverage (>80 % at
least) in a community, with inclusion of vector control
at lower MDA coverages in our sites delivering similar
durations of interventions needed to achieve elimination
as that predicted for using MDA at much higher cover-
ages (compare mean durations of control predicted for
MDA alone strategies at 80 or 100 % coverages versus
the durations predicted to achieve parasite elimination
with inclusion of vector control at the lower 60 % MDA
coverage given in Table 5). A final intriguing feature of
the intervention modelling results summarized in Table 5
with respect to inclusion of vector control is that the
overall variability in the number of years of interventions
required to achieve LF elimination is also reduced for
either the annual or biennial MDA strategies when
vector control is included into these strategies. This
occurred irrespective of the vector species implicated in
LF transmission in the study sites, and highlight that
including vector control into MDA programs may yield
a countermeasure that could significantly be also robust
to differential locality-specific control dynamics.
With respect to the question concerning the potential

effects on long-term LF transmission dynamics and the
risk of recrudescence as a result of using the WHO mf
threshold versus the model-estimated mf breakpoints in
a site, our comparison of mf trajectories following the
crossing of these respective thresholds – portrayed in
Fig. 7 for the annual MDA alone and Fig. 8 for the
biennial MDA plus vector control strategy – has yielded
two key insights on this important topic. First, our simu-
lation results demonstrate that when the WHO thresh-
old of 1 % mf prevalence is used as a threshold with an
annual MDA alone strategy, there were lower probabil-
ities of achieving eventual transmission interruption in
the study sites (Table 6), and consequently high prob-
abilities that recrudescence will occur (between 33 to
100 %) in all these sites once treatment is stopped
following the crossing of this threshold (Fig. 7). By
contrast, even though it will take considerably longer to
cross, the use of the model estimated site-specific mf
breakpoints as targets for MDA will lead to a steady
decline in mf levels to the 0 state once these are crossed
in each site. A second feature highlighted by the predic-
tions displayed in Fig. 8, however, indicates that it may
nonetheless be possible to derive and set a global thresh-
old value that will prevent recrudescence in most
settings; but this will depend intimately on the type of
intervention pursued. Thus, the simulations shown in
this figure for the biennial MDA plus vector control
intervention indicate that in this case, even a high

globally set threshold of 1 % mf prevalence will be suffi-
cient to ensure permanent LF elimination, with all
trajectories of infection declining, as in the case of mf
curves crossing their site-specific breakpoints, towards
the extinct state. This is a significant, not previously fully
understood, finding and suggests how including vector
control has the potential to also help define an effective
higher elimination threshold that could also be possibly
applicable or settable globally.

Conclusions
In this paper, we have outlined a Bayesian data-model
assimilation framework to address the need for robust
methodological tools that can, by enabling rigorous
assessments of the predictive uncertainty of parasite
transmission models, enhance their use for supporting
reliable management decision making. The proposed
framework aims to combine the advantageous features
of both mechanistic and statistical approaches, whereby
the mechanistic basis enhances the confidence in predic-
tions made for a variety of conditions and transmission
settings, while the statistical methods provide a sound
foundation for parameter estimation [28, 29, 35, 57, 58].
We have shown how this framework can refine our
knowledge of model parameters from data, and obtain
predictions of infection dynamics along with credible
intervals for modelled output variables. The application
of this approach to parallel LF infection and vector data
assembled from 22 endemic sites from each of the major
LF endemic regions has highlighted how major open
questions connected with elimination of this parasitic
disease, viz. estimation of elimination thresholds and
quantification of the dynamics of parasite population
responses to different interventions, can be resolved to
provide information regarding site-specific transmission
and endpoint complexities, as well as insights into the
best approaches for breaking self-sustaining parasite
transmission accommodating these local heterogeneities.
While these first results have enhanced our confidence

in the utility of this modelling approach as a quantitative
tool both for improving learning about LF transmission
dynamics as well as for supporting the derivation of
intervention programs adapted to local conditions, it is
clear that a challenge is how to extend the developed
framework for providing predictions in those settings
lacking or containing only sparse data to inform the
modelling process [31, 56, 72]. We suggest that there
might be several ways to address this problem. A first
approach, as highlighted in this study, is to uncover a
strategy that is robust to between-site variability in para-
site system breakpoints and intervention dynamics. We
have shown in this regard how including vector control
to MDA may allow the selection and use of a higher
breakpoint that might also work relatively well globally
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across all settings as a target for signifying LF transmis-
sion interruption. Note that inclusion of vector control
will also dramatically reduce the number of years of
interventions required to break transmission while also
reducing variability in such durations between sites,
suggesting that it might also be possible to set a lower
maximal duration of control, eg. up to 8 years when
combined with biennial MDA, that would work well
across all endemic settings for bringing about self-
sustaining transmission interruption everywhere. Such
an approach, however, is likely to only partially resolve
the challenge of dealing with heterogeneous transmis-
sion and extinction dynamics, given the difficulties of
achieving a suitably and sustainably high vector control
coverage in many social settings, and the ever present
potential for rapid behavioural and adaptive change by
mosquito populations in response to chemical control
[48, 73]. A second approach might be to use ensemble
methods to first explore the type of model predictions
that can be made for sets of possible parameter values and
inputs, such as ABR or infection prevalence [74–76],
followed by clustering the different predictions based
on distinct combinations of parameter sets and inputs.
This would allow selection of models based on vari-
ation in input variables across a region, but will still
require spatial information on such variables. These
difficulties suggest that ultimately we will require to
develop an approach that would be able to reliably
facilitate the accommodation of spatial and temporal
variation in model parameter as well as input values
directly. We are currently developing such a computa-
tional framework that will aim to couple the BM-based
LF models to mapping systems which, by allowing
spatial interpolations of ABR and mf prevalence vari-
ables across a region to serve as inputs into the BM
process, would facilitate the derivation of LF models
suitably parameterized to reflect the transmission con-
ditions for any given endemic site in a region [57, 58].
Although likely to be computationally intensive, we
suggest that such an approach would provide the most
comprehensive solution to addressing the problem of
heterogeneity in parasite population responses to inter-
ventions applied in different settings, and thus for
supporting the prediction and analysis of the best
approaches for achieving LF elimination everywhere.
For both approaches, however, validation with post-
MDA monitoring data will be key; we echo in this
regard increasing calls for the assembly and release of
these data to modellers from the many countries that
are currently collecting these data as part of their moni-
toring and evaluation activities. It will also call for a more
efficient approach to importance sampling to reduce com-
putational time, for example by deploying adaptive sam-
pling importance resampling methods [51], in which SIR

is run a first time, and then the sampling function is re-
placed by a more efficient one (eg. sequential or annealed
importance sampling [77]) based on first results. Finally, it
will require a closer assessment of model structures and
evaluation of error and bias in predictions generated by
fitting to only type of commonly available data, eg. mf
prevalence data alone, when simultaneous fitting to joint
infection data, such as to parallel CFA and mf data, might
allow a better constraining of model parameters and thus
to significant reductions in prediction error. Current work
is underway to address each of these problems.
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