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Abstract

Background: Rhipicephalus (Boophilus) microplus evades the host’s haemostatic system through a complex protein
array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva
which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors
modulate diverse and essential proteases involved in different physiological processes.

Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics
environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian
tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out
using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were
cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease
inhibition assays.

Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were
named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation
of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for
RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20
were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic
stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary
and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant
serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3)
and Thrombin (RmS-15).

Conclusion: This study constitutes an important contribution and improvement to the knowledge about the
physiologic role of R. microplus serpins during the host-tick interaction.
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Background
Ticks are worldwide-distributed ectoparasites that have
evolved as obligate haematophagous arthropods of ani-
mals and humans. These parasites have been categorised
after mosquitoes as the second most important group of
vectors transmitting disease-causing agents to mammals
[1,2]. In particular, the cattle tick (Rhipicephalus
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microplus) is considered the most economically import-
ant ectoparasite of cattle distributed in tropical and sub-
tropical regions of the world. The principal reason for
this affirmation is that R. microplus affects beef and
dairy cattle producers causing direct economic losses
due to host parasitism and tick borne diseases such as
anaplasmosis and babesiosis [3,4].
The success of the parasitic cycle of R. microplus be-

gins with the larval capability to overcome haemostatic
and immunological responses of the host. Following lar-
val attachment, a great amount of blood is ingested and
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digested by ticks in order to complete their parasitic
cycle. The full-engorged adult females drop off from
host to initiate the non-parasitic phase with the laying
and hatching of eggs. R. microplus has an intensive pro-
duction and physiological secretion of proteins during
the entire parasitic cycle in order to disrupt host re-
sponses such as protease inhibitors which play an im-
portant role in tick survival, feeding and development
[5-8]. Serpins (Serine Protease Inhibitors) are important
regulatory molecules with roles during host- parasite in-
teractions such as fibrinolysis [9], host response medi-
ated by complement proteases [10], and inflammation
[11-13] among other tick physiological functions [14,15].
These protease inhibitors conformed a large superfamily
that is extensively distributed within bacteria, insects,
parasite, animals and plants [16,17]. Serpins differ from
Kunitz protease inhibitors by distinctive conformational
change during the inhibition of their target proteases.
The presence of a small domain designated as the react-
ive center loop (RCL) constitutes their most notable
characteristic. This domain extends outside of the pro-
tein and leads to the formation of the firm bond of the
serpin with its specific proteinase [18-20]. Members of
the tick Serpin family have been studied and recom-
mended as useful targets for tick vaccine development
[21]. Consequently, serpin sequences from diverse tick
species have been reported such as, Amblyomma ameri-
canum [22], Amblyomma variegatum [23], Amblyomma
maculatum [24], Dermacentor variabilis [25]; Rhipice-
phalus appendiculatus [26], R. microplus [6,27], Haema-
physalis longicornis [28], Ixodes scapularis [21,29], and
Ixodes ricinus [9,11]. Additionally, an in silico identifica-
tion of R. microplus serpin was conducted using differ-
ent databases [30]. However, a great number of tick
serpins continue to be functionally uncharacterised
which limits the studies related with their function dur-
ing host – parasite interaction [11,31,32].
In this study serpins from different R. microplus genomic

databases were identified and four new serpins molecules
were reported. In silico characterization of these serpins
was undertaken using bioinformatics methods. Additionally,
R. microplus serpins (RmS) were cloned, sequenced, and
expressed in order to determine their protease inhibition
specificity. The spatial expression of these serpins was car-
ried out by PCR using cDNA from different tick life stages
and female adult organs. Finally, this study is an important
step forward in uncovering the role of RmS in the
physiology of this ectoparasite and their potential use for
the future improvement of ticks control methods.

Methods
Bioinformatics and Serpin identification
The identification of R. microplus serpin sequences
was performed through a web-based bioinformatics
environment called Yabi [33]. The current available
tick serpin sequences of Amblyomma americanum [22],
A. maculatum [24], A. variegatum [23], A. monolakensis
[34] H. longicornis [28,35], I. ricinus [9,36], Ixodes scapu-
laris [21], R. microplus [37], R. appendiculatus [26], and
A. monolakensis [34] were retrieved from the National
Centre for Biotechnology Information non-redundant
protein (NCBI) (http://www.ncbi.nlm.nih.gov). These
tick serpin sequences and the human α1-antitrypsin
(GenBank, AAB59495) were used as queries against
BmiGi V1 [38], BmiGi V2.1 [37], five SSH libraries [39],
Australian tick transcriptome libraries [40] and RmiTR
V1 [40] using the Basic Local Alignment Search Tool
(BLAST) with the tblastX algorithm [41]. The qualified
serpin sequences (E-value < 100) were six-frame trans-
lated for deduced protein sequences. The presence of
the serpin conserved domain (cd00172) was analysed
using the batch CD-Search Tool with an expected value
threshold cut-off at 1 against NCBI’s Conserved Domain
Database (CDD) [42]. SignalP 4.1 [43] was used to predict
signal peptide cleavage sites. Also, the amino acid se-
quences of the R. microplus serpins were scanned for the
presence of the C-terminal sequence Lys-Asp-Glu-Leu
(KDEL) the endoplasmic reticulum lumen retention signal
(KDEL motif, Prosite ID: PS00014) using ScanProSite
(http://prosite.expasy.org/scanprosite/) in order to reduce
the incidence of false positive results from the SignalP pre-
diction. Putative N-glycosylation sites were predicted
using the NetNGlyc 1.0 server (http://www.cbs.dtu.dk/ser-
vices/NetNGlyc/).

Tick sources
Hereford cattle at the tick colony maintained by Biose-
curity Queensland from the Queensland Department of
Agriculture, Fisheries and Forestry (DAFF) [44] were
used to collect the acaricide susceptible strain R. micro-
plus NRFS (Non-Resistant Field Strain). All of the eggs
(E), larvae (L), nymphs (N), adult males (M) and feeding
females (F) were collected from infested animals main-
tained within a moat pen (DAFF Animal Ethics approval
SA2006/03/96). Tick organs were dissected from 17 day-
old adult females for cDNA preparation including saliv-
ary glands (FSG), guts (FG) and ovaries (Ovr).

Total RNA extraction
RNA was isolated from eggs, nymphs, and the organs
(guts, ovaries and salivary glands) dissected from semi-
engorged females. Ticks/organs were ground in liquid
nitrogen using diethylpyrocarbonate water-treated mor-
tar and pestle prior to processing utilising the TRIzol®
reagent (Gibco-BRL, USA). The tissue samples were
stored in the ice-cold TRIzol® Reagent immediately after
dissection, and then homogenised through a sterile 25-
gauge needle. The total RNA was isolated following the
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manufacture’s protocol (Gibco-BRL, USA) and the mRNA
was purified using Poly (A) Purist™ MAG Kit (Ambion,
USA) as recommended by the manufacturer.

Isolation, cloning and sequencing of rms genes
cDNA from nymphs, ovaries and salivary glands was
synthesised from purified mRNA using the BioScript™
Kit (Clontech, USA) following the manufacturer’s rec-
ommended protocol. PCRs were conducted for isolation
of the rms genes using gene specific 5′ and 3′ primers,
and designed for the amplification of the coding se-
quences (CDS) of serpin. Following the amplification
and confirmation of the PCR products by agarose gel
electrophoresis, the PCR products were sub-cloned into
the pCR 2.1-TOPO® vector following the manufacturer’s
instructions (Invitrogen, USA). The recombinant plas-
mids obtained were named pCR-rms1, rms2 and pCR-
rms (n + 1). Ten individual colonies for each clone were
selected and grown in 5 mL of LB broths supplemented
with ampicillin (50 μg.mL−1) 18 hours prior to the puri-
fication of the plasmid using the QIAprep Spin miniprep
kit (Qiagen, USA). The direct sequencing of the plasmid
inserts was performed using the BigDye v3.1 technology
(Applied Biosystems, USA) and analysed on the Applied
Biosystems 3130xl Genetic Analyser at the Griffith Uni-
versity DNA Sequencing Facility (School of Biomolecu-
lar and Biomedical Science, Griffith University, Qld,
Australia). The sequencing reactions were prepared
using M13 primers in a 96-well plate format according
to the manufacturer’s instructions (Applied Biosystems,
USA). The sequences were visualised, edited and aligned
using Sequencher v4.5 (Gene Codes Corporation, USA)
to remove vector sequence and to thus confirm the CDS
of the rms genes.

Cloning and expression of RmS in the yeast P. pastoris
The coding sequence of rms1, -rms3, -rms6, and rms15
were inserted into the pPICZα A and pPIC-B expression
vector (Invitrogen, USA) for intracellular and extracellu-
lar expression. The resultant recombinant plasmids were
transformed into the yeast P. pastoris GS115 and
SMD1168H by electroporation as described in the
Pichia Expression Kit manual (Invitrogen). The recom-
binant protein were purified from yeast pellet and super-
natant using a Histrap FF 5 mL column (GE Healthcare,
USA) as recommended by the manufacturer following
by a gel filtration purification step using a HiLoad™ 16/
600 Superdex™ 200 pg column (GE Healthcare, USA).

Expression analysis by semi-quantitative Reverse
Transcription (RT)-PCR
Gene specific primers were used to determine the gene
expression pattern in eggs, nymphs, female guts, ovaries
and salivary gland samples. A total of fifty ticks were
dissected to isolate the different organs samples, and 25
nymphs were used on the preparation of the nymph
sample. Approximately, five grams of eggs from ten dif-
ferent ticks were processed to conform this experimental
sample. Briefly, the densitograms of amplified PCR prod-
ucts were analysed by ImageJ and normalised using the
following formula, Y = V + V(H-X)X where Y = normal-
ised mRNA density, V = observed rms PCR band density
in individual samples, H = highest tick housekeeping
gene PCR band density among tested samples, X = tick
housekeeping gene density in individual samples [22].
All experimental samples were processed in triplicated.

Protease inhibition assays
RmS-1, RmS-3, RmS-6 and RmS-15 expressed in P. pas-
toris yeast using the methodology reported previously
[6,45] were used in this assay. The inhibition test was
conducted as reported formerly [46] to screen the activ-
ity of RmS-1, -3, -6 and -15 against different proteases
including bovine Chymotrypsin and Trypsin, porcine
Elastase and Kallikrein, human Plasmin, and Thrombin
(Sigma-Aldrich, USA). Briefly, 96-well plates were
blocked with Blocking buffer (20 mM Tris-HCl,
150 mM NaCl and 5% skim milk, pH 7.6), and washed
three times with Wash buffer (20 mM Tris-HCl,
150 mM NaCl, 0.01% Tween 20, pH 7.6) every 5 min. A
total of 50 μL containing each protease were incubated
with 50 fold molar of RmS-1, RmS-3, RmS-6 and RmS-
15 at 37°C for 60 minutes in duplicate. The specific sub-
strate (0.13 mM) was added and substrate hydrolysis
was monitored every 30 second using Epoch Microplate
Spectrophotometer (BioTek, USA) (see Table 1). The in-
hibition rate was calculated by comparing the enzymatic
activity in the presence and absence of recombinant
RmS. The experiments were conducted in triplicate.

Statistical analysis
The semi-quantitative PCR and protease inhibition assay
data were evaluated by one-way ANOVA with Bonferroni
testing (p ≤ 0.05). All analyses were conducted by the
GraphPad Prism version 6.02 (GraphPad Software). Data
were represented as the mean ± standard deviation (SD).

Results
Identification of RmS
The analysis of the R. microplus sequence databases re-
vealed twenty-two different putative RmS ultimately
identified after the elimination of redundant sequences.
The full CDS for RmS-1 to RmS-18 reported by Tirloni
and co-workers [30] were found in this study. The per-
centage identities after the alignment of the RmS was
variable for example, RmS-3 and RmS-20 showed a 94%
and 31% identities with hypothetical bacterial serpin
(Paraphysa parvula) and R. appendiculatus Serpin-3,



Table 1 The conditions of serpin inhibition reactions against commercially available bovine, porcine and human serine
proteases

Enzymes* [nM] Binding buffer Substrates* [mM]

Chymotrypsin 10 50 mM Tris-HCl, 150 mM NaCl, 20 mM CaCl2, 0.01 % Triton X-100,
pH 8.0

N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide 0.13

Elastase 50 50 mM Hepes, 100 mM Nacl, 0.01 % Triton X-100, pH 7.4 N-Succinyl-Ala-Ala-Ala-p-nitroanilide 0.13

Kallikrein 50 20 mM Tris-HCl, 150 mM NaCl, 0.02 % Triton X-100, pH 8.5 N-Benzoyl-Pro-Phe-Arg-p-nitroanilide
hydrochloride

0.13

Plasmin 50 20 mM Tris-HCl, 150 mM NaCl, 0.02 % Triton X-100, pH 8.5 Gly-Arg-p-nitroanilide dihydrochloride 0.13

Thrombin 2 50 mM Tris-HCl, 150 mM NaCl, 20 mM CaCl2, 0.01 % Triton X-100,
pH 8.0

Sar-Pro-Arg-p-nitroanilide dihydrochloride 0.13

Trypsin 2 50 mM Tris-HCl, 150 mM NaCl, 20 mM CaCl2, 0.01 % Triton X-100,
pH 8.0,

N-Benzoyl-Phe-Val-Arg-p-nitroanilide
hydrochloride

0.13

*All enzymes and substrates were purchased from Sigma-Aldrich, USA.

Rodriguez-Valle et al. Parasites & Vectors  (2015) 8:7 Page 4 of 9
respectively. The reactive center loop characteristic of
serine protease inhibitor family was found in the CDS of
RmS- 19 to – 22. These new sequences were deposited
in the Genbank with the following Accession Numbers:
RmS-19: KP121409, RmS-20: KP121408, RmS-21:
KP121411, and RmS-22: KP121414.
There was observed a high variability of the identity

among the RmS family that ranged from 29% between
RmS-14 and RmS-15 to 62% between RmS-3 and RmS-
5. The characteristic reactive center loop (RCL) domain
associated with the serpin family members was found in
Figure 1 Amino acid sequence alignment of the characteristic reactiv
conserved residues and motifs were highlighted in gray shade. The P1 reg
amino acid sequence [47].
all RmS (Figure 1). The type of amino acid at the P1 site
of the RCL showed a high variation, for example in RmS-
1, -4, 7, 10, 11, -14, 20 to 22 have a polar uncharged amino
acid, but RmS-2, -3, -12 and -19 have hydrophobic amino
acids. Basic amino acids such as arginine or lysine at the
P1 site were found in RmS-5, -6, -9, -13. -15 to -18 (Fig-
ure 1). The consensus amino acid motif VNEEGT [47]
and the canonical sequence representing the RCL hinge
from P17 to P8 (EEGTIATAVT) [18] which are character-
istic of serpins were highly conserved in the RmS aligned
(Figure 1). Finally, the data confirmed the conservation of
e center loops of R. microplus serpins (RmS-1 to –22). Highly
ions were highlighted with a dash dot line rectangle over the specific
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the reactive center loop and the characteristic motif of this
proteins family in RmS -19 to RmS-22.

RT-PCR analysis
Reverse transcriptase PCR analysis was used to validate
the spatial expression of rms-1, rms-3 to -6, rms -14, rms
-15, -19 to rms-22 transcripts. Data showed expression of
the rms transcripts in different organs and developmental
stages of R. microplus (Figure 2A -D). High expression of
rms-1, -3, -5 and -15 in adult female compared with
nymph stage was observed (Figure 2A and B), and rms-3
transcript was not detected in eggs. Expression of rms -14
and rms -6 was only detected in nymphs and ovaries re-
spectively. The rms -4 was detected only in ovaries and
salivary glands (Figure 2A and B). The rms-1, -3, -5, -15,
-19 to -22 transcripts were highly expressed in almost all
tissues and tick stages analysed. The rms-21 transcript was
expressed in all tick samples except in ovaries, no expres-
sion of rms-22 transcript was detected in nymph and ovar-
ies (Figure 2C and D).
Figure 2 Semi-quantitative analysis of the expression of rms transcrip
from cDNA samples from different tick’ tissues. The PCR products were run
was obtained after the densitogram analyses of the amplified PCR product
as the mean ± standard deviation (SD). The symbols ** and *** indicate sta
Protease Inhibition of the recombinant R. microplus
serpins (rRmS)
The coding sequences for rms-1, -3, -6 and -15 were
cloned and expressed in P. pastoris yeast in order to test
their inhibitory activity. These serpins were tested
against different serine proteases including Chymotryp-
sin, Elastase, Kallikrein, Thrombin and Trypsin. The pro-
tease activity analysis showed that RmS-1 is a strong
inhibitor of Chymotrypsin but weak inhibitor of Trypsin
and Thrombin. RmS-3 has Chymotrypsin and Elastase
as its principal target molecules and some faint inhib-
ition of Trypsin and Thrombin was observed (Figure 3).
RmS-15 exhibited strong inhibitory action of Thrombin
while RmS-6 only inhibits Chymotrypsin (Figure 3).

Discussion
The serpin family is conformed by a high and variable
number of genes which are found in many different or-
ganisms, for example the human genome has approxi-
mately 36 serpins genes [48], 29 genes were found in
ts in R. microplus tick samples. A and C: PCR products obtained
in 1% Tris Borate agarose gels. B and D: Normalised mRNA density
s. All experiments were conducted in triplicate. Data were represented
tistical significance with p < 0.05 and p < 0.001, respectively.



Figure 3 Protease inhibition profiles for the recombinant RmS-1, -3, -6 and RmS-15 obtained from the yeast P. pastoris. The RmS-1 and
RmS-16 were expressed intracellular in the yeast P. pastoris. The symbols ** and *** indicate statistical significance with p < 0.05 and p < 0.001, re-
spectively. The experiments were conducted in triplicate. Data were represented as the mean ± standard deviation (SD).
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Drosophila melanogaster [49], 45 in I. scapularis, and 17
serpins genes in A. americanum [21,22]. This corrobo-
rates a high conservation of the regulatory role of ser-
pins among different species, and their functional
versatility suggesting an evolutionary adaptation to con-
front different and novel proteases [50]. Processes such
as host innate immune response regulation [51,52]; tick
defences [49,53]; hemolymph coagulation cascade [54]
and tick development [55,56] are regulated by serine pro-
tease inhibitors. In ixodidae, serpins are an extensive pro-
tein family with an important role at the physiological
level, particularly during the parasitic periods of attach-
ment and blood feeding [14,21-23,26,28,32,35,52,57,58].
Especially in R. microplus, a single host tick that has a
highly efficient and complex combination of proteins in
saliva that are useful in order to achieve the successful
blood feeding, and serpins have an important role within
tick saliva. In this study data obtained from transcriptome
studies conducted on different stages of development of R.
microplus and stored at CattleTick Base [40] were an im-
portant resource for this study to determine the members
of the R. microplus serpin family [40]. However, full cover-
age of R. microplus genome would be necessary to give a
precise number of R. microplus serpins [59]. Previous
studies have provided important evidence of tick serpin
sequences and transcript expression, but research discern-
ing the specific targets or biological functions of these ser-
pins is not forthcoming [6,13,32,52,60,61]. Following the
elimination of redundant sequences the data obtained in
this research suggested the presence of 22 putative R.
microplus serpins from all databases studied. The amino
acid sequences of these serpins revealed similar numbers
of secreted and non-secreted serpins as described by Tir-
loni and co-workers [30]. A total of 18 R. microplus ser-
pins showed high amino acid identity (range from 97 to
100%) with serpins reported in the BmGI and RmiTR V1
databases (including USA and Australian R. microplus), and
those reported by Tirloni and co-worker (RmINCT-EM
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database, including Brazilian R. microplus) [30,40,62,63].
This observation confirms the conservation of these serpins
in geographically distant populations of R. microplus.
The extracellular secretion of serine protease inhibi-

tors during host – parasite interaction is important for
ticks in order to overcome the haemostatic response of
the host, blood digestion, and defence [64-70]. Anti-
haemostasis serpins have been reported from A. ameri-
canum [32], H. longicornis [28,35], I. ricinus [9,11,57],
and R. haemaphysaloides [71]. This study identified
RmS-15 as an anti-haemostatic serpin that specifically
inhibited Thrombin, an important serine protease of the
coagulation pathway [72]. The result suggests an import-
ant role of RmS-15 to impair host blood coagulation
during tick feeding. Similar results specifically related
with blood coagulation was previously obtained for a
mutant M340R of the I. ricinus serpin (Iris) that gained
inhibitory activity against Thrombin and Factor Xa after
losing its Elastase affinity through directed mutation [9].
This study improved the P. pastoris culture, expression

and purification of previously described RmS-3 [6] dem-
onstrated by significant inhibition of Chymotrypsin and
Elastase observed in this study. The neutrophils’ elastase
is discharged at the tick bite site which has reported to
have an accumulation of this particular group of cells
[73]. Additionally, previous studies have reported that
neutrophils contribute to local inflammation during tick
infestation which is an evasion mechanism employed by
the host to resist tick infestation [67,70,74]. RmS-3
showed high levels of recognition by sera obtained
from tick resistant cattle corroborating its secretion
within tick saliva and an important role of this serpin
during the host – parasite interaction [6]. RmS-3
might play an important role in the inhibition of host
immune response. Similar results were obtained with
the recombinant serpin from I. ricinus –Iris- with Elas-
tase as its principal natural target [9,13]. However, the
high expression of the rms-3 gene observed in this
study in tick ovaries is related with its possible role to
protect tick reproductive cells from digestive proteases
released into tick hemocoel. This defensive pathway
was attributed to insect serpins that inhibit Chymo-
trypsin [75].
Serpins without a secretion signal have been re-

ported to have a regulatory role in intracellular path-
ways such as tick development, intracellular digestion
or vitellogenesis [67,68,76]. The predicted intracellular
serpin, RmS-14 was only detected in nymphs showing
specific expression of this serpin at this particular
stage of tick development. RmS-14 was not detected
by RT-PCR conducted previously in tissue samples
from the Porto Alegro R. microplus strain (Rio Grande
do Sur, Brazil) [30], however, nymph samples were not
screened in this related study.
Four new serpins are reported in this investigation, two
of them, RmS-19 and -20 were expressed in all tissues sam-
ples analysed showing their important role in both parasitic
and non-parasitic stages of R. microplus development.
RmS-21 and -22 were not detected in ovaries suggesting a
regulatory role of these serpins in the proteolysis activity
during digestion and embryos development in the eggs
stage. Additionally, RmS-1 is a serpin that lacks a detectable
signal peptide but was found to specifically inhibit Chymo-
trypsin with comparatively less inhibition of Trypsin and
Thrombin. RmS-1 contains two methionines at P4, P5, and
cysteines at P1 and P’1 sites of the RCL. The presence of these
amino acids sensitive to oxidation (methionine and cysteine)
at the RCL is characteristic of human intracellular serpins
[77]. Also, RmS-1 clusters together with RAS1 and Lospin7,
which are intracellular serpins from R. appendiculatus and
A. americanum respectively [22,26]. The secreted and gly-
cosylated RmS-1 expressed in P. pastoris had no signifi-
cant inhibition against serine proteases tested in this
study. However, protease inhibition data were obtained
only using an intracellular and nonglycosylated RmS1
expressed in P. pastoris. Data showed a significant inhib-
ition of Chymotrypsin by the nonglycosylated RmS-1. The
rms-1 gene was expressed in all tissue samples analysed
suggesting a broad regulatory role. Similar behaviour was
observed with RmS-6, where only the intracellular and
nonglycosylated RmS-6 showed activity against Chymo-
trypsin (Figure 3). The rms16 was expressed only in the
ovary sample suggesting a role for this serpin during tick
embryogenesis or vitellogenesis. Further studies should be
conducted in order to understand and characterise the ac-
tivity and role during tick development and host parasite
interaction of all R. microplus serpins identified.

Conclusion
The present study provides an insight into the R. microplus
serpin family allowing the study of differential expression
within specific organs and different developmental stage
with four new R. microplus serpins reported. The successful
expression of recombinant serpins allowed the determin-
ation of their specific host target(s). Finally, the results ob-
tained offer an important source of information to
understand R. microplus serpin function and will deepen
the knowledge about the role of serpins during tick-host
interactions and tick development.
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