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Abstract 

Background  Terrequinone A is a bis-indolylquinone natural product with antitumor activity. Due to its unique asym-
metric quinone core structure and multiple functional groups, biosynthesis is more efficient and environmentally 
friendly than traditional chemical synthesis. Currently, most bis-indolylquinones are obtained by direct extraction from 
fungi or by chemical synthesis. By focusing on the biosynthesis of terrequinone A, we hope to explore the way to 
synthesize bis-indolylquinones de novo using Escherichia coli as a cell factory.

Results  In this study, a terrequinone A synthesis pathway containing the tdiA–tdiE genes was constructed into 
Escherichia coli and activated by a phosphopantetheinyl transferase gene sfp, enabling the strain to synthesize 
1.54 mg/L of terrequinone A. Subsequently, a two-step isopentenol utilization pathway was introduced to enhance 
the supply of endogenous dimethylallyl diphosphate (DMAPP) in E. coli, increasing the level of terrequinone A to 
20.1 mg/L. By adjusting the L-tryptophan (L-Trp)/prenol ratio, the major product could be changed from ochrindole 
D to terrequinone A, and the content of terrequinone A reached the highest 106.3 mg/L under the optimized culture 
conditions. Metabolic analysis of L-Trp indicated that the conversion of large amounts of L-Trp to indole was an impor-
tant factor preventing the further improvement of terrequinone A yield.

Conclusions  A comprehensive approach was adopted and terrequinone A was successfully synthesized from low-
cost L-Trp and prenol in E. coli. This study provides a metabolic engineering strategy for the efficient synthesis of ter-
requinone A and other similar bis-indolylquinones with asymmetric quinone cores. In addition, this is the first report 
on the de novo biosyhthesis of terrequinone A in an engineered strain.
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Introduction
Bis-indolylquinones are a kind of fungal natural prod-
ucts with broad pharmacological properties. Since the 
first discovery of Cochliodinol [1], the family of bis-
indolylquinones has been expanding, with three new 
asterriquinones I–K isolated from the sponge-derived 
fungus Aspergillus recently [2]. All share a universal pre-
cursor–didemethylasterriquinone D (DDAQ D), and 
the diverse prenyl modifications on the indole group or 
benzoquinone core allow the bis-indolylquinones to pre-
sent different biological activities, such as antiretroviral, 
antidiabetes, or antitumorigenic activities [3, 4]. Over the 
years, several bis-indolylquinones have been synthesized 
by synthetic chemists and pharmacologists [5, 6].

Among the many known bis-indolylquinones, terre-
quinone A isolated from Aspergillus terreus [7] attracted 
our attention because of its unique asymmetric quinone 
core. After 28  days of incubation, it could reach a yield 
of 1.11 mg/L in A. terreus broth [7]. Since it is a natural 
product with a complex structure and multiple func-
tional groups, biosynthesis offers an innate advantage 
for the synthesis of this compound. Schneider  et al. [4] 
proposed a one-pot, two-enzyme chemoenzymatic route 
for the synthesis of DDAQ D, a precursor of terrequinone 
A.  Balibar et  al. [15] overexpressed and studied the five 
genes tdiA–tdiE, respectively. In the presence of sub-
strates and multiple cofactors, 100 μM of DDAQ D was 
successfully converted into terrequinone A through a 
step-by-step enzymatic reaction in  vitro. However, the 
enzyme-catalyzed synthesis in  vitro requires the exter-
nal addition of expensive cofactors and cofactor regen-
eration systems. In addition, the product catalyzed by 
the previous enzyme in a biocatalytic system is often the 
substrate for the next enzyme. The delivery of substrates 
and products is usually space-limited, which reduces the 
efficiency of product synthesis [8]. In recent years, with 
the development of synthetic biology and metabolic engi-
neering, the biosynthesis of high-value natural products 
in microorganisms has emerged as a promising route 
to perfectly avoid the above two problems. A variety of 
natural products, such as the alkaloid (S)-reticuline, the 
polyketide erythromycin, terpenoids nerol, taxadiene and 
artemisinin, have been successfully synthesized using E. 
coli as cell factories [9–13]. However, to the best of our 
knowledge, there is no report of terrequinone A synthesis 
in vivo using engineered bacteria so far.

The specific pathway for terrequinone A biosynthesis 
and modification in microorganisms has been eluci-
dated: the first step is the conversion of L-tryptophan 
(L-Trp) to indole pyruvic acid (IPA) using the pyri-
doxal-5’-phosphate-dependent aminotransferase TdiD. 
Then, under the action of the monomodular nonribo-
somal peptide synthetase (NRPS) TdiA, two molecules 

of the IPA monomer are dimerized to form DDAQ D. 
Next, the oxidoreductase TdiC plays a role in reducing 
the keto group of the quinone core. Finally, the indole 
prenyltransferase TdiB and the chaperone TdiE partici-
pate in the first prenyl modification on the quinine core 
rather than the indole moiety by some unknown mech-
anism, resulting in the unique asymmetric quinine 
structure of terrequinone A. In contrast, the second 
prenylation reaction occurring on the indole moiety is 
performed by TdiB independently [14, 15]. This syn-
thetic pathway involves three substances with different 
biological activities: DDAQ D, a universal precursor of 
bis-indolylquinones with anti-HIV activity [16], ochrin-
dole D, a monoprenylated product with anti-insect 
activity [17], and terrequinone A, a diprenylated prod-
uct with antitumor activity [7]. The terrequinone A 
synthesis pathway is typical of those that exhibit differ-
ent biological activities through successive prenyl mod-
ifications. Therefore, this pathway was reconstituted in 
E. coli in this study.

In the biosynthetic pathway of terrequinone A, dimeth-
ylallyl diphosphate (DMAPP) is a major substrate, and 
its production in E. coli is dependent on the methyler-
ythritol 4-phosphate pathway (MEP pathway), a glucose 
metabolite-based pathway that requires seven reactions 
to obtain DMAPP/isopentenyl pyrophosphate (IPP) [18]. 
Due to the close relationship between the MEP path-
way and central carbon metabolism pathways and the 
complex regulatory mechanism [19], many metabolic 
engineering modifications based on the MEP pathway 
to enhance DMAPP production have not achieved the 
desired effect [20]. Some studies have adopted heterolo-
gous expression of the mevalonate pathway (MVA path-
way) to enhance the supply of IPP/DMAPP, which has 
achieved good results, but the synthesis steps are still 
complicated [21, 22]. Recently, a two-step enzymatic 
pathway (isopentenol utilization pathway, IU pathway) 
has been creatively proposed for biological DMAPP/IPP 
production. This pathway takes exogenous isoprenol or 
prenol as substrate, which is separated from central car-
bon metabolism, thus making it possible to maintain high 
throughput. The approach effectively addresses the lack 
of DMAPP/IPP supply in isoprenoid biosynthesis, which 
has been the major focus for the past 20 years [20].

In this study, an engineered strain for terrequinone A 
production was constructed by introducing the tdiA–
tdiE genes from A. nidulans, sfp from Bacillus subtilis 
and a two-step DMAPP synthesis system into E. coli. 
The strain could successfully produce terrequinone A 
using low-cost L-Trp and prenol as substrates. The cul-
ture conditions of engineered strain were also optimized. 
This study provides a metabolic engineering strategy and 
method for the synthesis of terrequinone A and other 
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similar bis-indolylquinones with asymmetric quinone 
cores.

Results and discussion
Construction of multi‑monocistronic expression vectors
To actively express genes from different sources in E. coli, 
all selected genes tdiA–tdiE, sfp, ScCK and AtIPK were 
optimized (Additional file  1: Table  S1). Among them, 
tdiA–tdiE and sfp genes constituted the terrequinone A 
synthesis module, and ScCK and AtIPK genes constituted 
the DMAPP synthesis module. In addition, the coordi-
nated expression of multiple genes should be considered 
in the construction of synthetic biological pathways. In 
the traditional multi-gene construction approaches, the 
expression of genes located near the 5’ end of the operon 
is higher than that of genes located near the 3’ end, which 
is not conducive to the balanced regulation of metabolic 
pathways [23]. In recent years, multi-monocistronic vec-
tors have been developed, in which each gene may con-
tain its own promoter and terminator [24, 25]. Such 
vectors show an obvious advantage in gene coordinated 
expression, as this design is able to reduce the premature 
transcription termination and mRNA degradation [26]. 
Hence, similar vectors that connected the T7 promoter 
and terminator sequences at both ends of each gene 
sequence were performed in this study (Table 1, Fig. 1A). 
The successful construction of the engineered strains 
harboring the heterogeneous genes was verified by PCR 
(Additional file 1: Figure S1) and DNA sequencing.

Construction of the terrequinone A synthetic pathway in 
E. coli
The engineered strain BL-1 harboring tdiA–tdiE was 
constructed by transferring the multi-monocistronic vec-
tor pE01 into BL21-AI (Table 1). As a result, terrequinone 

A could not be detected in the fermentation broth of 
strain BL-1. TdiA, an NRPS with A-T-TE tridomain, 
requires its T domain to be activated from apo form to 
holo form through phosphoantenthienyl transferase to 
realize the function [15]. However, this post-modification 
of TdiA is not present in E. coli. Therefore, the promis-
cuous phosphopantetheinyl transferase gene sfp from 
B. subtilis [27] was introduced into E. coli to function-
ally reconstitute the terrequinone A synthesis pathway. 
As expected, TdiA was activated by Sfp, and by adding 
0.5 g/L of L-Trp, BL-2 harboring tdiA–tdiE and sfp genes 
produced 1.54 mg/L of terrequinone A after 40 h of culti-
vation at 30 ℃ (Fig. 2B), indicating that the terrequinone 
A synthetic pathway was successfully constructed in E. 
coli. Although E. coli itself produced trace amounts of 
L-Trp, terrequinone A could not be detected in the cul-
ture of BL-2 without the supplement of L-Trp.

Effect of enhancing DMAPP synthesis pathway 
on terrequinone A production
DMAPP is an important substrate for prenyl modi-
fication of bis-indolylquinones. The synthesis of one 
molecule of terrequinone A requires two molecules of 
DMAPP (Fig. 1B), and the DMAPP produced by the MEP 
pathway in E. coli is far from meeting the requirements 
of terrequinone A synthesis, which becomes the bottle-
neck for terrequinone A production by strain BL-2. The 
addition of exogenous DMAPP is not only expensive, 
but also cannot be effectively utilized due to the barrier 
of substrate transfer by cytoderm. To increase the sup-
ply of endogenous DMAPP, the IU pathway containing 
the ScCK and AtIPK genes [20] was also overexpressed in 
strain BL-3. The total engineered pathway for the terre-
quinone A synthesis is shown in Fig. 1B.

Table 1  Plasmids and strains used in the present study

Designation Genotype or description Source

Plasmids

 pET-28a ( +) KanR, PT7 Novagen

 pUC19 AmpR, PT7 Novagen

 pE01 pET-28a ( +) origin, KanR, PT7, tdiA–tdiE This study

 pE02 pET-28a ( +) origin, KanR, PT7, tdiA–tdiE and sfp This study

 pU03 pUC19 origin, AmpR, PT7, ScCK and AtIPK This study

Strains

 BL21-AI F-ompT gal dcm lon hsdSB(rB− mB−) araB::T7RNAP-tetA Novagen

 BL-control BL21-AI/pET-28a ( +) This study

 BL-1 BL21-AI/pE01 This study

 BL-2 BL21-AI/pE02 This study

 BL-3 BL21-AI/pE02/pU03 This study
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Fig. 1  Biosynthesis of terrequinone A in E. coli. A The schematic representation of multi-monocistronic expression vectors B Engineered 
pathway for the terrequinone A synthesis in E. coli. TdiD L-Trp aminotransferase, TdiA monomodular nonribosomal peptide synthetase, TdiB indole 
prenyltransferase, TdiC oxidoreductase, TdiE chaperone, Sfp phosphopantetheinyl transferase, ScCK choline kinase, AtIPK isopentenyl phosphate 
kinase
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In the presence of 0.5  g/L L-Trp and 0.21  g/L prenol 
(an L-Trp/prenol molar ratio of 1:1), two main peaks at 
8.43 min and 8.94 min appeared in the total ion chroma-
togram (TIC) of the chloroform extract of BL-3 culture 
(Additional file  1: Figure S2A). The MS signals for both 
were 423.2 [M + H]+ and 491.3 [M + H]+ (Additional 
file  1: Figures  S2B and C), respectively, which matched 
the MS data for ochrindole D and terrequinone A meas-
ured by Balibar et al. [15]. Thus, terrequinone A synthesis 
pathway and IU pathway were functionally constructed 
in BL-3, and the strain BL-3 produced 20.1 mg/L of terre-
quinone A after 40 h of cultivation at 30 ℃ (Fig. 2B). The 
yield of terrequinone A synthesized by the engineered 
strain was increased by approximately 12-fold through 
the introduction of DMAPP enhanced synthesis path-
way. In addition, although BL21-AI was used as a host to 
reduce the protein toxicity to cells, as shown in Fig. 2A, 
during the protein induction period (0–16 h), the expres-
sion of heterologous multi-gene still had a significant 
inhibitory effect on bacterial growth. This emphasized 
the importance of minimizing the number of heterolo-
gous genes in artificially constructed pathways. The IU 
pathway achieved DMAPP production with only two 
genes, which is the simplest pathway for DMAPP syn-
thesis reported so far. The introduction of this pathway 
greatly eased the stress of protein expression on cells and 
enabled BL-3 to produce terrequinone A directly from 
low-cost substrates L-Trp and prenol.

Optimization of culture conditions for terrequinone 
A production
Temperature can effectively affect exogenous protein 
activity in engineered bacteria by regulating protein 
expression. In the study, the induction temperature was 
optimized to improve the production of terrequinone 
A. To reduce the consumption of L-Trp in other cellular 

metabolisms and the volatilization of prenol, the two 
substrates were added at 16 h after the protein induction 
period, when proteins in the terrequinone A synthesis 
pathway were fully expressed. As shown in Fig.  3A, the 
cell density was positively correlated with the induction 
temperature. Figure 3B shows that the induction temper-
ature had a great influence on the product synthesis. The 
lowest yield was obtained at 30 ℃ induction despite the 
fastest cell growth. While the highest amount of terrequi-
none A was produced at 25 ℃ induction, indicating that 
inducing at 25 ℃ was more favorable for active protein 
expression, thus achieving higher yield.

Under an L-Trp/prenol molar ratio of 1:1, effect of sub-
strate concentration on the synthesis of terrequinone A 
was investigated. As shown in Fig.  3C, the concentra-
tion of substrates had little effect on cell growth density. 
The addition of 0.75 g/L L-Trp and 0.315 g/L prenol (or 
1.0  g/L L-Trp and 0.42  g/L prenol) increased the yield 
of terrequinone A to approximately 56  mg/L (Fig.  3D). 
Finally, 0.75  g/L L-Trp and 0.315  g/L prenol were cho-
sen for the terrequinone A synthesis for economic 
consideration.

Changing the major prenylated product by adjusting 
the L‑Trp/prenol ratio
Under an L-Trp/prenol molar ratio of 1:1, a consider-
able amount of ochrindole D (monoprenylated DDAQ D) 
was produced along with terrequinone A (diprenylated 
DDAQ D) by strain BL-3. Therefore, the synthesis of 
terrequinone A at different substrate ratios was also 
investigated. As shown in Fig.  4, with the increase of 
prenol, the major product changed from ochrindole D 
to terrequinone A until ochrindole D was completely 
converted to terrequinone A. The content of terrequi-
none A reached the highest 106.3 mg/L when the molar 
ratio of the substrates was 1:3. However, the level of 
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terrequinone A decreased when the ratio was 1:4, along 
with a slight decrease in cellular OD600 value. This may 
be due to the toxicity of both short-chain-alcohol prenol 
and the intermediate product DMAPP to the cells [28, 
29]. Whether the metabolic strength of the upstream and 

downstream modules of the synthesis pathway is bal-
anced severely affects the final yield of the target product. 
If the upstream module is strong and the downstream 
module is weak, it tends to cause excessive accumulation 
of intermediate metabolites, which will not only reduce 
the carbon utilization rate but also may cause cytotoxic-
ity and affect the growth of microorganisms, leading to a 
decrease in yield. In this study, the IU pathway separated 
from the central carbon metabolism was introduced into 
E. coli to enhance the DMAPP production. Therefore, it 
is possible to balance their metabolic intensity by adjust-
ing the ratio of the substrates of the two synthesis mod-
ules, and a better synthesis effect can be achieved.

L‑Trp metabolic analysis
Under the optimized conditions, the growth curves 
as well as the substrate consumption during the ter-
requinone A synthesis were also examined simultane-
ously. As shown in Fig.  5, despite the addition of the 
substrates L-Trp and prenol at 16 h, they were still con-
sumed in large amounts, and the yield of terrequinone 
A was relatively low. In particular, with the multiple 
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functional groups such as carboxyl, amino and indole 
groups, L-Trp can be modified to form a variety of dif-
ferent structural units and is an important substrate 
for many natural products [30], and L-Trp also partic-
ipates in various metabolisms of E. coli as a nutrient. 
Therefore, it is important to clarify the metabolic flow 
of L-Trp in recombinant bacteria to improve the bio-
synthetic yield of active products with L-Trp as a sub-
strate. In this study, several L-Trp metabolic pathways 
(Fig. 6A) were detected in strains BL-control and BL-3 
by UHPLC–MS, and L-Trp and its 10 metabolites were 
quantified. As shown in Fig. 6B–G, the introduction of 
heterologous terrequinone A synthesis pathway signifi-
cantly changed the metabolic flow of L-Trp, and a con-
siderable fraction of L-Trp was used for terrequinone A 
synthesis in strain BL-3. Indole (IND) and indole-3-ace-
tic acid (IAA) were down-regulated and indole-3-lactic 
acid (ILA) was up-regulated among several key L-Trp 
catabolites. The metabolic pathway from L-Trp to IPA 
was also present in BL-control, and the concentration 
of IPA in BL-3 was almost the same compared with the 
control at the initial phase of terrequinone A synthesis, 
indicating that the activities of TdiD and TdiA were in a 
dynamic equilibrium. Subsequently, a decrease in TdiA 
activity resulted in the accumulation and up-regulation 
of IPA.

Although TdiD enhanced the conversion of L-Trp to 
IPA in BL-3, the consumption of L-Trp did not increase 
obviously compared to BL-control (Fig.  6C). This may 
be due to more degradation of L-Trp to indole in BL-
control than in BL-3 (Fig.  6E). In E. coli MG1655, the 
catabolism of L-Trp mainly depends on the tryp-
tophanase encoded by the tnaA gene, which catalyzes 
the conversion of L-Trp to indole and pyruvate [31]. 
Knockdown of the tnaA gene in the strain could effec-
tively prevent the flow of L-Trp into the indole metabo-
lism branch and reduce the intracellular degradation 

of L-Trp [32], and this metabolic pathway modification 
could be attempted to further improve the terrequi-
none A yield in the future.

Conclusions
In this study, an engineered strain for terrequinone A 
production was successfully constructed by integrating 
a terrequinone A synthesis module and a two-step enzy-
matic DMAPP synthesis module in E. coli. A compre-
hensive engineering approach was adopted to synthesize 
terrequinone A and enhance its production, including 
optimization of gene nucleotide sequences, construction 
of modular pathways via multi-monocistronic expression 
vectors, enhancement of the DMAPP synthesis path-
way, optimization of culture conditions, and adjustment 
of the substrate ratio of the two synthesis modules. The 
engineered strain eventually produced 106.3  mg/L ter-
requinone A from low-cost L-Trp and prenol. Metabolic 
analysis of L-Trp demonstrated that a large amount of 
L-Trp flowed to the indole metabolism branch during 
the synthesis of terrequinone A in BL-3, and the knock-
down of tnaA gene could be tried to further improve the 
terrequinone A yield in the future. This study provided a 
metabolic engineering strategy for the efficient synthesis 
of terrequinone A. It is also expected to synthesize more 
new bis-indolylquinones with an asymmetric quinone 
core by mining suitable prenyltransferases in Genbank to 
replace TdiB in the engineered pathway.

Materials and methods
Chemicals, plasmids and strains
All chemicals used in the study were purchased from J&K 
Scientific Ltd. (Beijing, China). Reagents for molecular 
biology experiments were purchased from TaKaRa Bio-
technology (Dalian) Co., Ltd.

The gene cluster tdiA–tdiE (GenBank No. EF550581.1, 
EF550582.1, EF550583.1,  EF550584.1 and EF550585.1) 
for the synthesis of terrequinone A from A. nidulans, sfp 
(GenBank No. X65610.1) from B. subtilis, ScCK (Gen-
Bank No. AAA34499.1) from Saccharomyces cerevisiae 
and AtIPK (GenBank No. AY150412.1) from Arabidopsis 
thaliana were optimized to improve the probability of 
gene activity expression. The optimized gene sequences 
are listed in Additional file 1: Table S1. The T7 promoter 
and terminator (Additional file 1: Table S1) were designed 
to the 5’ and 3’ ends of each gene, respectively, to con-
struct the multi-gene expression  cassettes tdiABCDE, 
tdiABCDE-sfp and ScCK-AtIPK. These expression  cas-
settes were chemically synthesized by GenScript  Bio-
tech Co. (Nanjing, China) and double-digested with 
EcoRI and HindIII, and then inserted into pET-28a ( +) 
or pUC19 to generate plasmids pE01, pE02 and pU03, 
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respectively. The plasmids and strains used in this study 
are listed in Table  1. The successful construction of the 
vectors carrying exogenous genes was verified by PCR 
and DNA sequencing. PCR was performed using plas-
mids extracted from BL-1, BL-2 and BL-3 as templates. 
The specific Primers used for the PCR are listed in Addi-
tional file 1: Table S2.

Culture conditions
The single colonies were selected and cultured overnight 
at 37℃ in LB medium (10  g tryptone, 5  g yeast extract 
and 10 g NaCl per liter). The fresh seed culture was inoc-
ulated in a conical flask containing 50  mL LB medium 
and cultured at 220 rpm and 37 ℃. When OD600 reached 
0.6, the cells were collected, washed with double-distilled 
water, and re-suspended with optimized M9 minimal 
medium (15  g glycerol, 6  g Na2HPO4, 3  g KH2PO4, 1  g 
NH4Cl, 0.5 g NaCl, 0.12 g MgSO4, 0.011 g CaCl2, 2.9 mg 
ZnSO4·7H2O, 0.2 mL 1% (w/v) vitamin B1 and 5 g acid-
hydrolyzed casein per liter) of equal volume. Meanwhile, 
L-arabinose was added to the medium with a final con-
centration of 2  g/L  to induce the expression of heter-
ologous proteins, and cultivation was continued for a 
further 16  h. The induction temperature was set to 20, 
25 or 30 ℃ according to the requirements of the experi-
ment. After that, substrates L-trp and prenol with dif-
ferent concentrations were added and incubated at 30 ℃ 
for 24 h to synthesize ochrindole D and terrequinone A. 
Appropriate antibiotics (ampicillin, 100 mg/L; kanamycin 
50 mg/L) were added to the medium following the resist-
ance of the engineered bacteria. All experiments were 
performed in triplicate.

Purification of ochrindole D and terrequinone A
Ochrindole D and terrequinone A were purified from 
two liters of fermentation broth for quantitative analysis. 
The cells were collected by centrifugation at 7000 rpm for 
10 min, suspended in 200 mL distilled water and crushed 
with an ultrasonic oscillator (JY92-II, Scientz Biotech. 
Co., Ltd). The broken cell suspension was extracted twice 
with an equal volume of chloroform. The organic layer 
was evaporated under vacuum and then redissolved in 
20  mL of methanol. Ochrindole D and terrequinone 
A in the extract were purified by HPLC (Agilent 1100) 
equipped with a semi-preparation column (Agilent ZOR-
BAX SB-C18 column, 250  mm × 9.4  mm × 5  μm) and 
monitored at 280 nm. The mobile phase was a gradient of 
acetonitrile/water containing 0.1% TFA (from 5 to 100% 
in 20 min) at a flow rate of 4 mL/min.

Analytical methods
The cell biomass was determined by absorbance at 
600  nm (OD600) with a microplate reader (Tecan 

Infinite M200). Two hundred μl of fermentation broth 
was quenched with twice the volume of methanol, ultra-
sonicated for 10 min, and centrifuged at 10,000 rpm for 
5  min. The concentrations of L-Trp, ochrindole D and 
terrequinone A in  the supernatant were detected by 
HPLC with an ultraviolet spectrophotometric detec-
tor (Agilent 1100 VWD) at 280 nm and an Athena C18 
reversed-phase column (250  mm × 4.6  mm × 5  μm, 
ANPEL Inc., China) at 35 ℃, using a gradient of ace-
tonitrile/water containing 0.1% TFA (from 5 to 100% in 
20 min) at a flow rate of 1 mL/min. The purified ochrin-
dole D and terrequinone A mentioned above were 
prepared for the standard curve. Ochrindole D and terre-
quinone A were identified by LC–MS using a TSQ Quan-
tum-Accela system with a Shim-pack GIST C18 column 
(150  mm × 2.1  mm, 3  μm, Shimadzu Co., Japan) and 
positive ion mode ESI. Solvent A: 0.1% (v/v) formic acid 
in H2O; solvent B: 0.1% (v/v) formic acid in acetonitrile, 
flow rate: 0.2 μL/min.  The gradient was: initial hold in 
20% B for 3 min, then to 90% B within 10 min. To detect 
the concentration of prenol in the samples, 200 μL of 
fermentation broth was extracted with an equal volume 
of ethyl acetate (isoamyl alcohol was added as the inter-
nal standard), and the organic phase was detected by a 
7890B GC system (Agilent Technologies) equipped with 
a flame ionization detector and an HP-5 capillary column 
(30 m × 0.32 mm, 0.25 μm, Agilent). The oven tempera-
ture was initially held at 50 ℃ for 1 min, then increased 
to 100 ℃ at the rate of 5 ℃/min, and further increased to 
150 ℃ at the rate of 25 ℃/min. The injector and detector 
were held at 250 ℃ and 270 ℃, respectively.

L‑Trp metabolism
The substrates L-trp and prenol were added at 16 h and 
the cultures of BL-control and BL-3 were sampled at 
16 h, 24 h and 40 h, respectively. Ten ml of fermenta-
tion broth was ultrasonicated for 10  min and freeze-
dried in vacuum to lyophilized powder. An appropriate 
amount of lyophilized powder was added to 100 μL 
of 80% methanol and oscillated for 60  s, and then 900 
μL of 10% methanol was added to oscillate for 60  s. 
The extract was centrifuged at 10,000  rpm for 5  min 
to obtain the supernatant for detection. L-Trp cat-
abolites were measured by UHPLC–MS proposed 
by Chen et  al. [33] with slight modifications, using a 
Waters  Acquity  UPLC system equipped with an HSS 
T3 column (2.1 × 150 mm, 1.8 μm, Waters) and an API 
5000 triple quadrupole instrument (AB Sciex). The 
mobile phase was composed of solvent A (0.1% formic 
acid in water) and solvent B (0.1% formic acid in meth-
anol). The gradients were: 0 ~ 2  min, 1% B; 2 ~ 3  min, 
1 ~ 30% B; 3 ~ 3.5  min, 30% B; 3.5 ~ 8  min, 3 ~ 50% B; 
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8 ~ 10  min, 50 ~ 95% B; 10 ~ 11  min, 95% B. The flow 
rate was 0.3  mL/min. Data analysis and graphics were 
performed through bioDeep™ data analysis platform 
(http://​www.​biode​ep.​cn/).
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