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Abstract 

Background:  The brewer’s yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from 
food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large 
genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, 
hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic 
loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only 
focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially 
relevant QTLs is still missing.

Results:  Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyp‑
ing methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, 
including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resist‑
ance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associ‑
ated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and 
common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic 
variation.

Conclusions:  Our findings represent an important step in our understanding of the genetic underpinnings of 
industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to 
engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of 
different combinations of mutations that can be explored in genome editing.
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Background
The brewer’s yeast Saccharomyces cerevisiae plays a key 
role in the production of fermented foods, beverages, 
biofuels and pharmaceuticals. Despite S. cerevisiae being 
generally suited for industrial applications, there is an 
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enormous genetic and phenotypic diversity among dif-
ferent S. cerevisiae strains, with strains typically excel-
ling in some areas, but scoring worse for other important 
phenotypes [1]. Moreover, the strains currently used for 
industrial production only represent a small fraction of 
the natural diversity and do not always perform optimally 
[1–6]. Hence, one obvious yet effective path towards 
superior industrial yeasts with improved fermentation 
properties is through the exploration and exploitation of 
the natural yeast biodiversity [7, 8]. Aside from selecting 
natural strains that boast a desirable combination of phe-
notypes, it is also possible to cross multiple strains and 
select hybrids that combine and improve upon specific 
traits [7–9]. However, although this approach has proven 
extremely powerful, it also suffers from important short-
comings. Firstly, natural yeast strains rarely combine all 
desired traits. Secondly, while hybrids allow combining 
useful traits, the very process of shuffling genomes is rel-
atively slow and labor-intensive, and inevitably also leads 
to loss of some positive properties.

An alternative route to exploit the natural diversity 
of yeasts is to employ genetic engineering to combine 
specific mutations and alleles that contribute to desir-
able phenotypes. The use of various CRISPR-based 
techniques has now made it relatively easy to introduce 
a series of desirable allele combinations into an existing 
yeast, to further improve one or several phenotypes while 
not affecting the rest of the genome and thus maximizing 
the conservation of other traits [10–12].

Despite the promise of genetic modification and 
genome editing to obtain superior industrial microbes, 
identification of the genetic determinants (gene alleles 
and other genetic variations) that are responsible for 
desired traits remains a major challenge. Many industri-
ally relevant phenotypes are quantitative, involving mul-
tiple genetic loci (called quantitative trait loci, QTLs) that 
can sometimes show complex genetic interactions [13]. 
One frequently used approach to dissect QTLs is experi-
mental evolution and re-sequencing (E&R). By monitor-
ing the genetic changes between isogenic populations as 
they adapt to specific selective pressure across multiple 
generations, the causative loci underlying the selected 
trait may be identified [14–16]. Using this approach, 
studies have for example pinpointed mutations that 
contribute to ethanol tolerance [17], glycerol utiliza-
tion [18], and heat resistance [19]. However, although 
E&R can serve as a powerful tool, it often leads to physi-
ological trade-offs between a selected trait and other 
aspects of yeast. Additionally, an E&R approach can only 
be exploited for evolutionarily selectable phenotypes, 
such as improvements in growth rate, tolerance, or sub-
strate utilization. However, if the desired phenotype is 
not inherently selectable or counter-productive for cell’s 

fitness (e.g., overproduction of specific metabolites), it 
prevents straightforward selection through evolution.

Another approach used to link a complex trait to its 
genetic underpinning is quantitative trait loci (QTL) 
mapping [20–23]. QTL mapping takes advantage of S. 
cerevisiae’s meiotic recombination efficiency to deter-
mine the extent of co-segregation between loci with 
known positions (genetic variations) and the genetic 
determinants of the phenotype of interest, whose posi-
tions are unknown [24, 25]. This method has been suc-
cessfully applied to reveal the molecular basis of several 
quantitative traits such as heat tolerance [26], acetic acid 
tolerance [27, 28], ethanol tolerance [29, 30] or wine 
aroma [31].

Despite the ever-increasing list of identified QTLs in 
yeast and other organisms, QTL mapping generally suf-
fers from low throughput due to the large body of work 
required to map and confirm one locus for one specific 
property [32, 33]. Additionally, different studies mostly 
focus on one phenotype at a time. Hence, it is mostly 
unclear whether the same QTL might influence multiple 
phenotypes (positively or negatively). Moreover, because 
most studies do not map identified QTLs onto the S. cer-
evisiae phylogeny, the evolutionary history and distribu-
tion of QTLs across the S. cerevisiae population is also 
still largely unknown.

Here, we employ the approach first described by She 
& Jarosz in 2018 that enables systematic identification of 
QTLs across multiple traits. This method takes advan-
tage of the decreased sequencing cost and the possibili-
ties of high-throughput phenotyping for yeast to map 
multiple traits in one large-scale mapping effort. Spe-
cifically, the approach exploits a large-scale inbreeding 
crossing scheme and in silico fine-mapping to identify 
causative variants at single-nucleotide resolution, while 
maintaining high statistical power. Using this setup, 
causal variants have been pinpointed across a wide array 
of ecologically relevant traits, including drug resist-
ance, carbon source utilization, and chemical stressors 
[34–36]. Here, we combined the power of the 1125 previ-
ously sequenced inbred segregants with large-scale phe-
notyping methods to pinpoint 678 QTLs that together 
determine 18 different yeast traits relevant to industrial 
fermentations and biotechnological processes. From this 
set, we identified several key variants that influence the 
production of fermentative metabolites, including etha-
nol, glycerol, isobutanol, acetic acid, and sulfur dioxide, 
as well as resistance to ethanol, acetic acid, sulfite, and 
high osmolarity and salinity. The large number of QTLs 
identified reflects the genetic complexity of the traits we 
examined. Thanks to the large segregant population, we 
were able to resolve 254 QTLs to single-nucleotide level 
(QTN) and an additional 58 to single gene (size of about 
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1 kb). Interestingly, we show that pleiotropy plays a major 
role in phenotypic diversity of industrially relevant yeast 
characteristics. For example, a (previously introduced) 
auxotrophic marker in one of the parental strains affected 
12 traits, while a specific rearrangement in the subtelo-
meric region of chromosome VII affected at least 5 phe-
notypes. Lastly, we show that several of the causative 
mutations exhibit similar phenotypic effects when intro-
duced to other, genetically distinct industrial strains. This 
not only confirms the accuracy of our approach, but also 
opens new routes to study complex genetics and genetic 
interactions as well as to engineer novel, superior indus-
trial yeasts.

Results
The main aim of this study was to obtain a comprehen-
sive view of the different QTLs that contribute to indus-
trially relevant properties in S. cerevisiae. To this end, 
1125 F6 segregants were obtained from a cross of two 
phenotypically divergent S. cerevisiae strains, RM11-1a, 
a natural vineyard isolate, and YJM975α, originally iso-
lated from an immunocompromised patient in Italy [34]. 
We reasoned that this combination of one industrial, and 
one non-industrial strain would maximize our chances 
of identifying QTLs that are specific for strains adapted 
to industrial conditions, while possibly also revealing 
to what extent non-industrial strains also harbor other 
industrially relevant alleles. For each of the 1125 seg-
regants and the two parental yeasts, we set up small-scale 
fermentation reactions in medium and conditions mim-
icking industrial beer production. For each of these 1127 
fermentations, we measured 18 different industrially rel-
evant parameters, including the production of primary 
and secondary metabolites. In addition, we screened all 
1125 segregants for their resistance to various industri-
ally relevant stress factors and consumption of maltose. 
This large set of phenotypic data was subsequently com-
bined with the available genome sequences of each of the 
segregants and analyzed using the pipeline developed by 
She and Jarosz (2018) to identify QTLs underlying the 
phenotypes. Finally, some of the QTLs were experimen-
tally confirmed to verify the mapping and explore the 
possibility of using the data to engineer superior indus-
trial yeasts.

Identification of LEU2 as a major pleiotropic QTL
Most traits show a normal distribution within the popu-
lation, a typical characteristic of complex phenotypes that 
are controlled by multiple different genetic loci (Fig.  1). 
For a few phenotypes, however, the F6 progeny shows a 
clear bimodal segregation, indicative of one major segre-
gating QTL that has substantial influence.

One such QTL was the LEU2 marker, a gene encod-
ing beta-isopropylmalate dehydrogenase that catalyzes 
the third step in leucine biosynthesis which was deleted 
in RM11-1a to facilitate selection of progeny during the 
repeated rounds of crossing [34]. The absence or pres-
ence of LEU2 drastically influences the progeny’s phe-
notypes, especially in the production of metabolites 
that are directly related to amino acid and nucleic acid 
metabolism: isoamyl alcohol, isoamyl acetate, isobu-
tanol, 1-propanol, ethyl octanoate, ethyl hexanoate, ace-
tic acid, and SO2 (Additional file  2: Table  S1). Hence, 
the marker functions as an artificial QTL and serves as a 
positive control for the QTL pipeline. Perhaps unsurpris-
ingly, the most prominent effect of the absence or pres-
ence of LEU2 is the formation of isoamyl alcohol, which 
is directly related to the leucine biosynthetic pathway in 
which Leu2 is involved. Segregants that harbor LEU2 
produce 193% more isoamyl alcohol in average compared 
to strains lacking it (p < 0.001) (Additional file  1: Figure 
S1). Because the effect of LEU2 on many phenotypes is 
particularly strong and partly obscures more subtle dif-
ferences related to natural QTLs, the segregants lacking 
LEU2 were omitted and only the 845 prototrophic F6 seg-
regants were used for the subsequent QTL analysis.

Variance in industrial traits is driven by both rare 
and common, coding and intergenic variants
Analysis of 18 different industrially relevant pheno-
types of the prototrophic F6 segregants yielded a total of 
678 QTLs with p < 10–5 (Additional file  2: Table  S2). Of 
the QTLs identified, 21 are small insertion or deletions 
(Indels) and 657 are single-nucleotide polymorphisms 
(SNPs). 254 QTLs could be unambiguously mapped to 
single-nucleotide resolution (QTN), and 58 could be 
mapped to single gene-level (size about 1 Kb). The QTNs 
responsible for these diverse traits included missense 
and intergenic (non-coding) variants, as well as synony-
mous and missense variants in coding regions (Fig. 2A). 
Roughly 43.7% of the QTNs locate in intergenic regions 
(N = 111), while synonymous and missense mutations 
each account for 23.2% (N = 59) and 29.1% (N = 74) of 
the QTNs, respectively. This distribution is very similar 
to the distribution of all variants between the founder 
strains (i.e., all polymorphisms between the two paren-
tal strains, irrespective of whether they are linked to a 
QTN or not; Fig. 2B). The presence of a large fraction of 
non-coding QTNs, including regulatory variants, is in 
line with the observation of former studies employing 
the same cross (Fig. 2B), where the complex traits tested 
were also fueled by polymorphisms of different molecu-
lar classes [34, 36].

As the majority of the industrially relevant traits 
included in the current study relate to fermentation 
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performance, we asked whether we could identify a rela-
tionship between the presence of certain QTNs across 
the S. cerevisiae lineages, and if the ecology of the dif-
ferent strains are subject to enrichment that would offer 
evolutionary advantages, especially when a founder strain 
RM11-1a was isolated in a vineyard [4]. To elucidate the 
ecological relevance of our QTNs, we analyzed their 
distribution in a set of wholegenome sequences of 1011 
S. cerevisiae strains, encompassing the full breadth of 

genetic and phenotypic diversity known for this species 
to date [37]. We removed 18 QTNs for which we were 
unable to consistently map the variant position across the 
1011 strain collection. 54 QTNs are rare (present in < 1% 
of the 1011 strains): either unique to the parental strains, 
or shared by at most a small number of related strains 
(Fig. 2C). The contribution of low-frequency alleles con-
firms previous findings [38], and suggests that a substan-
tial fraction of the missing heritability of complex traits 

Fig. 1  Phenotypic variance across 1125 F6 hybrids derived from a cross between S. cerevisiae strains RM11-1a and YJM975α [34]. Each of the 987 
hybrids that did not display a growth defect on maltose was tested in conditions mimicking industrial beer fermentation (16oP at 20 °C for 7 days), 
after which concentration of primary (ethanol) and secondary metabolites (glycerol, acetic acid, higher alcohols and esters) were determined 
for each sample. In addition, the growth of all 1125 F6 segregants was measured in the presence of high osmolarity (sorbitol), salt, acetic acid, 
ethanol, acetic acid and sulfite (SO32−). Spearman rank correlations were calculated for each pair of phenotypes, rho values are indicated here with 
corresponding significance (p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001)



Page 5 of 18Ho et al. Biotechnol Biofuels          (2021) 14:211 	

might be explained by polymorphisms segregating at low 
frequency within populations and rare mutations might 
play a crucial role in modulating the phenotypic land-
scape within S. cerevisiae as previously reported [37].

By contrast, 78 QTNs are widely spread across the 
population and shared by 90%–99% of the strains in the 
collection (Fig. 2C).This is in line with the hypothesis of 
a single out-of-China origin for this species followed by 
geographical differentiation, human-associated admix-
ture and several independent domestication events [37]. 
Next, we analyzed the distribution of all the identified 
QTLs over the S. cerevisiae natural diversity (as repre-
sented by the collection of 1011 sequenced strains). We 
included all candidate QTLs regardless of whether they 
were resolved to a single-nucleotide level. A proxy for 
allelic effects is shown in Fig. 2D as the difference in the 
mean of a given phenotype between the population of 
segregants containing either of the parental allele (i.e., 
distance between the two alleles in Fig. 2D). For clarity, 
only the 5 QTLs that were predicted to have the strongest 
effect size are shown in Fig. 2E for each trait. Both of the 
causal QTNs that were experimentally confirmed (i.e., 
V5462 in ethanol concentration and V11573 for acetic 
acid concentration; see below) appear to be rare muta-
tions, accounting for less than 1% of the total genotyped 
alleles (Fig. 2E).

As might be expected, several QTLs are present across 
closely related lineages, indicating a shared evolutionary 
history and/or admixture between strains from different 
genetic backgrounds. For instance, the YJM975α allele 
of the V7151 QTL for halotolerance has been detected 
in most of the non-Asian lineages with the exception 
of the “Alpechin” and “French Guiana human” lineages. 
The RM11-1a allele of the V6871 QTL associated with 
1-propanol production is mostly observed in Chinese, 
Taiwanese and Malaysian strains. Other QTLs are unique 
to a specific lineage and often segregate at low frequency 
within the population, suggesting a single emergence 
event in one or few related strains following lineage 
diversification. For instance, the RM11-1a allele linked to 
production of phenethyl acetate was detected only in the 

African Palm Wine lineage and the RM11-1a allele of the 
top ethanol tolerance QTL (V5918) was observed only 
in the Wine European clade and subclade 1. Such events 
can be caused by either drift or selection but disentan-
gling this process in natural populations remains chal-
lenging [39].

Several QTLs are observed in multiple, non-related 
lineages indicating the presence of multiple emergence 
events or admixture/crossing. A prominent example is 
the RM11-1a allele of V10049 QTL for acetic acid tol-
erance, present in the “Far East Asia” and “Taiwanese” 
lineages together with the Wine European clade and sub-
clade 2. The presence of independent emergence events 
across lineages, might hint at parallel evolution and posi-
tive selection, even if neutral drift can never be formally 
excluded. Interestingly, even though both founder strains 
are included in the 1011 genome collection (RM11-1a 
labeled in yellow and YJM975α blue in the respective 
clade, Fig.  2E), there are multiple alleles without a sin-
gle appearance across the whole collection (e.g., V2971 
from ethyl acetate and V8458 of halotolerance), suggest-
ing novel variants arose in the founder strains used in 
this study. Moreover, we observed that 22% of the QTLs 
(N = 147) are multiallelic across the 1011 genome collec-
tion, i.e., show alternative alleles other than the two geno-
types found in the parental strains that were used in the 
cross.

It is tempting to use methods like the McDonald–
Kreitman test to further investigate whether any of the 
QTNs show signs of positive or negative selection. How-
ever, these methods need to be approached with care, 
since they assume difference in functional importance 
between synonymous and non-synonymous mutations 
[40, 41]. It is becoming increasingly clear that causal vari-
ants can encompass a wide array of molecular variation 
including synonymous and intergenic mutations [34, 36]. 
The level of polymorphism within species and the diver-
gence is also heavily influenced by demography and the 
local adaption which varies from lineage to lineage and 
very little is currently known [41]. In a normal case, the 
stronger representation of a rare allele in certain lineages 

Fig. 2  Overview of the identified QTLs underlying 18 industrially relevant phenotypes. A Number of causal variants of each functional class 
identified for each phenotype. B Comparison of the fraction of QTN of each functional class between studies employing the same cross; “Intergenic” 
includes all single nucleotide polymorphisms at non-coding regions, e.g., promoters, terminators, 5’ and 3’ UTRs, etc. C Histograms of the number 
of strains within the 1011 Genome Project yeast collection carrying at least 1 copy of the RM11-1a allele (top) and YJM975α allele (bottom) at the 
identified QTN across all phenotypes. D Phenotypic effect (as normalized z-scores) of the parental allele for each candidate locus (N = 678) and 
their prevalence in the 1011 sequenced S. cerevisiae strains [37]. The origin of the variants is indicated in blue (RM11-1a) and yellow (YJM975α), and 
the size of the point represents the frequency of the variant genotype in the 1011 sequenced S. cerevisiae isolates. E Phylogenetic distribution of 
the top 5 QTLs with strongest average effect on each trait (boxes) by lineage across the 1011 Genome Project yeast collection (phylogenetic tree 
adapted from [37], mosaic strains were excluded). For each site a distinction is made between QTN (triangle 1nt resolution) and QTL (square from 1 
to 1000nt). Size of the circles indicates the fraction of strains within each lineage carrying at least 1 copy of the RM11-1a (blue) and YJM975α (yellow) 
allele at the specific locus. Red stroke indicates the parental allele with stronger effect on the trait. Lineage assignment is based on [37] and the 
number of strains is indicated next to the lineage name. RM11-1a and YJM975α lineages are colored blue and yellow, respectively

(See figure on next page.)
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may hint to a selection or random genetic drift at play. 
However, certain phylogenetic clades, like the European 
Wine lineage, show more rare alleles. After experiencing 
a strong domestication bottleneck, the wine yeasts clade 
went through population expansion and accumulated 
many rare variants [37, 42]. In addition, although the 
mosaic strains have been removed from our phylogenetic 
analyses, many strains might still be the result of ancient 
admixture which can mislead assumption of parallel evo-
lution if not accounted for.

Experimental confirmation of five selected QTLs
Compared to the common procedures for QTL mapping 
in yeast, such as pooled segregant analysis, our pipeline 
identifies QTLs at the nucleotide-level (N = 254), sin-
gle gene-level (size about 1 kb; N = 58) as well as larger 
genetic loci up to 5 kb (N = 106), which sometimes com-
prise multiple genes. Still, even these larger loci are con-
siderably smaller than those typically identified in regular 
QTL approaches where QTL regions are often longer 
than 10  kb, making it relatively easier to predict which 
specific variant positions in the region are driving the 
phenotypic effect.

To confirm the accuracy of our QTL mapping, we 
selected five QTLs that are predicted to affect multiple 
industrially relevant phenotypes for further investigation 
(Table  1 and Fig.  3). Four QTLs were selected because 

they are pleiotropic, linking to a broad range of different 
traits, from the production of primary metabolites such 
as ethanol, glycerol and acetic acid to secondary metabo-
lites including valuable compounds like 1-propanol, ethyl 
acetate as well as tolerance towards salt and acetic acid 
(Fig. 3). An additional QTL was selected for its associa-
tion with the production of isobutanol, which is not only 
an aroma-active compound that contributes to the fla-
vor of fermented products, but is also being explored as 
a promising second-generation biofuel [43]. For each of 
these QTLs, we followed a similar strategy to identify the 
causative alleles or mutations and their respective pheno-
typic effects as described in deeper depth in “Materials 
and methods” section.

Variation in SUC2 causes differences in the production 
of alcohol and various other metabolites
One hugely important industrial trait is the ability to 
convert all available fermentable sugars into ethanol. For 
this phenotype, we identified 21 QTLs. Among the can-
didate QTLs, SUC2 stands out because of two reasons. 
First, this QTL was also mapped to other traits with 
high significance, including the production of 1-pro-
panol, ethyl acetate, acetic acid, and glycerol (Additional 
file 2: Table S2). Second, it encodes sucrose invertase, the 
enzyme that catalyzes the first step in sucrose metabo-
lism, namely the hydrolysis of sucrose into glucose and 

Table 1  QTLs called by forward selection regression. List of QTLs with an influence on fermentation parameters, the production of 
extracellular metabolites and volatile secondary metabolites (Additional files 3, 4, 5)

QTL Trait Chromosome Start [bp] End [bp] PVAL range Candidate genes within

SUC2 1-Propanol conc IX 27,399 36,687 6.7–37.8 NIT1

Ethyl acetate conc SUC2

Isoamyl alcohol conc YIL166C

Ethanol conc YIL169C-Gene

Acetic acid conc

Glycerol conc

IMA1 Ethyl acetate conc VII 1,066,563 1,066,735 7.3–42.0 BIO2

Isobutanol conc IMA1

Phenethyl acetate conc

Acetic acid conc

Glycerol conc

Maltose growth

ALD6 Ethyl octanoate conc XVI 432,771 434,477 8.1–112.4 ALD6

Isoamyl alcohol conc

Acetic acid conc

URA5 Ethyl octanoate conc XIII 56,990 56,990 10.5–115.2 URA5

Acetic acid conc

Acetic acid tolerance

Ethanol tolerance

Halotolerance

URK1 Isobutanol XIV 646,585 648,789 8.2 URK1



Page 8 of 18Ho et al. Biotechnol Biofuels          (2021) 14:211 

fructose. Hence, it is tempting to speculate that variation 
in SUC2 could lead to different efficiencies in sucrose 
metabolism, which would in turn explain the observed 
differences in the production of primary (ethanol) and 
certain secondary metabolites. In line with this hypoth-
esis, deletion of SUC2 in strain RM11-1a led to 6.5% 
reduction (p < 0.0001) in the final ethanol concentration 
in the sample, while no effect was observed in strain 
YJM975α (Fig.  4). Similarly, SUC2 deletion also led to 
reduced formation of 1-propanol (− 10.8%; p ≤ 0.001), 
ethyl acetate (− 17.9%; p ≤ 0.001), acetic acid (− 16.5%; 
p ≤ 0.01), and glycerol (− 10.8%; p ≤ 0.0001) in RM11-1a, 
but had no effect in the strain YJM975α, except for the 
formation of 1-propanol (+ 8.6%; p ≤ 0.01) (Fig. 4). As the 
deletion of SUC2 in YJM975α did not result in significant 
changes in most of these metabolites, the SUC2 allele of 
YJM975α is likely to be a loss-of-function allele, render-
ing the cells with inferior efficiency in sucrose metabo-
lism as compared to that of RM11-1a.

Next, we attempted to identify the exact causa-
tive genetic variation in SUC2 that is responsible for 
the observed phenotypes. Our QTL pipeline high-
lighted one frameshift variant in the ORF of SUC2 gene 
(SUC2394∆) with high significance (PVAL > 5.2) from sev-
eral traits. However, since the mapping analysis cannot 
unambiguously distinguish this variant from a nearby 

variant located at position − 6 in the promoter of SUC2, 
we also included this variant for our validation (Fig. 5A). 
Although segregants inheriting the entire haplotype 
block (both SUC2−6A and SUC2394A) from RM11-1a 
produced higher amounts of ethanol (Fig.  5B), we con-
firmed that this frameshift mutation is causative for the 
observed reduction in ethanol production (Fig. 5C). This 
variant rests immediately at 5’ of Suc2’s catalytic site [44], 
and might influence the affinity of the enzyme, as resid-
ual sucrose was detected in the finished fermentation 
sample (Additional file 1: Figure S3). Moreover, it has an 
opposing effect on the formation of acetic acid and glyc-
erol (Additional file 1: Figure S4), showing its pleiotropy. 
The fact that the truncated SUC2 allele affects multiple 
phenotypes is perhaps not surprising, as mutations in 
this gene affect the total amount of carbon that can be 
metabolized, thus influencing primary and secondary 
metabolite production, as well as other traits that may be 
indirectly linked to growth and metabolism.

To test if the truncated SUC2 allele leads to reduced 
ethanol production in other strains containing an intact 
SUC2 allele, we introduced the SUC2394∆ frameshift 
variant in three diverse industrially relevant strains: (i) 
Ethanol Red (an industrial bioethanol strain; (ii) CEN.
PK (a common chassis strain for heterologous produc-
tion of high-value compounds) and (iii) S. cerevisiae var. 
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boulardii (a strain often referred to as S. boulardii, and 
commercially used as probiotic). Introduction of the 
frameshift variant indeed led to reduced ethanol forma-
tion in all three strains (Fig. 5D), substantiating the effect 
of a truncated SUC2 allele on ethanol formation. Next, 
we investigated whether other candidate QTLs that were 
mapped to ethanol production would interact with SUC2, 
however, we did not observe a clear network among these 
mapped QTLs for ethanol production (Fig. 5E).

YJM975α contains incomplete IMA1 locus, causing reduced 
maltose utilization and altered formation of certain 
metabolites
Within QTL2, linked to several traits such as glycerol 
and acetic acid production as well as maltose utilization, 
several polymorphisms were identified in the intergenic 
region between BIO2 and IMA1 genes (approximately 
2.2  kb) that are located within the subtelomeric region 
of chromosome VII (Fig.  3C). While deletion of BIO2 
in either of the strain RM11-1a and YJM975α did not 
affect any of the phenotypes to which the QTL was linked 
(data not shown), the deletion of ima1 in RM11-1a led 
to reduced production of glycerol (− 21.7%; p ≤ 0.01) 
and acetic acid (− 30.8%; p ≤ 0.001), and increased pro-
duction of isobutanol. By contrast, IMA1 deletion in 

strain YJM975α did not result in any significant changes 
(Fig. 4).

The IMA1 gene encodes for the major isomaltase 
required for isomaltose utilization, which also exhib-
its α-1,2 glucosidase activity on sucrose and kojibiose 
[45, 46]. Near the IMA1 locus, one intergenic variant 
(IMA1+659G>C) was predicted to influence several traits 
with strong significance (PVAL > 50). Comparison of 
the IMA1 locus between strain RM11-1a and YJM975α 
revealed one missense mutation (IMA11007A>T), which 
has been reported to have a deleterious effect on the 
growth on raffinose, sucrose and maltose [36]. Yet, swap-
ping either of the two variants between the two strains 
did not lead to any significant change in the pheno-
types that were observed in the ima1 deletion mutant 
(Additional file  1: Figure S5). However, a closer evalu-
ation of the YJM975α genome sequence revealed that it 
lacks approximately 8 kb of the genomic region directly 
upstream of IMA1, including part of the 5’end of IMA1 
(207 bp) as well as the entire coding regions of MAL13, 
encoding the activator protein that activates the per-
mease and hydrolase when substrate is present, and 
MAL11, encoding the maltose/isomaltose permease [47]. 
This 8-kb deletion segregates in the F6 progeny (Addi-
tional file 1: Figure S6A) and correlates with the growth 

Fig. 4  Effect of deleting genes that overlap with predicted QTLs on the mapped traits (Table 1) in both haploid strains RM11-1a (RM) and YJM975α 
(YJM). The trait value of the wild-type strain is set at 1. Each point is represented as the mean ± STD of at least three biological replicates after 
normalization against the mean of the respective wild-type strain for every phenotype (dotted line). p-values are indicated by asterisk symbols; *: 
p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001
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on maltose (Additional file  1: Figure S6B), with seg-
regants containing the intact MAL-IMA1 locus showing 
more efficient growth on maltose, indicating that this 
structural variation is at the heart of this QTL.

Variation in ALD6 drives changes in acetic acid production
For QTL3, deletion of ALD6 resulted in significantly 
reduced acetic acid production in both parental 
strains, by 63.2% in RM11-1a (p ≤ 0.0001) and by 81.7% 
(p ≤ 0.0001) in YJM975α (Fig.  4). ALD6 encodes cyto-
solic aldehyde dehydrogenase, an enzyme required for 
the conversion of acetaldehyde to acetate. Our QTL 
pipeline linked the changes in acetic acid produc-
tion to a missense variant (ALD6184A>C) located in the 
ALD6 ORF (Fig.  6A). Segregants inheriting the hap-
lotype from RM11-1a (ALD6184C) produced higher 
amounts of acetic acid compared to the ones containing 
the YJM975α allele (ALD6184A) (Fig. 6B). Swapping the 
specific alleles between RM11-1a and YJM975α led to 

a 22.3% (p ≤ 0.05) reduction in acetic acid formation in 
RM11-1a, and a 22.0% (p ≤ 0.001) increase in YJM975α, 
confirming that this variation is indeed the driver in 
this QTL (Fig. 6C).

To assess the background-specificity of the mutation, 
we introduced the ALD6184C variant in strain Ethanol 
Red® and strain CEN.PK as well as in strain S. boular-
dii, which all carry the ALD6184A allele. Especially for 
this last strain, increased acetic acid production would 
be hugely beneficial, since its probiotic effect is at least 
partly attributed to the production of acetic acid, which 
can affect the growth of other microbes in the gastroin-
testinal tract [48]. Introduction of the mutation indeed 
led to increased acetic acid formation in all three 
strains, most notably in Ethanol Red (79%) and S. cer-
evisiae var. boulardii (39%), showing that some of the 
QTLs identified in this study could serve as a basis to 
further improve industrial strains (Fig. 6D).

Fig. 5  Identification of the causal variant of reduced ethanol production in the SUC2 locus. A Candidate variants in SUC2. B Meiotic crossovers 
within the SUC2 locus in the F6 segregants. Swapping the intergenic variant (-6) yields minor phenotypic effect, whereas swapping the true causal 
variant (394) yields the same major effect as swapping the entire haplotype block. C Ethanol concentration at the end of fermentation (16oP) of 
the wild type (WT) strain RM11-1a and YJM975α and the respective variant-swapped mutants. D Ethanol concentration at the end of fermentation 
(16oP) of the wild-type strain S. boulardii, Ethanol Red and CEN.PK and the SUC2394∆ variant mutant. E Interaction network of SUC2 (green node) and 
genes whose coding sequence are altered by variants that were identified for ethanol concentration phenotype (pink node). The thickness of the 
edges represents the confidence score associated with the interaction as determined by STRING. Data are shown with mean ± STD; P-values are 
indicated with the level of significance (ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001)
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Some QTLs can be linked to a gene, but not an exact allele
Deletion of URA5 led to salt sensitivity in strain RM11-
1a, while improving salt tolerance in strain YJM975α 
(Fig.  4), suggesting that URA5 is the causal element in 
QTL4 for the differential halotolerance between the two 
strains. Further analysis identified a missense variant 
within URA5 (URA5266G>T), which encodes for the major 
orotate phosphoribosyl transferase (OPRTase), catalyz-
ing the fifth enzymatic step in de novo biosynthesis of 
pyrimidines [49]. However, despite several attempts we 
could not swap the missense variant between the par-
ent strains and were therefore unable to confirm whether 
this point mutation drives the QTL. In addition to halo-
tolerance, the URA5-related QTL is also linked to other 
traits such as ethanol tolerance (Fig.  3). It is likely that 
this pleotropic effect is exerted through the biosynthetic 
pathway of pyrimidines. Indeed, URA5 catalyzes the step 
upstream of URA3 which has already been connected to 
ethanol tolerance as the causal QTL in a cross between a 
bioethanol production strain and a laboratory strain [30].

Similarly, for QTL5, deletion of URK1 resulted in sig-
nificantly increased production of isobutanol by 47.2% 
in RM11-1a (Fig.  4). URK1 encodes pyrimidine kinase, 

an enzyme involved in the deoxyribonucleotide salvage 
pathway. Interestingly, the deletion of URK1 in Ethanol 
Red and CEN.PK also led to increased production of 
isobutanol, while no effect was observed in S. boular-
dii (Additional file  1: Figure S7B), suggesting that there 
might be complex background interactions that further 
influence this trait. Mapping analysis identified two mis-
sense variants in the ORF of URK1 (URK1412A>C and 
URK11358G>A). However, swapping either of the two vari-
ants between strain RM11-1a and YJM975α did not lead 
to any significant change in the production of isobutanol 
(Additional file 1: Figure S7A).

Discussion
Our study identified 678 putative QTLs that are pre-
dicted to drive differences in various industrially relevant 
phenotypes, including resistance to various stress factors 
and the production of primary and secondary metabo-
lites. Further analysis of 5 QTLs showed that in each 
case, we were able to link a certain gene located within 
the QTL to some or all phenotypes that are influenced 
by the QTL. In two cases, the analysis pipeline correctly 
predicted specific polymorphism at single-nucleotide 
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level as the driver of the QTL. In another case, the QTL 
proved to be linked to a large segmental deletion. In the 
two remaining cases, we were able to link a specific gene 
to the respective traits, but unable to pinpoint the exact 
causative mutation.

LEU2 auxotrophy influences the formation of fusel alcohols 
and esters
The use of auxotrophic marker in strain construc-
tion rests on the assumption that in medium where 
the auxotrophy is complemented by supplementation 
of a specific compound, the phenotypic effect is mini-
mal. However, this assumption may not hold true when 
the auxotrophically required compounds interfere with 
the biosynthesis of other metabolic compounds and/
or influence the expression of specific genes [50]. We 
also observed this in our data, where the specific growth 
rate of wild-type S. cerevisiae is reduced when only leu-
cine is supplemented in the synthetic medium without 
the addition of isoleucine or valine, which is in line with 
the previously reported influence of leucine on the bio-
synthesis of the other two branched-chain amino acids 
[51]. Apart from the impact on physiology, amino acid 
autotrophy has also already been linked to a number of 
industrially relevant traits. For example, URA3 was iden-
tified as the causal QTL for ethanol tolerance in a cross 
between a bioethanol production strain and a laboratory 
strain [30]. The same auxotrophy also leads to the differ-
ence in maximal ethanol accumulation capacity between 
a sake and a laboratory strain [52]. Similarly, leucine 
autotrophy has been suggested to affect the cell’s resist-
ance to rapamycin in the same set of segregants used in 
this study [34]. Here, we show that leucine auxotrophy 
imposes a strong effect on fermentation phenotypes, 
and specifically aroma formation, because metabolism 
of leucine in yeast is tightly linked to the formation of 
various flavor-active compounds [53], including organic 
acids, aldehydes, and higher (fusel) alcohols [54]. Several 
of these higher alcohols are currently explored as biofu-
els [55], but they are also the main precursors of acetate 
esters, which are important contributors to the flavor 
and aroma of alcoholic beverages [56, 57]. In particular, 
LEU2 encodes for beta-isopropylmalate dehydrogenase, 
involving in the conversion of α-ketoisovalerate (KIV) 
to α-ketoisocaproate (KIC) which is a direct intermedi-
ate in the biosynthetic pathway of isoamyl alcohol. As a 
result, the production of isoamyl alcohol and its deriva-
tive ester isopentyl acetate are prominently affected in 
the F6 progeny by the segregation of leucine auxotrophy 
(Additional file  1: Figure S1). The fundamental impact 
of leucine auxotrophy on the traits measured in the cur-
rent study highlights how changes in the expression of a 
single auxotrophic marker can resonate throughout the 

entire metabolic network and lead to an altered pool of 
metabolites. Therefore, great care should be exercised in 
the design of the experimental setup to mitigate possi-
ble drawbacks from the application of these auxotrophic 
markers (see also [50]).

Abundant pleiotropic interaction among identified QTLs
Pleiotropy refers to the effect of a particular allele on 
more than one phenotype. Our data indicate that plei-
otropy is common across traits examined in this study. 
At the molecular level, roughly 39% (N = 267) of the 
QTLs are linked to more than one trait (Additional file 2: 
Table S3). This may also at least partly explain why cer-
tain phenotypes are correlated (Fig. 1). We define a pleio-
tropic QTL as a variant that is linked to more than one 
phenotype, or when several variable sites within one QTL 
region (with a maximal dimension of 10  kb) are linked 
to different traits. This is particularly important for the 
identification of the segmental deletion at the IMA-
MAL locus as well as the precise validation of the causal 
frameshift variant located in SUC2. In the former case, as 
the deleted genomic region prevents association of pre-
cise variants within this locus, several intergenic variants 
close to the deleted locus were linked to multiple traits 
without nucleotide-level resolution. In the latter case, the 
close vicinity of the frameshift variant SUC2394∆A and an 
intergenic variant that locates 400 bp away prevents fre-
quent recombination between the haplotype block in the 
F6 segregants, leading to multiple candidate variants that 
could not be unambiguously distinguished.

Swapping of the SUC2394∆A allele between the founder 
strains results in a concerted change in the production of 
ethanol, glycerol, and acetic acid. This interconnection is 
in line with previous reports [58–60]. One possible expla-
nation that has been suggested is that while alcoholic 
fermentation is redox neutral, the biomass formation 
generates surplus NADH, requiring other pathways for 
the regeneration of NAD+ to maintain flux through glyc-
olysis. In response, cells synthesize glycerol to regenerate 
NAD+, however, excess NAD+ may be formed, which is 
then balanced through the formation of acetic acid from 
acetaldehyde to convert NAD+ back to NADH that func-
tions as redox sink.

Structural variation affects multiple fermentation‑relevant 
traits
In all-malt brewer’s wort, maltose typically accounts 
for 60% of the total fermentable sugar for the yeast and 
efficient maltose utilization is therefore crucial for beer 
production. Maltose metabolism requires 3 key genes, 
encoding maltase (MALS), a transporter for maltose 
(MALT) and a positive regulator (MALR) [61]. These 
3 genes typically cluster together in the genome in 
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subtelomeric regions, and most genomes harbor sev-
eral such gene clusters, scattered across different chro-
mosomes [46, 62]. In some cases, the elevated rate of 
mitotic and meiotic recombination in the subtelomeric 
region may also lead to chromosomal rearrangements 
in these MAL loci. For instance, the impaired growth 
phenotype on maltose is linked to the deleted genomic 
region (ca. 8 kb) at the IMA1-MAL1 locus in the genome 
of YJM975α. This structural variation highlights the rel-
evance of the copy number of the MAL (maltose) gene 
with utilization of maltose, which is in accordance with 
the findings of [1], where yeast domestication led to more 
efficient fermentation of specific carbon sources like 
maltose through mutations and duplications of the MAL 
genes [1]. In addition to maltose growth phenotype, the 
missing locus also links to other traits, including the pro-
duction of ethyl acetate, isobutanol, phenethyl acetate, 
acetic acid, and glycerol (Additional file 2: Table S2). The 
paramount impact of maltose utilization on the produc-
tion of metabolites was already anticipated at the start of 
the project, and all F6 segregants were therefore propa-
gated in YPMaltose for 3 days prior to the main fermen-
tation to detect major growth defects. The profound 
pleiotropic effect of this locus calls for a more stringent 
screening scheme, which would inevitably be at the cost 
of reducing mapping resolution.

While absence of the entire IMA1-MAL1 locus is 
linked to impaired maltose utilization, deletion of the 
IMA1 locus by itself also leads to multiple phenotypes in 
RM11-1a, including the reduced formation of glycerol, 
acetic acid and isobutanol (Fig. 4). The pleiotropic effect 
of IMA1 may be explained by the substrate specificity of 
the corresponding Ima1 enzyme, which shows activity 
towards sugar oligomers with α-1,6- or α-1,2-glycosidic 
linkages, such as isomaltose, sucrose and dextrin [45, 63]. 
Specifically, IMA1 has been suggested to have a minor 
(yet relevant) activity towards sucrose in the absence of 
SUC2, which encodes the major sucrose invertase [64]. 
Although these α-glucosides are present in relatively 
small quantity in the wort [65], the assimilation of these 
sugars impacts beer quality and affects the production of 
flavor-active metabolites. For instance, significant differ-
ences in volatile profiles were obtained as different carbo-
hydrates were fermented by yeast [66].

Prevalence of the identified causal QTNs across a diverse 
strain collection
The distribution of the different QTNs that were identi-
fied in this study closely resembles the distribution of all 
SNPs across S. cerevisiae strains (Fig. 2). This might sug-
gest that many QTNs only have relatively minor, near-
neutral effects and that are not under strong (negative 
or positive) selection. Still, our analyses show that a few 

variants, such as for example the SUC2394∆A frameshift 
mutation, do have major phenotypic effects. From an 
ecological standpoint, the SUC2394∆A frameshift allele 
renders cells with reduced ability to utilize a carbon 
source (i.e., sucrose), so such deleterious alleles are pre-
dicted to be rare when natural selection operates on 
the QTL. Recurring deleterious alleles is an important 
source of genetic variation which can result from de novo 
mutation or transfer of the alleles from a nearby popu-
lation through hybridization or horizontal gene trans-
fer. However, it is not trivial to classify a given mutation 
as negative because it might be deleterious in existing 
environments or genetic backgrounds but beneficial in 
other ecological or genetic contexts. As an example, the 
ALD6184A>C variant resulted in elevated formation of ace-
tic acid production, which can help suppressing growth 
of competing bacteria in complex microbial communi-
ties [48], but might be detrimental for the yeast’s fitness 
in man-made, pure-culture fermentation environments 
[67].

Context‑dependent QTL
Isobutanol is a promising second-generation biofuel [43], 
which is produced by yeasts in small amounts through 
the degradation of valine via the Ehrlich pathway [54], 
and multiple metabolic engineering approaches have 
been proposed to boost production [68, 69]. Our results 
show that some QTLs also influence the natural produc-
tion of isobutanol, and this led us to ask whether these 
could be used to increase the production of this metabo-
lite. We verified URK1 as the causal QTL for the produc-
tion of isobutanol. Moreover, deletion of URK1 resulted 
in similar phenotypes across different strains, suggesting 
the effect of this QTL is not context-specific and could be 
used to boost isobutanol production in industrial strains. 
Urk1 is a uridine kinase involved in the pyrimidine sal-
vage pathway, which is responsible for the biosynthesis of 
pyrimidines required for the synthesis of nucleic acid and 
amino acids [70]. However, a direct link between Urk1 
and isobutanol production has never been reported.

Conclusions
In the current study, we identified 678 candidate vari-
ants for 18 industrially relevant traits using an inbred 
yeast population consisting of 1,125 F6 progeny of a cross 
between two strains, RM11-1a and YJM975α. Experi-
mental validation confirmed the contribution of five 
genetic loci, of which two were pinpointed to the single-
nucleotide level. The identified loci consisted of both 
coding and intergenic regions, and comprised a broad 
range of different types of mutations, ranging from struc-
tural variation to InDels and SNPs. Interestingly, the 
effect of some industrially relevant QTLs was consistent 
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in different genetic background. For example, transfer-
ring the ALD6184A>C QTN in a probiotic strain increased 
its acetic acid formation (and thus possibly also its probi-
otic effect), while deletion of URK1 led to increased isob-
utanol production in an established biofuel strain. On 
the other hand, we also show that many of the loci affect 
multiple phenotypes, which implies that engineering 
these QTLs into a strain will likely also result in multiple 
changes, a factor that has not received sufficient attention 
in studies promoting gene editing of industrial yeasts. 
Together, our results demonstrate the effectivity of the 
described approach to detect causal variants for complex 
traits and open new avenues for optimizing strains in a 
broad range of biotechnological applications.

Materials and methods
Yeast strain
The yeast strains used and constructed in the study are 
listed in Additional file  2: Table  S4. The parent strain 
RM11-1a and YJM975α as well as their 1,125 F6 haploid 
progeny were obtained from Dr. Jarosz group [34]. Sac-
charomyces boulardii was isolated from lyophilized cells 
that is available in the market as probiotics in capsules 
(BIOCODEX, BENELUX). The strains were routinely 
maintained on solid YPD medium containing 10  g L−1 
yeast extract, 20 g L−1 peptone, 20 g L−1 glucose, and 15 g 
L−1 agar. Frozen stocks of all strains were maintained at 
− 80 °C using a glycerol-based storage medium (20 g L−1 
Bacto peptone, 10 g L−1 yeast extract, 20 g L−1 glucose, 
250 mL L−1 glycerol).

General molecular biology and microbiological techniques
Genomic DNA extraction from yeast was performed 
using phenol–chloroform–isoamyl alcohol (PCI) accord-
ing to the method described by [71]. Plasmids were iso-
lated from E. coli DH5α cells from overnight cultures in 
lysogeny broth (LB) containing 10 g L−1 peptone, 5 g L−1 
yeast extract and 10 g L−1 NaCl (pH 7.0) with 100 mg L−1 
carbinicilin by using the Qiagen Miniprep Kit (Qiagen, 
Germany). Transformation of yeast cells with plasmids 
as well as PCR-amplified DNA fragments for genomic 
integration was performed using LiAc/PEG method 
described by [72].

Lab‑scale fermentation in wort
Yeast pre-cultures were inoculated overnight at 20  °C 
in test-tubes containing 3  mL of 10  g L−1 yeast extract, 
20  g L−1 peptone, 40  g L−1 maltose medium (YPMal). 
After 16  h of incubation, 1  mL of the pre-culture was 
used to inoculate 50  mL of the YPMal medium in 250-
mL Erlenmeyer flask and propagated in the same condi-
tions as the pre-culture for 3  days. Notably, 10% of the 
segregants showed growth defects during pre-culturing 

and thus were exempted from further fermentation. The 
propagated cells were then used for inoculation of the 
fermentation medium, i.e., 16° Plato (16oP) wort pre-
pared by in-house brewery at a pitching rate of 106 cells 
mL−1. A blank wort medium was included in each batch 
of fermentation. Fermentations were performed in 250-
mL Schott bottles with a water lock placed on each bottle 
and stirred at 150  rpm for 7  days at 20  °C. Weight loss 
was monitored daily to follow the progress of fermenta-
tion. After 7 days, the fermentations were terminated on 
ice to minimize evaporation of volatile compounds and 
sampled for analytical analysis. Fermentation of all seg-
regants was individually performed only once.

Analytical methods
Quantification of yeast aroma production was carried out 
using headspace gas chromatography coupled with flame 
ionization detection (HS-GC-FID; Shimadzu, Japan). The 
GC was calibrated with 8 important aroma compounds, 
including isobutanol, isoamyl alcohol, ethyl acetate, ethyl 
hexanoate, ethyl octanoate, isoamyl acetate and phene-
thyl acetate, using 2-heptanol as the internal standard. 
Specifications of the GC system and the sample prepa-
ration are as described by [73]. Ethanol measurements 
were performed with the Alcolyzer Beer DMA 4500  M 
(Anton Paar, Austria). Filtered samples (0.15  mm paper 
filter) were measured for the level of glycerol, acetic 
acid and sulfite using Thermo Scientific Gallery discrete 
photometric analyzer (Thermo Fisher Scientific, USA). 
Sugar concentrations were determined by Dionex Liquid 
Chromatography (Thermo Fisher Scientific, USA), which 
was calibrated for maltose, sucrose, glucose and fructose 
using raffinose as the internal standard.

Yeast phenotyping
F6 segregants taken from frozen stock were pinned on 
solid YPD medium using a Singer ROTOR robotic pin-
ning instrument, with which cells were subsequently 
transferred to various solid media (YPD with stress 
agents as indicated, carbon source is 20 g L−1 glucose if 
not otherwise indicated) for phenotyping and incubated 
at 30 °C for 48 h. Cells were duplicated on a blank YPD 
plate (containing no additional stress/agent) for each 
growth assay to normalize for inherent growth differ-
ences. Growth was monitored daily in 1536-spot format 
by scanning the plates; colony size was quantified by 
using the programming language R (www.r-​proje​ct.​org) 
with package R/gitter v1.1.1 [74]. Prior to data analysis, 
cell growth was normalized by equating colony sizes of 
the trait to that of the corresponding blank plate.

http://www.r-project.org
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Mapping of the variants
Phenotypical measurements were corrected for batch 
effects for visualization purposes by performing step-
wise regression for each phenotype with genotypes and 
fermentation batches as predictors (p cutoff = 0.01). 
Resulting coefficient estimates were multiplied with 
measurements from the corresponding batch. Quanti-
tative trait nucleotide (QTN) scores for each phenotype 
were calculated using the pipeline developed by [34] (p 
cutoff = 0.01, false discovery rate cutoff log(p) = 5.2). Due 
to the drastic effect of the LEU2 deletion on general fer-
mentation performance, all subsequent analyses of the 
traits that are known to be highly linked to LEU2 were 
performed separately on the segregants with and without 
the gene.

During the propagation step prior to fermentation, 
approximately 15% of the progeny showed compromised 
growth on maltose (OD600 < 1.0 after 3 days of cultivation 
in YPMaltose). As this growth defect leads to only par-
tial consumption of the available carbon, which in turn 
causes large deviations in metabolite production that 
obscure some of the more subtle differences induced by 
other QTLs. Segregants showing growth defects on malt-
ose were therefore excluded from experiments aimed at 
characterizing metabolite production during fermenta-
tion, and only the remaining 758 segregants that did not 
exhibit a growth defect on maltose were included in the 
analysis pipeline. A set of other phenotypes, most nota-
bly resistance to stress factors, were tested in rich YPD 
medium with glucose as carbon source. These pheno-
types are therefore not influenced by maltose consump-
tion, and the data for all 845 prototrophic F6 segregants 
were used in the analysis pipeline.

Experimental confirmation of five selected QTLs 
and variant replacements
Validation of the candidate variants was carried out in 
two steps.  In a first step, we tested the contribution of 
several candidate genes located within the predicted 
QTLs to a given phenotype by checking the phenotypic 
effect of deleting the gene in both parental genetic back-
grounds. Apart from their central location in the pre-
dicted QTL regions, the target genes were selected either 
because they contain non-synonymous variants between 
the parent strains RM11-1a and YJM975α and/or have 
a molecular phenotype (enzymatic activity or transcrip-
tional activity) that could be linked to the specific pheno-
type under investigation. For some QTLs, we performed 
a second set of experiments where the parental alleles 
were swapped.

The locus harboring a candidate variant was deleted in 
both parent strains by genomic integration of a disrup-
tion cassette containing the nourseothricin (clonNAT) 

resistance gene (NatMX). The deletion cassette was 
obtained by PCR from the plasmid pV1382 (addgene, 
USA) using primers del_QTL_fw and del_QTL_rv (Addi-
tional file 2: Table S5). When phenotypic difference was 
observed between the constructed mutant and wild-type 
strain, the candidate variant was subsequently swapped 
between the parents via CRISPR–Cas9-mediated genome 
editing. To target each candidate variant, a unique guide 
RNA (gRNA_QTN_fw; gRNA_QTN_rv) containing plas-
mid was constructed based on pV1382 as the backbone 
(Additional file  2: Table  S5). Repair fragments (100  bp) 
containing the parental genotype of each target variant 
was prepared by annealing primers RF_QTN_fw_par-
ent and RF_QTN_rv_parent (Additional file 2: Table S5) 
with 50–60 bp extensions homologous to regions up- and 
downstream of the target locus. To swap the target QTN 
in the parent strains, the respective guide RNA plasmid 
and the repair fragments containing the genotype of the 
counterparts were co-transformed reciprocally. Trans-
genic strains were selected on YPD solid medium sup-
plemented with 200 µg mL−1 ClonNAT. The correct 
constructs of the QTL deletion and QTN swap mutants 
were verified with PCR and/or Sanger sequencing using 
primers ver_QTL_fw and ver_QTL_rv (Additional file 2: 
Table S5).

Genetic mapping for growth differences on maltose
Copy number and mutations on the MAL genes were 
identified by using the raw sequencing data from [34]. 
Briefly, raw reads were trimmed and filtered using Trim-
momatic v.0.33 [75], clipping bases with quality score 
below 20 and discarding reads shorter than 30  bp. The 
quality of the resulting trimmed reads was assessed with 
FastQC v0.11.8 (http://​www.​bioin​forma​tics.​babra​ham.​
ac.​uk/​proje​cts/​fastqc/). Trimmed reads were aligned 
to S288C reference genome with the Burrows-Wheeler 
Aligner v.0.7.17 [76], and short variants were detected 
following the Genome Analysis Toolkit best practices, 
using GATK v4.0.11 [77]. After variants genotyping, the 
allelic information for each of the 1,152 samples were 
extracted using a custom python script. For each sample, 
IMA1 long and short alleles were identified by assessing 
the IMA1 locus and upstream region coverage (chromo-
some VII: 1,069,000–1,076,000 bp) with bedtools v2.29.0 
[78]. All results were confirmed by carefully analyzing 
mapped reads tracks on genome browser IGV v2.4.16 
[79].

Analysis of QTL distribution across natural S. cerevisiae 
strains
The 1011Matrix.gvcf.gz, containing all SNPs and indels 
called at the population level for 1011 S. cerevisiae strains, 
was downloaded from the “The 1002 Yeast Genome 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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project” website (http://​1002g​enomes.​u-​stras​bg.​fr/​files/). 
For each QTL site identified in this study, the occurrence 
of the RM11-1a and YJM975α alleles was counted across 
strains in terms of number of strains (genotypes) carry-
ing at least 1 copy of the allele, and of number of alleles 
present in each lineage over the total number of alleles in 
the called genotypes within the lineage (Info field = AN, 
VCFv4.1). Sites for which the reference or alternative 
alleles did not match the RM11-1a and YJM975α alleles 
from [34], were excluded from all analyses. Lineage 
assignment was based on [37] and mosaic lineages were 
excluded prior calculation of the phylogenetic distribu-
tion of the identified QTLs. SnpEff (v4.3) [80] was used to 
annotate and predict the effect of the variants.

Bioinformatic analysis
Gene networks representing the most depleted and 
enriched deletion strains were made in STRING version 
11.0 [81] and visualized using Cytoscape version 3.7.1 [82].
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dii, Ethanol Red, and CEN.PK. Error bars represent standard deviations from 
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