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Abstract 

Background:  High-throughput evaluation of lignocellulosic biomass feedstock quality is the key to the successful 
commercialization of bioethanol production. Currently, wet chemical methods for the determination of chemical 
composition and biomass digestibility are expensive and time-consuming, thus hindering comprehensive feedstock 
quality assessments based on these biomass specifications. To find the ideal bioethanol feedstock, we perform a near-
infrared spectroscopic (NIRS) assay to rapidly and comprehensively analyze the chemical composition and biomass 
digestibility of 59 Jerusalem artichoke (Helianthus tuberosus L., abbreviated JA) clones collected from 24 provinces in 
six regions of China.

Results:  The distinct geographical distribution of JA accessions generated varied chemical composition as well as 
related biomass digestibility (after soluble sugars extraction and mild alkali pretreatment). Notably, the soluble sugars, 
cellulose, hemicellulose, lignin, ash, and released hexoses, pentoses, and total carbohydrates were rapidly and per-
fectly predicted by partial least squares regression coupled with model population analyses (MPA), which exhibited 
significantly higher predictive performance than controls. Subsequently, grey relational grade analysis was employed 
to correlate chemical composition and biomass digestibility with feedstock quality score (FQS), resulting in the assign-
ment of tested JA clones to five feedstock quality grades (FQGs). Ultimately, the FQGs of JA clones were successfully 
classified using partial least squares-discriminant analysis model coupled with MPA, attaining a significantly higher 
correct rate of 97.8% in the calibration subset and 91.1% in the validation subset.

Conclusions:  Based on the diversity of JA clones, the present study has not only rapidly and precisely examined the 
biomass composition and digestibility with MPA-optimized NIRS models but has also selected the ideal JA clones 
according to FQS. This method provides a new insight into the selection of ideal bioethanol feedstock for high-effi-
ciency bioethanol production.

Keywords:  Jerusalem artichoke, Chemical composition, Chemical pretreatment, Biomass digestibility, Near-infrared 
spectroscopy, Grey relational grade analysis
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Background
In recent years, fossil fuels consumption and green-
house gas emissions have increased dramatically in step 
with rapid global industrialization, especially in China. 
Compared with developed economies, energy consump-
tion in China has increased considerably in 2016 [1], 

accounting for 23% of global energy consumption and 
27% of increased global energy demand [2]. In addition, 
estimated carbon emissions in China have grown by 
more than 75% since 2004 [2]. Consequently, the combi-
nation of China’s huge base energy consumption rate and 
its dramatically increasing energy demand is forcing its 
government to address energy needs and find sources of 
cleaner energy [1]. Bioenergy derived from lignocellulosic 
biomass currently holds great promise for addressing 
these energy  and environmental  concerns, due to large 
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biomass reserves, resource reproducibility, low resource 
replacement costs, and low bioenergy production impact 
on carbon balance [3]. Moreover, lignocellulosic biomass 
is transformable into various forms of energy, such as bri-
quettes, biogas, and bioethanol, making it an ideal substi-
tute for fossil fuels [4–6].

Jerusalem artichoke (Helianthus tuberosus L., abbre-
viated JA), a perennial crop related to the sunflower, is 
widely distributed and cultivated in China and exhibits 
cold resistance, drought resistance, and salt tolerance 
[6–9]. Recently, numerous studies have demonstrated 
JA to be one of the most promising bioenergy crops for 
bioethanol production [6]. Indeed, JA tuber contains a 
considerable amount of inulin that is easily fermented 
into biofuel [10], while JA stem contains an abundance of 
lignocellulose that is available post-harvest [9, 11]. Para-
doxically, despite a long history of JA tuber use for bio-
fuel production, JA stem has been largely overlooked for 
this application and investigation of its use as feedstock 
for bioethanol production is warranted [6, 11, 12]. Princi-
pal chemical components of JA stem include soluble sug-
ars, cellulose, hemicellulose, lignin, and ash, which vary 
widely among cultivated varieties [13]. Notably, variabil-
ity in biomass major chemical constituents and physical 
structural attributes can lead to biomass recalcitrance 
when these attributes act in concert to negatively influ-
ence lignocellulosic biomass usability [14, 15]. There-
fore, both principal chemical composition and biomass 
digestibility as feedstock quality specifications should be 
considered together for selecting ideal JA accessions. In 
addition, the ideal bioethanol feedstock could be iden-
tified with high levels of soluble sugars, cellulose, and 
hemicellulose, low levels of lignin and ash, and high bio-
mass digestibility [13–15]. Grey relational grade analysis 
(GRA), which employs matrix calculation to quantify 
data at different relational levels and transforms soluble 
sugars, cellulose, hemicellulose, lignin, and ash contents 
and biomass digestibility into a single grey relational 
grade [16], could permit JA stem feedstock quality to 
be comprehensively and fairly evaluated by assigning a 
unique feedstock quality score (FQS). In order to meet 
the demands of industry, the FQS values of JA were fur-
ther assigned to different feedstock quality grades (FQG).

High-throughput methodologies are often necessary 
for screening large numbers of lignocellulosic biomass 
samples [17]. Recently, NIRS coupled with multivari-
ate calibrations such as partial least squares regression 
(PLSR) and partial least squares-discriminant analysis 
(PLS-DA) has rapidly become a key method for address-
ing this problem [17–21]. As the most common ana-
lytical approach, PLS has been widely demonstrated 
in quantitative analysis to obtain accurate and reliable 
results comparable to wet chemical methods [17, 22]. 

On the other hand, since the difference in physical and 
chemical properties between different raw materials has 
great influence on the conversion performance of bio-
fuels, it is important to distinguish different plant varie-
ties [23]. In this sector, several attempts have been made 
to address this problem [24]. So far, however, there has 
been little discussion about the application of NIRS in JA 
biomass for quantitative prediction of chemical composi-
tion and biomass digestibility and qualitative analysis of 
germplasm resources [17, 23, 25]. While it is universally 
accepted that PLS cannot completely solve data over-
fitting of NIRS data, a serious hindrance to the applica-
tion and promotion of this technology, variable selection 
techniques have subsequently emerged as powerful plat-
forms for addressing this issue [26]. Meanwhile, a recent 
advance in molecular spectroscopy known as model pop-
ulation analysis (MPA) has been demonstrated to over-
come this problem [27, 28]. As the most famous MPA 
algorithm, variable selection using competitive adaptive 
reweighted sampling (CARS), allows for selection of an 
optimal variable subset existing within the full spectra 
that can be coupled to PLSR to generate a model based 
on the simple, but effective “survival of the fittest” prin-
ciple of Darwin’s Evolution Theory [29]. In addition, the 
random frog (RF) method, originally proposed for gene 
selection and disease classification, has recently become 
an efficient reversible jump Markov Chain Monte Carlo-
like approach that further enhances variable selection 
[30]. Therefore, it is essential to evaluate the MPA-opti-
mized PLSR or MPA-optimized PLS-DA models for use 
in high-throughput qualitative and quantitative analysis 
of JA stem biomass.

In this study, we conducted a series analysis of 59 rep-
resentative JA clones collected from six regions of China 
for chemical composition, biomass digestibility, and 
NIRS results. Based on the reliable physical and chemical 
data, the MPA-optimized PLSR models were developed 
for rapidly and precisely predicting the chemical compo-
sition and biomass digestibility of JA clones. To obtain 
ideal bioethanol feedstocks, GRA model was performed 
to comprehensively evaluate JA stem samples by FQS 
so that the nationwide JA clones could be fairly assessed 
and assigned to different FQGs. Finally, the MPA-opti-
mized PLS-DA models are developed for rapid and 
accurate classification of FQGs across the nationwide JA 
population.

Results
Variations of chemical composition and biomass 
digestibility of JA accessions for NIRS
In 2006, after JA was characterized as a potential bioen-
ergy crop, the National Energy R&D Center for Non-food 
Biomass initiated a long-term project for nationwide JA 
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germplasm resources collection and identification [7–9, 
11]. As a result, a total of 59 representative JA accessions 
were selected from 24 provinces with distinctive environ-
ments and climates (Fig.  1). According to the National 
Bureau of Statistics of China, these geographic areas 
could be divided into six regions including Northeast 
China (NEC), North China (NC), East China (EC), Cen-
tral-South China (CSC), Northwest China (NWC), and 
Southwest China (SWC) [1]. Due to their distinct geo-
graphic locations and variable genotypes, these JA clones 
exhibited remarkable variations either in phenotype or in 
yield performance, demonstrating high potential for use 
in bioenergy crop genetic modification or high-quality 
biomass feedstock selection [7–9, 31]. Therefore, these 
JA accessions could be deemed an ideal sample popula-
tion for the analysis of cell wall chemical and physical 
characteristics.

Sample diversity was clearly demonstrated by the var-
ying levels of soluble sugars, cellulose, hemicellulose, 

lignin, and ash in JA stem samples (Fig. 2a). On the one 
hand, it was obvious that JA stem contains a relatively 
high level of soluble sugars, cellulose, and hemicel-
lulose, with mean values of 18.2%, 28.3%, and 14.0%, 
respectively. Among JA samples from all investigated 
regions, those from SWC displayed significantly lower 
cellulose content (22.5–29.5%), while significant higher 
hemicellulose level was found in JA samples from NEC 
(13.1–18.4%) (P < 0.001). On the other hand, both ash 
and lignin levels in JA stem were relatively lower than 
those in other bioenergy feedstocks [17], although JA 
samples from NEC contained a significantly higher 
lignin level than did JA samples from other regions 
(P < 0.001). Notably, the JA population studied here 
exhibited relatively higher levels of fermentable car-
bohydrates with lower levels of lignin and ash, indicat-
ing a relatively lower biomass recalcitrance than that 
observed for other feedstocks [15, 31]. In this study, 
biomass digestibility was defined by accounting for 

Fig. 1  Spatial distribution of 59 Jerusalem artichoke accessions selected from typical growth regions. NEC Northeast China, NC North China, EC 
East China, CSC Central-South China, NWC Northwest China, and SWC Southwest China. The number in a circle (e.g., ➀) represents the number of 
Jerusalem artichoke accessions collected in that province
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hexoses, pentoses, and total carbohydrates generated 
from soluble sugars-extracted JA samples after a com-
bined alkali-based pretreatment and saccharification 
assay [32]. As expected, a large variation of biomass 
digestibility was observed among the sample popula-
tion (Fig. 2b). Specifically, yields of hexoses ranged from 
58.6 to 84.6% after pretreatment and subsequent enzy-
matic hydrolysis, while yields of pentoses ranged from 
64.9 to 85.3%, leading to yields of total carbohydrates 
ranging from 63.2 to 82.8% among assayed JA clones. 
Meanwhile, ANOVA analysis demonstrated that there 
were no significant differences in biomass digestibility 
among JA clones collected from various regions, except 

for the yield of pentose released from JA clones from 
NEC. Hence, this extensive collection of JA samples 
exhibits high levels of desired components and biomass 
digestibility, indicating that JA stem could be consid-
ered as an ideal feedstock for biofuel production.

NIRS, recorded from 10,000 to 4000 cm−1 with a reso-
lution of 4 cm−1, displayed high absorption intensity with 
obvious baseline discrepancies and reflectance peak shifts 
(Fig. 2c). It is well known that the strong peaks observed 
in different spectral regions are attributable to frequency 
doubling and frequency combining characteristics of 
vibrations of hydrogen-containing molecules [24, 33]. 
Thus, the corresponding intensity of these peaks could 
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Fig. 2  Diversity of chemical and physical properties of 59 Jerusalem artichoke accessions from six typical regions. a Chemical component. b 
Biomass digestibility. c Original near-infrared spectra. d Scores distribution of principal component analysis. For levels of each analyzed quality 
specification among the JA samples, capital letters indicate significant differences among six typical regions at P < 0.001. Dry matter is the dry 
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be used to obtain information regarding biological char-
acteristics, physical structure, and chemical composition 
of biomass [24, 25]. In general, the main absorption band 
peaks occurred within the range from 4000 to 7500 cm−1, 
demonstrating species-level similarity among JA clones. 
In this study, principal component analysis (PCA) was 
further developed for sample comparison, as well as to 
identify outliers. The PCA relies on projecting spectral 
variables on several reconstructed variables which are 
representative of original NIRS variation [34]. As shown 
in Fig. 2d, the NIRS plots of the 59 JA clones displayed 
a uniformly mixed and symmetrical distribution with 
respect to the three principal components (accounting 
for 93.3% of spectral variance), indicating that JA sam-
ples from six typical regions may have variable cell wall 
chemical and physical characteristics. Consequently, it 
was shown that the 59 sampled JA populations displayed 
relatively diverse cell wall chemical and physical charac-
teristics, all of which would be suitable for NIRS mode-
ling. To clearly explain the comprehensive assessment, a 
brief overview of is available in Fig. 3.

Optimization of spectral variable selection and samples 
sets partitioning
Judicious selection of spectral information is a crucial 
step for successful NIRS modeling, which not only per-
mits the collection of strong informative variables but 
also removes interference due to uninformative variables 

[23, 26]. In this study, two MPA algorithms including 
CARS and RF were employed for spectral variable selec-
tion of chemical components and biomass digestibility of 
JA clones. Obviously different spectral variable sets were 
generated using these two MPA algorithms, which closely 
reflected their very different theoretical underpinnings 
(Fig.  4). In general, the populations of spectral variable 
sets selected by CARS were generally larger than those 
selected by RF, except for hexoses and pentoses sets. It 
has been reported that the strong peak at approximately 
5150–5195  cm−1, a peak primarily attributed to O–H 
asymmetric stretching and O–H deformation bands of 
water, was believed to interfere with the prediction of 
other bond species [17, 23]. Interestingly, both CARS and 
RF successfully avoided the selection of variables from 
this spectral region in this study. This result could be due 
to that most absorption bands of cell wall polymers were 
correlated with the vibrations from O–H groups, which 
could be strongly interfered by the absorption of water 
and further lead to poorer correlationship between the 
discussed spectral region and cell wall polymers [22, 23, 
34]. For the prediction of soluble sugars, cellulose, and 
hemicellulose, the most important spectral regions were 
identified at 4015–4022, 4285–4296, 4392–4412, 4760–
4780, 5776–5796, 6329–6336, 6775–6822, and 7305–
7328 cm−1 [24, 34, 35]. Meanwhile, lignin was identified 
at 4015–4022, 4392–4412, and 5776–5796 cm−1 accord-
ing to the stretching vibration (O–H, C–H, C–O, and 

Fig. 3  Flowchart of the comprehensive assessment for ideal Jerusalem artichoke bioethanol feedstock. MPA model population analysis, PLSR partial 
least squares regression, PLS-DA partial least squares-discriminant analysis, GRA​ grey relational grade analysis
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C–C) and the overtone stretching band of O–H [22, 23]. 
Notably, the MPA algorithms that were employed exhib-
ited significant efficiency in variable selection within the 
aforementioned spectral regions (Fig.  4a–d). As previ-
ously reported, ash and biomass digestibility could be 
indirectly predicted by identifying the types of adjacent 
organic bonds within the biomass sample. Nevertheless, 
very few NIRS studies have been used to identify specific 
spectral regions that were predictive for this characteris-
tic [17, 23, 25]. In the present study, very different spec-
tral variable sets were successfully obtained using these 
two MPA algorithms for prediction of ash and biomass 
digestibility (Fig.  4e–h). Although they made up only a 
small proportion of the full spectra consisting of 1557 
variables, these selected variables could effectively reduce 
the high collinearity of NIRS to overcome the defect of 
PLS [29].

It is well known that strong multivariate calibration 
relies heavily on both representative calibration subsets 
and external validation subsets [23]. In this study, the 
Kennard–Stone (KS) algorithm was employed for sam-
ple subsets partitioning due to its past frequent use for 
this purpose. For accurate and robust multivariate cali-
bration, one of every five samples was included in the 
validation subset based on full spectra and two kinds of 
characteristic spectra, while the remaining samples were 
used for the calibration subset. As shown in Additional 
file  1: Fig. S1, the solid lines and dashed lines superim-
posed upon each histogram represent normal distribu-
tions that were used to delineate the discrepancy between 

each histogram and normality. The broad range of val-
ues for each specification could largely be attributed to 
the ranges in JA native spatial geographical distribution 
and genotypes. In general, for calibration and validation 
of chemical components and biomass digestibility of 59 
JA accessions, histograms based on full spectra, CARS-
optimized spectra, and RF-optimized spectra displayed 
relatively broad and approximately normal distribu-
tions. Moreover, most calibration subsets showed nearly 
the same distributions as the corresponding validation 
subsets, whereas all lacked distinct bimodal, skewed, or 
uniform distributions. Meanwhile, similar results were 
found in principal component plots distributions based 
on full spectra, CARS-optimized spectra, and RF-opti-
mized spectra (Additional file 1: Fig. S2) and the 3D score 
plots of NIRS data from both calibration and validation 
subsets were well mixed and displayed relatively sym-
metrical distributions. Therefore, KS algorithms facili-
tated the optimization of both the calibration subset and 
related validation subset, making them suitable for subse-
quent multivariate calibrations.

PLSR modeling for chemical composition
Based on the optimized spectra and sample subsets, 10 
MPA-optimized PLSR models were developed for solu-
ble sugars, cellulose, hemicellulose, lignin, and ash. In 
order to conduct a fair comparison, five PLSR models 
were developed using full spectra and served as con-
trols. During the developmental process, the numbers 
of samples for calibration and validation subsets were 
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further reduced by the removal of sample outliers using 
Chauvenet’s criterion [35]. To enhance the robustness 
of multivariate calibrations, all PLSR models were fully 
cross-validated using the “leave-one-out” method, where 
a single observation selected from calibration sample 
subsets was used as the validation data for each cross-val-
idated process [17, 23]. The optimal number of principal 
components (PCs) for each model was determined using 
root mean standard error of calibration (RMSEC) and the 
root mean standard error of cross-validation (RMSECV). 
In this case, 4 to 10 optimal PCs were obtained for 15 
PLSR models accounting for over 96% of the variance, 
which further reduced the danger of over-fitting (Fig. 5a). 
Interestingly, the PCs of RF-optimized PLSR models gen-
erally accounted for higher values of variance than did 
CARS-optimized PLSR models and controls.

Summary statistics for the PLSR calibrations of chemi-
cal composition are provided in Table  1. In general, all 
the chemical components were successfully predicted by 

PLSR models and their uncertainties approximated those 
observed for wet chemical measurements, as indicated by 
low RMSEC (0.20–2.14) and RMSECV (0.27–2.78) val-
ues obtained. As a result, the relative high coefficients of 
determination of calibration (R2

C) and cross-validations 
(R2

CV) were obtained within the ranges of 0.79–0.98 and 
0.63–0.97, respectively. Significantly, both types of MPA-
optimized PLSR calibration models generally displayed 
higher stability than did the controls, which exhibited rel-
atively low RMSEC and RMSECV and high R2

C and R2
CV. 

Consequently, these results indicate that MPA could sig-
nificantly improve the robustness of PLSR calibrations.

In the present study, fair prediction using externally 
validated samples was conducted to evaluate calibration 
equations. Summary statistics for the prediction of solu-
ble sugars, cellulose, hemicellulose, lignin, and ash are 
provided in Table 2. In general, RF-optimized PLSR mod-
els performed better or similar as CARS-optimized mod-
els and controls when comparing values of the root mean 

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

1

2

3

4

1

2

3

4

1

2

3

4

12345

4

8

12

16

20
RER

RMSEP

RMSECV

RMSEC

R2
CV

R2
C

RPD R2
V

 Full spectra
 CARS-optimized spectra
RF-optimized spectra

Soluble sugars

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

12345

5

10

15

20

25
RER

RMSEP

RMSECV

RMSEC

R2
CV

R2
C

RPD R2
V

 Full spectra
 CARS-optimized spectra
RF-optimized spectra

Cellulose

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

2468

7

14

21

28

35
RER

RMSEP

RMSECV

RMSEC

R2
CV

R2
C

RPD R2
V

 Full spectra
 CARS-optimized spectra
RF-optimized spectra

Hemicellulose

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.61.21.82.43.0

3

6

9

12

15
RER

RMSEP

RMSECV

RMSEC

R2
CV

R2
C

RPD R2
V

 Full spectra
 CARS-optimized spectra
RF-optimized spectra

Lignin

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.81.62.43.24.0
3

6
9

12
15

18
RER

RMSEP

RMSECV

RMSEC

R2
CV

R2
C

RPD R2
V

 Full spectra
 CARS-optimized spectra
RF-optimized spectra

Ash

a

b

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

Va
ria

nc
e 

(%
)

Principal components

 Full spectra (4)
 CARS spectra (8)
 RF spectra (4)

Soluble sugars

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120 Cellulose

Va
ria

nc
e 

(%
)

Principal components

 Full spectra (4)
 CARS spectra (10)
 RF spectra (5)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

Va
ria

nc
e 

(%
)

Principal components

 Full spectra (6)
 CARS spectra (5)
 RF spectra (4)

Hemicellulose

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

Va
ria

nc
e 

(%
)

Principal components

 Full spectra (5)
 CARS spectra (5)
 RF spectra (5)

Lignin

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

Va
ria

nc
e 

(%
)

Principal components

 Full spectra (5)
 CARS spectra (5)
 RF spectra (5)

Ash

Fig. 5  The characterization of PLSR models for chemical composition. a Principal components selection of PLSR models for explaining the NIRS 
variance. b Predictive performance of PLSR models for chemical composition. CARS competitive adaptive reweighted sampling, RF random frog, R2

C 
coefficient determination of calibration, R2

CV coefficient determination of cross-validations, R2
V coefficient determination of validations, RMSEC root 

mean standard error of calibration, RMSECV root mean standard error of cross-validation, RMSEP root mean square error of prediction, RPD the ratio 
of performance to deviation, RER the range error ratio

Table 1  Summary statistics for PLSR calibration models for chemical components

N number of samples, CARS competitive adaptive reweighted sampling, RF random frog, RMSEC root mean standard error of calibration, R2
C coefficient determination 

of calibration, RMSECV root mean standard error of cross-validation, R2
CV coefficient determination of cross-validation

Parameter N Full spectra CARS-optimized spectra RF-optimized spectra

RMSEC R2
C RMSECV R2

CV RMSEC R2
C RMSECV R2

CV RMSEC R2
C RMSECV R2

CV

Soluble sugars 40 2.14 0.90 2.78 0.81 0.88 0.95 1.98 0.91 1.63 0.95 2.07 0.90

Cellulose 45 0.70 0.93 0.96 0.86 0.47 0.96 0.71 0.93 0.74 0.94 0.89 0.89

Hemicellulose 45 0.20 0.96 0.46 0.93 0.27 0.97 0.41 0.95 0.24 0.98 0.32 0.97

Lignin 45 0.48 0.88 0.87 0.77 0.49 0.92 0.71 0.85 0.42 0.95 0.56 0.92

Ash 45 0.29 0.79 0.44 0.63 0.27 0.85 0.38 0.72 0.23 0.92 0.27 0.86
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square error of prediction (RMSEP) and R2
V for predic-

tion of soluble sugars, cellulose, and lignin. On the con-
trary, CARS optimization could significantly improve the 
performance of PLSR multivariate calibrations for hemi-
cellulose prediction. In recent years, numerous studies 
have reported that ash level is not easily or directly meas-
urable by NIRS, due to its inorganic nature [17, 18, 24, 
36]. Similarly, the statistics of CARS-optimized PLSR 
models and controls suggest fair to the poor prediction 
for ash in the present study, rendering these two methods 
suitable only for very rough screening. However, inor-
ganic ash was successfully predicted by RF-optimized 
PLSR models with significantly higher R2

V and lower 
RMSEP.

Recent studies suggest that for research calibrations, 
excellent calibration models must exhibit a ratio of per-
formance to deviation (RPD) and range error ratio (RER) 
values greater than 3 and 15, respectively [22–25]. In 
this study, almost all RPD and RER values of RF-opti-
mized PLSR models were higher or similar to standard 
values (Table  2), resulting in relatively better correla-
tions between predicted and reference values for chemi-
cal components (Additional file  1: Fig. S3). In order to 
achieve greater visual comprehension, the spider diagram 
was adopted for comparing the predictive performance 
of employed PLSR models (Fig. 5b). It was obvious that 
RF was a more efficient algorithm than CARS for improv-
ing the predictive performance of PLS multivariate cali-
brations. Taken together, these results indicate that MPA 
optimization shows promise for improving the accuracy 
and robustness of PLS multivariate calibrations and that 
RF-optimized PLSR models are adequate for the determi-
nation of JA chemical composition.

NIRS modeling for biomass digestibility
To assess biomass digestibility, six similarly optimized 
MPA-optimized PLSR models were developed for JA 
accessions obtained nationwide, while three PLSR models 
served as controls. Similarly, RF-optimized PLSR models 
generally produced higher values of variance than did 

CARS-optimized PLSR models and controls at optimal 
PCs (Fig. 6a). Table 3 provides an overview of nine PLSR 
calibrations for the prediction of hexoses, pentoses, and 
total carbohydrates. In general, the prediction models of 
biomass digestibility exhibited a slight decrease in R2

C 
values (0.68–0.93) and R2

CV values (0.48–0.87) than did 
prediction models of chemical composition. However, 
six MPA-optimized PLSR models for biomass digestibil-
ity showed significantly higher R2

C (0.86–0.93) and R2
CV 

(0.75–0.87) values than corresponding controls. Mean-
while, extremely low RMSEC (1.05–1.55) and RMSECV 
(1.85–2.11) values were also obtained using MPA-opti-
mized calibrations, indicating superior stability.

Subsequently, lower RMSEP (1.24–2.55), higher RPD 
(1.74–3.96), and RER (8.38–20.96) values were obtained 
using robust MPA-optimized calibrations (Table  4). In 
particular, the 14 externally validated samples exhibited 
strong correlations between predicted and reference val-
ues (Additional file 1: Fig. S3B, C). By contrast, the con-
trols demonstrated very poor predictive capacity (Table 4 
and Additional file  1: Fig. S3A). These results demon-
strate that MPA could clearly improve upon prediction 
performance accuracies of the PLSR model for biomass 
digestibility prediction, which verified our previously 
stated results that CARS and RF displayed superior effi-
ciency for the selection of both informative variables and 
elimination of uninformative variables (Fig.  4). Notably, 
comparison of MPA algorithms indicated that RF was 
more efficient than CARS in improving the performance 
of PLSR calibrations for predicting yields of hexoses, pen-
toses, and total carbohydrates released after pretreatment 
followed by enzymatic hydrolysis (Fig.  6b). Together 
these results provide important insights into how the 
optimization of spectral variable selection by MPA could 
significantly enhance both the stability and accuracy of 
PLSR models for chemical composition and biomass 
digestibility. Such models form the basis of a precise and 
efficient methodology for predicting both chemical com-
position and biomass digestibility of JA feedstock.

Table 2  Summary statistics for external validation of PLSR calibration models for chemical components

N number of samples, CARS competitive adaptive reweighted sampling, RF random frog, RMSEP root mean square error of prediction, R2
V coefficient determination of 

validation, RPD the ratio of performance to deviation, RER the range error ratio

Parameter N Full spectra CARS-optimized spectra RF-optimized spectra

RMSEP R2
V RPD RER RMSEP R2

V RPD RER RMSEP R2
V RPD RER

Soluble sugars 13 2.17 0.91 3.07 14.18 2.55 0.85 2.61 12.07 1.57 0.94 4.24 19.60

Cellulose 14 0.75 0.92 3.21 17.49 0.61 0.93 3.95 21.51 0.54 0.94 4.46 24.29

Hemicellulose 14 0.39 0.95 4.18 19.12 0.23 0.98 7.08 32.42 0.35 0.95 4.65 21.31

Lignin 14 0.58 0.89 2.98 12.97 0.66 0.93 2.61 11.40 0.61 0.84 2.83 12.33

Ash 14 0.21 0.58 3.13 16.05 0.31 0.08 2.12 10.87 0.23 0.86 2.86 14.65
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Fig. 6  The characterization of PLSR models for biomass digestibility. a Principal components selection of PLSR models for explaining the NIRS 
variance. b Predictive performance of PLSR models for biomass digestibility. CARS competitive adaptive reweighted sampling, RF random frog, R2

C 
coefficient determination of calibration, R2

CV coefficient determination of cross-validations, R2
V coefficient determination of validations, RMSEC root 

mean standard error of calibration, RMSECV root mean standard error of cross-validation, RMSEP root mean square error of prediction, RPD the ratio 
of performance to deviation, RER the range error ratio

Table 3  Summary statistics for PLSR calibration models for biomass digestibility

N number of samples, CARS competitive adaptive reweighted sampling, RF random frog, RMSEC root mean standard error of calibration, R2
C coefficient determination 

of calibration, RMSECV root mean standard error of cross-validation, R2
CV coefficient determination of cross-validation

Parameter N Full spectra CARS-optimized spectra RF-optimized spectra

RMSEC R2
C RMSECV R2

CV RMSEC R2
C RMSECV R2

CV RMSEC R2
C RMSECV R2

CV

Hexoses 45 1.96 0.86 2.70 0.76 1.29 0.93 1.97 0.87 1.05 0.93 2.00 0.86

Pentoses 45 2.20 0.68 2.86 0.48 1.55 0.86 2.04 0.75 1.12 0.87 1.85 0.77

Total 45 1.93 0.81 2.58 0.67 1.52 0.88 2.11 0.78 1.52 0.89 2.08 0.79

Table 4  Summary statistics for external validation of PLSR calibration models for biomass digestibility

N number of samples, CARS competitive adaptive reweighted sampling, RF random frog, RMSEP root mean square error of prediction, R2
V coefficient determination of 

validation, RPD the ratio of performance to deviation, RER the range error ratio

Parameter N Full spectra CARS-optimized spectra RF-optimized spectra

RMSEP R2
V RPD RER RMSEP R2

V RPD RER RMSEP R2
V RPD RER

Hexoses 14 3.28 0.44 1.50 7.92 2.55 0.81 1.93 10.19 1.24 0.93 3.96 20.96

Pentoses 14 3.18 0.15 1.16 6.42 1.84 0.64 2.01 11.09 1.85 0.80 1.99 11.03

Total 14 2.72 0.35 1.49 7.21 2.34 0.67 1.74 8.38 1.45 0.71 2.80 13.52
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Comprehensive assessment of feedstock quality score
Based on chemical composition and biomass digestibil-
ity (total carbohydrates released after pretreatment and 
subsequent enzymatic hydrolysis), the feedstock qual-
ity of tested JA accessions was comprehensively evalu-
ated using the GRA model. As shown in Fig.  7a, solid 
lines represent the normal distribution and are intended 
to highlight any discrepancy between the histogram and 
normality. With regard to FQS, frequency refers to the 
number of samples within a given range and the per-
centage of each FQG is indicated above the histograms. 
In general, the FQS distribution was similar to a normal 
distribution, which is not unexpected for a nationwide 
feedstock population. Moreover, the mean value of FQS 
was 28.6 and majority of the samples fell within D (43.1%) 
and E (39.7%) grades. By contrast, only 3.4% and 5.2% 
of JA samples were assigned to A and B grades (details 
could be found in Additional file  1: Table  S1). Hence, 
there is a growing need to focus efforts on JA germplasm 
resource selection, breeding, and genetic modification to 
improve biomass feedstock quality for efficient bioetha-
nol production.

Notably, the JA accessions obtained from six areas of 
China displayed very diverse FQS distributions (Fig. 7b) 
and mean FQS values were ranked in the order of NEC 
(53.5) > SWC (35.3) > CSC (30.1) > NWC (24.3) > NC 
(23.6) > EC (23.3). ANOVA analysis showed that JA 
accessions from NEC exhibited significantly higher FQS 
than those from NC, EC, and NWC (P < 0.001). How-
ever, high-quality JA accessions could be found in most 
sampled regions (except for EC). Summary statistics of 
chemical components, biomass digestibility, and FQS 

of JA accessions assigned to grade A and B are detailed 
in Table 5. As expected, each selected JA accession pos-
sessed a high level of soluble sugars, cellulose, and hemi-
cellulose, low levels of lignin and ash, and outstandingly 
high biomass digestibility. Therefore, these accessions 
are currently the most ideal JA feedstocks for bioethanol 
production in China, demonstrating that the GRA was 
adequate for high-throughput biomass feedstock quality 
evaluation.

Qualitative analysis of feedstock quality grade
For the purposes of the industrial application, further 
research should focus on rapid and precise classifica-
tion of a large number of biomass feedstocks into differ-
ent FQGs to achieve commoditization of lignocellulosic 
biofuel. In this work, KS algorithm-partitioned sample 
subsets coupled to both CARS and RF algorithms were 
employed to develop two optimized PLS-DA models for 
FQG classification of JA stem biomass, while PLS-DA 
models based on full spectra served as controls. Sum-
mary statistics of three PLS-DA models for qualitative 
analysis of FQG are presented in Table  6. Notably, the 
FQG values of JA stem were successfully classified using 
PLS-DA models to obtain relatively higher values of the 
multiple coefficients of determination (R2: 0.76–0.96) and 
the explained variation in the test set (Q2: 0.52–0.83). In 
addition, it was obvious that two MPA algorithms could 
significantly enhance the stability of PLS-DA models. 
Regarding classification accuracy, the highest correct 
rates, 97.8% in the calibration subset and 91.1% in the 
validation subset, were obtained using the robust RF-
optimized PLS-DA model, which were superior to rates 
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obtained using the CARS-optimized PLS-DA model. 
Therefore, the RF algorithm was more efficient than the 
CARS algorithm for improving the predictive perfor-
mance of PLS multivariate calibrations. Overall, these 
results indicate that the optimization of spectral variable 
selection by MPA could significantly enhance the stabil-
ity and classification accuracy of PLS-DA multivariate 
calibrations, consistent with the quantitative determi-
nations of JA stem chemical composition and biomass 
digestibility.

Discussion
Evaluation and selection of ideal feedstock among bio-
energy crops are necessary to enhance lignocellulosic 
biofuel production [37, 38]. Recent developments in bio-
chemical conversion have demonstrated that the chemi-
cal and physical properties of lignocellulose are crucial 
indicators of biomass feedstock quality [12]. In terms 
of chemical composition, soluble sugars, cellulose, and 
hemicellulose act as primary resources for biofuel pro-
duction, while lignin and ash are considered useless 
components or barriers to biochemical conversion [39]. 
Therefore, inherent variability in chemical composition 
fundamentally determines the theoretical energy poten-
tial of lignocellulosic feedstock. With respect to physi-
cal structure, lignocellulose is a compact dimensional 
molecule, which gives rise to biomass recalcitrance such 

that deconstruction of any of physical properties is con-
strained by the other properties. Recently, results of a 
combined pretreatment and saccharification assay have 
increased our understanding of phenomena that include 
“biomass reactivity” or “biomass digestibility,” proper-
ties which could be used to directly predict usability of 
lignocellulosic feedstock [32]. Therefore, the current 
knowledge suggests that chemical composition and bio-
mass digestibility should be considered together during 
lignocellulosic biomass evaluation and selection. Prior 
to this study, few reports have described the compre-
hensive assessment of lignocellulosic biomass based on 
both chemical composition and biomass digestibility 
[32, 37, 38, 40, 41]. In addition, due to innate variability 
in chemical composition and biomass digestibility, it is 
critical to understand that not all lignocellulosic biomass 
is suitable for conversion into biofuels and biochemi-
cals [14]. Therefore, particular attention should be paid 
to ideal feedstock selection when JA stem biomass was 
concerned.

In the current study, we determined the variability in 
chemical composition and biomass digestibility of sugar-
rich stem biomass of 59 JA clones collected nationwide. 
These JA accessions were uniformly distributed within 
longitudes between 82.06 and 126.75 and latitudes 
between 25.60 and 44.86 and exhibited diverse geno-
types and phenotypes [7–9]. Notably, innate JA feedstock 

Table 5  The statistics of Jerusalem artichoke accessions ideal for bioethanol production in China

NEC northeast China, SWC southwest China, NWC northwest China, NC north China, CSC central-south China

Parameter E025 E047 E026 E058 E053 E044 E059

Soluble sugars (% dry matter) 15.4 32.1 13.1 23.4 26.4 30.1 21.8

Cellulose (% dry matter) 30.9 22.5 31.6 24.8 24.3 23.2 27.5

Hemicellulose (% dry matter) 18.4 11.4 18.8 12.0 11.5 11.4 13.4

Lignin (% dry matter) 21.1 13.6 20.9 14.3 14.5 14.2 14.8

Ash (% dry matter) 3.4 3.7 3.0 5.2 4.9 3.9 4.5

Biomass digestibility (% total carbohy-
drates)

79.2 82.8 77.3 78.4 78.5 78.8 76.1

Region NEC SWC NEC NWC NC SWC CSC

Feedstock quality score 100.0 97.4 86.2 78.1 76.7 70.7 60.1

Feedstock quality grade A A A B B B B

Table 6  Summary statistics of PLS-DA models for qualitative analysis of biomass feedstock quality grades

PCs principal components, R2 the multiple coefficients of determination, Q2 the explained variation in the test set, N number of samples

Parameter PCs R2 Q2 Calibration Validation

N Correct (%) N Correct (%)

Full spectra 4 0.76 0.52 45 97.8 14 86.7

CARS-optimized spectra 7 0.96 0.83 45 95.6 14 88.9

RF-optimized spectra 3 0.91 0.80 45 97.8 14 91.1
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quality variability based on chemical composition and 
biomass digestibility was identified at both national and 
regional levels (Fig.  2), which could be caused by the 
interaction between diverse JA genotypes and their vari-
ous environments. These results suggest that a potential 
exists for selection of ideal varieties to enhance biofuel 
conversion or bioenergy crop breeding and genetic modi-
fication. Besides, ideal bioethanol feedstock could be 
identified by high levels of carbohydrates (soluble sugars, 
cellulose, and hemicellulose), high biomass digestibility 
and low level of waste components (lignin and ash) [14, 
17]. For the purpose of screening the ideal bioethanol 
feedstock, we transformed the feedstock quality proper-
ties to a fair FQS and further classified it into five FQG 
levels. As a result, 7 clones from 6 sampled regions were 
deemed superior biomass feedstocks for bioethanol 
production. Clearly, these results demonstrate the high 
potential of JA to serve as an ideal bioenergy crop for 
nationwide cultivation. Although the JA accessions in 
this study were highly representative, these results should 
be interpreted with caution due to the limited size of the 
sample population. Therefore, attention should be paid to 
the continued collection and identification of germplasm 
resources.

With the development of computational science, NIRS 
coupled with PLS has gained extensive popularity for 
the qualitative and quantitative analysis of chemical and 
physical properties of biomass feedstock due to its high-
throughput, low-cost, and non-destructive nature [17, 19, 
20, 22–24, 33, 36]. However, the intrinsically disadvan-
tage of PLS was that it requires a crucial process to build 
a credible model for given chemical or biological data, 
which is known as spectral variable selection [23]. In 
this sector, MPA has offered great advantages by statisti-
cally analyzing the distribution of an interested outcome 
of the sub-models derived with the aid of Monte Carlo 
Sampling, which could significantly improve the accu-
racy and robustness of prediction models [26, 28]. In this 
study, two novel MPA algorithms based on different the-
ory (CARS and RF) were employed to establish a series 
of optimal spectral variable subsets derived from full 
NIRS data. One interesting finding was that only 17–82 
and 15–31 spectral variables were selected by CARS 
and RF from 1557 variables within full spectra, respec-
tively. This finding indicates that MPA could judiciously 
identify most of the informative spectral variables while 
eliminating the uninformative spectral variables [23, 29, 
30]. Another important finding was that several variables 
were collectively selected by both of these algorithms for 
each predictive indictor, providing very important infor-
mation that could be used for further improve prediction 
of biomass chemical and physical properties [23]. Based 
on these optimized spectral variable subsets, a series 

of MPA-optimized PLSR models and MPA-optimized 
PLS-DA models were developed for quantitative and 
qualitative analysis of JA biomass feedstocks. The results 
indicated that RF was better for improving both qualita-
tive and quantitative PLS models than CARS (Figs.  5, 6 
and Table 6). In comparison with the NIR models of pre-
vious studies, RF-optimized PLSR models exhibited a 
better performance for the prediction of chemical com-
position (Additional file 1: Table S2) and biomass digest-
ibility (Additional file 1: Table S3) with more reasonable 
values of RMSEC, R2

C, RMSECV, R2
CV, RMSEP, R2

V, 
RPD, and RER [17, 19, 22, 23, 42]. Obviously, spectral 
variable selection using MPA could significantly improve 
the predictive performance of PLS multivariate calibra-
tion in the qualitative and quantitative analysis of bio-
mass feedstock.

Conclusions
In this study, 59 JA clone stems originating from six 
regions of China exhibited diverse chemical composi-
tions, biomass digestibility, and variable NIRS results, 
which were applicable for statistical analysis and NIRS 
modeling. Soluble sugars, cellulose, hemicellulose, lignin, 
ash, and released hexoses, pentoses, and total carbohy-
drates were then successfully predicted via MPA-opti-
mized PLSR models. Based on the reliable and accurate 
data of chemical composition and biomass digestibility, 
all 59 JA accessions were comprehensively evaluated 
for FQS by GRA and assigned into five FQGs. Notably, 
seven clones were identified as the most ideal JA feed-
stocks for bioethanol production in China. Finally, the JA 
accessions studied in this work were rapidly and success-
fully classified using a MPA-optimized PLS-DA model. 
In conclusion, this study provides a practical strategy of 
high-throughput screening lignocellulosic biomass for 
bioethanol production.

Methods
Sample collection and preparation
A total of 59 JA natural clones were collected nationwide 
from 2006 to 2012. JA stem samples were harvested on 
their dates of physiological maturity and were processed 
at the China Agricultural University Zhuozhou Experi-
mental Station (39°47′ N, 115°87′ E) in Hebei Province in 
2014. Stem samples were handled according to the proto-
cols developed by the National Renewable Energy Labo-
ratory/TP-510-42620 [43]. First, samples were ground 
using a crusher mill into particles 1–2  cm in size and 
dried at 45  °C for 48  h after heat at 105  °C for 20  min. 
Next, the dried particles were ground into powder and 
passed through a combined −  40/+ 80 mesh screen. 
Finally, the mesh-screened samples (as dry matter) were 
stored in a dry container until use. A spatial distribution 
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map of collection sites of JA accessions was generated 
using ArcGIS 10.3.

Biomass components and digestibility analysis
The main topic of this research was to build upon the lab-
oratory-scale alkali-based conversion process developed 
by Li et  al. [11] to develop a comprehensive and high-
throughput lignocellulosic biomass feedstock screening 
system for bioethanol production. Soluble sugars were 
extracted from dried JA stem samples using distilled 
water and quantified using the anthrone-sulfuric acid 
method using a UV–VIS spectrometer (TU-1901, Beijing 
Purkinje General Instrument Co., Ltd., Beijing, China). A 
standard curve was plotted using d-glucose as the stand-
ard (Xilong Scientific Co., Ltd., China). Ash content was 
determined using a muffle furnace (VULCAN 3-550, 
Densply International, Inc., York, PA, USA) with 30 mL 
ceramic crucibles according to LAP NREL/TP-510-42622 
[44]. Structural carbohydrates and lignin were extracted 
using a two-step sulfuric acid hydrolysis process with 
dried JA stem samples according to NREL/TP-510-42618, 
NREL/TP-510-42619, and NREL/TP-510-42621 with 
minor modifications [45–47]. Structural carbohydrates 
(i.e., glucose, xylose, and arabinose) were measured using 
an HPLC system (1260 series, Agilent Technologies, 
Santa Clara, CA, USA) equipped with an Aminex HPX-
87H chromatography column (300 mm × 7.8 mm, parti-
cle size 9 µm, Bio-Rad Laboratories, Hercules, CA, USA). 
Lignin content was determined using a UV–VIS spec-
trometer (TU-1901, Beijing Purkinje General Instrument 
Co., Ltd.) and the same muffle furnace described above. 
Calculations of cellulose, hemicellulose, and lignin con-
tent were performed according to Li et al. [11]. Cellulose 
was calculated from glucose content, while hemicellulose 
was calculated from the sum of xylose and arabinose con-
tent values. Lignin was calculated from the sum of acid-
soluble lignin and acid-insoluble lignin content values. 
All experiments were carried out in triplicate.

Biomass digestibility was defined by accounting for 
the hexoses, pentoses, and total carbohydrates released 
from the soluble sugars extracted biomass feedstock after 
alkali-based pretreatment followed by enzymatic hydrol-
ysis [11]. For pretreatment, a 2-g quantity of soluble sug-
ars-extracted JA sample was mixed with 40 mL 2% (w/v) 
sodium hydroxide and shaken at 150 rpm for 2 h at 50 °C. 
Next, each pretreated sample was washed five times with 
20 mL distilled water and dried at 80  °C for subsequent 
enzymatic hydrolysis. During enzymatic hydrolysis, each 
pretreated sample was mixed with 0.2% (w/v) mixed-cel-
lulases containing β-glucanase (≥ 3.6 × 104 U), cellulase 
(≥ 360 × 102 U), and xylanase ≥ 6×104 U from Imperial 
Jade Biotechnology Co., Ltd.) in a volume of 40 mL in a 
50-mL centrifuge tube and shaken at 150  rpm at 50  °C 

for 48  h. Glucose and xylose released after alkali-based 
pretreatment followed by enzymatic hydrolysis were 
determined by HPLC as described above. Statistical and 
variance (ANOVA) analysis was calculated using IBM 
SPSS Statistics software (ver. 24). All experiments were 
carried out in triplicate.

Near‑infrared spectroscopy pretreatments
JA stem dry matter was scanned and recorded in tripli-
cate using a Thermo Antaris II FT-NIR Analyzer (Thermo 
Scientific, Inc., Madison, WI, USA) equipped with a dif-
fuse reflectance accessory device. Each spectrum was 
averaged over 64 scans at a resolution of 4 cm−1 within 
the wavenumber range of 4000–10,000  cm−1 at room 
temperature (Additional file  2). Spectrometer control 
and data collection were conducted using TQ Analyst 
software (ver. 9.3). In order to correct spectra scatter, all 
spectra were first adjusted using multiplicative scatter 
correction. Next, the Savitzky–Golay smoothing filter 
and the first derivative were employed to reduce random 
noise and to resolve spectral peak overlap and eliminate 
linear baseline drift [23]. The purpose of the aforemen-
tioned corrections was to remove multiplicative and 
additive effects stemming from instrument settings or 
variations caused by the sample and environmental con-
ditions [19]. After pretreatments, six principal compo-
nent analysis models were developed using TQ Analyst 
software (ver. 9.3) to generate a 3D NIRS scatter plot [33].

The development of MPA‑optimized PLSR models
Based on pretreated sample spectra, both CARS and RF 
algorithms were applied to determine spectral variables 
sets using ChemDataSolution software (ver. 2.0). For a 
fair multivariate prediction, one of every five samples was 
sorted into validation sets using KS algorithms based on 
full spectra and two types of characteristic spectra; the 
remaining samples were used for generating calibration 
sets. Calibration and validation sets were compared in 
terms of both their chemical components and biomass 
digestibility. In addition, the NIRS plots distribution of 
calibration and validation sets was also compared using 
eighteen principal component analysis models in the pre-
sent study. Based on the MPA-optimized spectra, sixteen 
PLSR multivariate calibrations were developed to pre-
dict soluble sugars, cellulose, hemicellulose, lignin, ash, 
and biomass digestibility (hexoses, pentoses, and total 
carbohydrates) using ChemDataSolution software (ver. 
2.0); eight PLSR models based on full spectra served as 
controls. To select the optimum number of factors and to 
avoid over-fitting, the “leave-one-out” method was used 
for cross-validation while developing PLSR models [17, 
19]. On the one hand, the robustness of PLSR models 
was evaluated using several chemometrics parameters, 
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including RMSEC, RMSECV and R2
C, and R2

CV. On the 
other hand, the accuracy of each multivariate calibration 
model could be determined by RMSEP and R2

V. Finally, 
RPD and RER were employed to ascertain MPA enhance-
ment of prediction performance.

Grey relational grade analysis
In this study, JA stem feedstock quality specifications 
could be divided into two categories: chemical compo-
nents (soluble sugars, cellulose, hemicellulose, lignin, 
and ash) and biomass digestibility (hexoses, pentoses, 
and total carbohydrates). These quality specifications 
were used to calculate and compare the FQS values of JA 
samples collected from different geographic regions. To 
address this challenge, a high-efficiency evaluation and 
selection model was developed based on grey relational 
grade analysis theory, which is an essential component 
of the grey system theory formulated by Julong Deng 
[16]. Both chemical components and biomass digest-
ibility (total carbohydrates released from pretreatment 
and subsequent enzymatic hydrolysis) were assigned the 
same weight of 0.5 in this study. To meet the demands of 
industry, the FQS values of JA samples were assigned to 
five grade levels and ranked in the order A (80–100) ≥ B 
(60–80) ≥ C (40–60) ≥ D (20–40) ≥ E (0–20). The GRA 
was processed using MATLAB software (ver. 2012b) and 
the procedure code is documented in Additional file 3.

The development of MPA‑optimized PLS‑DA models
Based on full spectra and MPA-optimized spectra, three 
PLS-DA multivariate calibrations were developed for 
FQG classification using ChemDataSolution software 
(ver. 2.0). One of every five samples was sorted into vali-
dation sets using KS algorithms based on full spectra and 
two characteristic spectra and the remaining samples 
were used for the calibration sets. In addition, the mul-
tiple coefficients of determination (R2), the explained 
variation in the test set (Q2), and the correct rate were 
employed to ascertain MPA enhancement of classifica-
tion performance [21].

Additional files

Additional file 1: Fig. S1. Histograms of chemical components and 
biomass digestibility based on full spectra (A), CARS-optimized spectra 
(B), and RF-optimized spectra (C). The solid lines and dashed lines overlaid 
upon each histogram represent normal distributions and were used to 
embody the discrepancy between each histogram and normality. Fig. S2. 
PCA plots distribution of chemical components and biomass digestibility 
based on full spectra (A), CARS-optimized spectra (B), and RF-optimized 
spectra (C). Fig. S3. Plots of predicted versus reference values of PLSR 
models based on full spectra (A), CARS-optimized spectra (B), and 
RF-optimized spectra (C). R2

V represents the square of the correlation 
coefficients of the external validation subsets. Table S1. Feedstock quality 

grades of 59 Jerusalem artichoke accessions. Table S2. A summary of NIR 
application in different biomass feedstocks for chemical components. 
Table S3. A summary of NIR application in different biomass feedstocks 
for biomass digestibility.

Additional file 2. Raw NIRS data.

Additional file 3. The procedure code of grey relational grade analysis.
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