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Abstract 

Background:  Demand-driven biogas production could play an important role for future sustainable energy sup-
ply. However, feeding a biogas reactor according to energy demand may lead to organic overloading and, thus, to 
process failures. To minimize this risk, digesters need to be actively steered towards containing more robust microbial 
communities. This study focuses on acetogenesis and methanogenesis as crucial process steps for avoiding acidifica-
tion. We fed lab-scale anaerobic digesters with volatile fatty acids under various feeding regimes and disturbances. 
The resulting microbial communities were analyzed on DNA and RNA level by terminal restriction fragment length 
polymorphism of the mcrA gene, 16S rRNA gene amplicon sequencing, and a [2-13C]-acetate assay. A modified 
Anaerobic Digestion Model 1 (ADM1) that distinguishes between the acetoclastic methanogens Methanosaeta and 
Methanosarcina was developed and fitted using experimental abiotic and biotic process parameters.

Results:  Discontinuous feeding led to more functional resilience than continuous feeding, without loss in process 
efficiency. This was attributed to a different microbial community composition. Methanosaeta dominated the continu-
ously fed reactors, while its competitor Methanosarcina was washed out. With discontinuous feeding, however, the 
fluctuating acetic acid concentrations provided niches to grow and co-exist for both organisms as shown by tran-
scription analysis of the mcrA gene. Our model confirmed the higher functional resilience due to the higher abun-
dance of Methanosarcina based on its higher substrate uptake rate and higher resistance to low pH values. Finally, we 
applied our model to maize silage as a more complex and practically relevant substrate and showed that our model is 
likely transferable to the complete AD process.

Conclusions:  The composition of the microbial community determined the AD functional resilience against organic 
overloading in our experiments. In particular, communities with higher share of Methanosarcina showed higher 
process stability. The share of these microorganisms can be purposefully increased by discontinuous feeding. A model 
was developed that enables derivation of the necessary feeding regime for a more robust community with higher 
share of Methanosarcina.
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Background
Demand-driven electricity production from biogas could 
be used in the future to compensate for supply shortages 
associated with fluctuating renewable energies like wind 
and solar power [1, 2]. To avoid large, expensive biogas 
storage modules, biogas needs to be produced flexibly by 
changing the organic loading rate of anaerobic digesters 
[3]. However, this can result in accidental organic over-
loading, i.e., organic loads that exceed the capacity of 
acetogenesis and methanogenesis, thus leading to accu-
mulation of volatile fatty acids (VFAs) and potentially to 
process failure [4, 5]. One option to avoid process fail-
ures is increasing the microbial community’s functional 
resilience, i.e., its ability to quickly return to its previous 
methane production rate, pH and VFA concentrations 
following disturbance.

Selecting a microbial community that ensures higher 
functional resilience requires a microbial resources man-
agement strategy. Such a strategy necessitates monitor-
ing of the microbial community which can be achieved 
by molecular biological analyses [6]. These can be based 
on marker genes, such as the 16S rRNA gene [6], but 
techniques targeting all genomes (metagenome) [7–9], all 
proteins (metaproteome) [10], all transcripts (metatran-
scriptome) [11] or all metabolites (metabolome) [12] 
in a sample have also been applied in anaerobic diges-
tion research. For simply monitoring the change in rela-
tive abundance of microbial taxa, amplicon sequencing 
and terminal restriction fragment length polymorphism 
(T-RFLP) analysis of marker genes are more cost effi-
cient than metagenome analyses. Beyond mere monitor-
ing, microbial resources management requires ways to 
manipulate the composition of the microbial community. 
These can be the addition of certain beneficial micro-
organisms (bioaugmentation) [13] and/or the applica-
tion of selection pressure, i.e., choosing specific process 
parameters, to favor their growth. Such environmental 
selection pressures can be, for example, temperature 
[14, 15], ammonia concentration [16], feed composition 
[17], hydraulic retention time (HRT) [18], organic load-
ing rate (OLR) [19], or the feeding regime in terms of 
temporal feeding schedule [1, 20–24]. A temporal feed-
ing schedule is particularly interesting because it could 
be implemented in industrial practice without additional 
investments [25].

Continuous feeding has been commonly suggested in 
industrial practice to assure stable biogas production [3]. 
Contrary to this practice, several laboratory-scale studies 
have shown a positive influence of discontinuous feeding 
regimes on process performance and functional stability 
associated with shifts in the microbial community [1, 20–
23]. In addition to functional stability, a techno-economic 
analysis for existing co-digestion plants in Belgium 

revealed that discontinuous feeding regimes could 
even be economically advantageous as they allowed an 
increase in overall organic loading rates and biogas pro-
duction [25].

Discontinuous feeding (once per 24  h or 48  h instead 
of every 2 h) improved stability against organic overload-
ing and even led to higher process efficiency compared to 
continuous feeding in a lab-scale experiment [1]. In that 
study, dried distillers grains with solubles (DDGS) were 
used as substrate and reactors were operated at 38  °C 
with an HRT of 10–26 days and OLRs of 4–11 g volatile 
solids per liter per day. Using T-RFLP analysis, a stable 
dominance of Methanosarcina in the methanogenic com-
munities was observed, while the relative abundances of 
bacterial terminal restriction fragments (T-RFs) changed 
as an effect of the feeding regime. However, no taxa were 
assigned to these T-RFs due to the lack of sequence data.

In another study, discontinuous feeding (every second 
day compared to once per day) of synthetic raw domes-
tic sewage also led to a higher functional stability against 
organic overloading and ammonia shocks [20]. The 
higher stability was attributed to a more dynamic bacte-
rial community as determined by denaturing gradient gel 
electrophoresis (DGGE). However, from the DGGE anal-
yses, it cannot be concluded if this principle applies to 
acidogenic and acetogenic bacteria alike. For functional 
stability against organic overloading, in particular, aceto-
gens and methanogens are important because they deter-
mine how quickly the accumulated VFAs are degraded. 
A closer analysis of acetogens and methanogens is, there-
fore, needed.

In a study with focus on acetoclastic methanogens [21], 
an hourly vs. daily feeding of acetic acid led to commu-
nities with higher share of Methanosaeta and Methano-
sarcina, respectively. The reactors with higher share of 
Methanosarcina showed higher stability against acetic 
acid overloading, which was attributed to a higher acetate 
capacity number (ACN). The ACN is the quotient of the 
maximum acetic acid uptake rate (determined in batch 
experiments with reactor samples subjected to high ace-
tic acid concentrations) and the currently observed aver-
age acetic acid uptake rate [26]. A higher ACN is the 
result of a higher apparent biomass yield and maximum 
specific acetic acid uptake rate of Methanosarcina. Fur-
thermore, simulations in the Anaerobic Digestion Model 
No. 1 (ADM1) led to the conclusion that Methanosaeta 
cannot sustain HRTs below 11 days and will be outcom-
peted at HRTs below 15  days under continuous feeding 
[26].

Not only acetoclastic methanogens are the sole deter-
minant for functional resilience, but also syntrophic 
VFA-oxidizing bacteria as well as hydrogenotrophic 
methanogens may play important roles. Therefore, in this 
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study, we used a mixture of VFAs as substrate in reactor 
experiments to test the impact of discontinuous com-
pared to continuous feeding on community composition 
and functional resilience. Three experiments were con-
ducted to test two different HRTs, three OLRs, and two 
substrate concentrations (see Fig. 1). The resulting micro-
bial community was analyzed by 16S rRNA gene ampli-
con sequencing, DNA- and RNA-based T-RFLP profiling 
of mcrA amplicons, and a [2-13C]-acetate assay. Abiotic 
and biotic process parameters were used to develop and 
fit a modified ADM1 model.

Results and discussion
Discontinuous feeding increased functional resilience 
without loss in efficiency
VFA concentrations in biogas reactors are a critical 
indicator for process performance. The average VFA 
concentrations in both the continuously (Rconti) and dis-
continuously (Rdisco) fed reactors in all experiments were 
below 0.36  g chemical oxygen demand (COD) per liter 
towards the end of the training phase (see Fig. 2a). Given 
substrate influent concentrations of 37.2  gCOD  L−1 for 

Experiment 1 and Experiment 2 as well as 12.4 gCOD L−1 
for Experiment 3, the average VFA concentrations in the 
reactors corresponded to substrate conversion efficien-
cies of more than 99%. This was reflected by methane 
production rates close to the theoretical maximum val-
ues assuming complete VFA conversion into methane 
(see Fig. 2c). VFA concentration was the better measure 
for process performance in our experiment, since biogas 
composition could be measured only up to twice daily, 
and thus did not fully reflect the dynamics in the discon-
tinuously fed reactors.

In Experiment 1, the same disturbance (organic over-
loading) for Rconti and Rdisco led to process failure of 
Rconti; while for Rdisco, the pre-disturbance pH value was 
reached after 1 day (see Fig. 3a) and the pre-disturbance 
total VFA concentration was reached after about 1 week 
(see Fig.  3b). In Experiment 2, a similar behavior was 
observed (see Additional file 1, Figure S2). In Experiment 
3, there was hardly any effect on either Rconti or Rdisco 
because a weaker disturbance was used (see Additional 
file  1, Figure S3). In conclusion, discontinuous feed-
ing led to a higher functional resilience against organic 
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butyrate (45%), nutrients, NH4HCO3

Effluent: acetate, propionate, butyrate, NH4-N, CO2,
microbial biomass (X) 

Biogas: CH4, CO2, H2, H2S

Discontinuous feeding (Rdisco) Continuous feeding (Rconti)

Experiment HRT 
(d)

Substrate 
concentration 

(gCOD L-1)

Discontinuous feeding 
regime

Disturbance phase

1 5.5 37.2 100% of daily feed as 
pulse feeding

150% daily feed at once, next day 50% feeding, next day 
normal feeding

2 8 37.2 100% of daily feed fed as 
pulse feeding

200% daily feed at once, next day normal feeding

3 8 12.4 75% of daily feed fed as 
pulse feeding, 25%

continuously fed

100% daily feed at once, next day no feeding

At least 3 HRTs

Continuous feeding =
average load Rdisco

Fig. 1  Experimental design. Lab-scale biogas reactors were fed with VFAs using two different feeding regimes (Rdisco and Rconti), two different 
HRTs and two different substrate concentrations. The microbial community was analyzed based on the 16S rRNA gene (amplicon sequencing) for 
bacteria and the mcrA gene (T-RFLP) for methanogenic archaea. Substrate concentration of 37.2 gCOD L−1 corresponds to 27.4 g L−1 and 0.54 M
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overloading without negative effects on process effi-
ciency, which is in accordance with the previous findings 
[1, 20, 21]. In the following, the mechanisms leading to 
this higher functional resilience are discussed.

Potential reasons for higher functional resilience
Functional resilience not explained by biomass concentration 
nor pH
The VFA conversion capacity of an anaerobic digester 
depends on the amount of biocatalysts [27], i.e., the 
microbial biomass concentration. Therefore, a higher 
biomass concentration could be the reason for the higher 
functional resilience of Rdisco in Experiments 1 and 2. 
However, the microbial biomass concentrations before 
the disturbance were 1.11 ± 0.0043  gVS  L−1 for Rconti,B 
compared to 0.85 ± 0.0003  gVS  L−1 for Rdisco in Experi-
ment 1, and 0.87 ± 0.01  gVS  L−1 (average ± 1 standard 
error of mean) for Rconti compared to 0.78 ± 0.02 gVS L−1 
for Rdisco in Experiment 2 (see Additional file  1, Figure 
S1, S2). The microbial biomass concentration before the 
disturbance was lower for Rdisco in Experiments 1 and 2 
(p < 0.016, Tukey’s test with α = 0.05) and, thus, cannot 
explain the higher functional resilience of Rdisco.

Based on abiotic parameters, the only notable differ-
ence between Rconti and Rdisco concerned the pH values, 
which were about 0.3 points higher for Rdisco compared 
to Rconti at the end of the training phase of Experiment 1 
(see Fig. 2b) and Experiment 2 (see Additional file 1, Fig-
ure S9). However, after the disturbance in Experiment 1, 
the pH value difference disappeared and the resulting 
values were almost identical with 5.93 and 5.99 for Rconti 
and Rdisco, respectively. Hence, right after the disturbance, 
functional resilience was not a function of pH.

Little contribution of bacteria to functional resilience
Ecological indices are a useful tool to describe and com-
pare complex microbial communities [28]. High diversity 
and/or high evenness are generally expected to have a 
positive influence on the functionality of microbial com-
munities [28]. However, in Experiment 1 at the end of 
the training phase, diversity and evenness of the bacte-
rial community were similar in Rdisco and Rconti and could, 
therefore, not explain the higher functional resilience of 
Rdisco (see Additional file 1, Figure S12).

At the end of the training phase, the major phyla in the 
bacterial communities of all three experiments were Fir-
micutes (16–57%), Bacteroidetes (4–40%), Synergistetes 
(4–21%) and Proteobacteria (5–25%) (see Additional 
file 3). In most samples, Syntrophobacter and Syntropho-
monas belonged to the most abundant genera, which 
is not surprising given their known roles as propionic 
and butyric acid oxidizers, respectively. Overall, at the 
end of the training phase, the bacterial communities of 
Rdisco of the three experiments could not be clearly dif-
ferentiated from the communities of Rconti (see Nonmet-
ric Multidimensional Scaling (NMDS) plot in Additional 
file 1, S13). Only the operational taxonomic unit (OTU) 
Lineage I (Endomicrobia), an order within the phylum 
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Fig. 2  Process performance at the end of the training phase of each 
experiment. Biological replicates are designated as “A” and “B”. Box 
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b pH, c experimental methane production rates and theoretical 
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Elusimicrobia, was found in higher relative abundance in 
Rdisco compared to Rconti for each sample. However, rela-
tive abundances of this OTU in Rdisco accounted for less 
than 4.1% of total sequences in all experiments at the end 
of the training phase (see Additional file 2, Sheet “bacte-
rial indicators”). Therefore, this OTU is most likely not 
the reason for the higher functional resilience of Rdisco. 
Unfortunately, the functions of this OTU and most other 
bacterial taxa in our reactors could not be derived from 
the literature.

Since only VFAs were fed to the reactors, most of the 
bacteria should be VFA-oxidizing bacteria. At the end of 
the training phase, 89–107, 83–134, and 86–126 bacterial 
OTUs were detected in the reactors of Experiments 1, 2 
and 3, respectively, but there are only 12 syntrophic VFA 
oxidizers known in the context of anaerobic digestion 
from which only three genera were found in our reactors: 
Syntrophobacter, Pelotomaculum, and Syntrophomonas 
with a combined relative abundance of 34 ± 13% (aver-
age ± 1 SD) for all samples. Some of the other bacterial 
OTUs might not consume VFAs but decaying micro-
bial biomass. However, based on our model simulations 

of Experiment 1, biomass degraders should be less than 
0.2% of all bacteria, indicating that many VFA-oxidizing 
bacteria remain to be discovered.

Via mutual exclusions of OTUs with the known VFA 
oxidizers Syntrophomonas (butyric acid oxidizer) and 
Syntrophobacter (propionic acid oxidizer) in a co-occur-
rence analysis, we inferred Rikenellaceae RC9 gut group, 
Family XIII UCG-002 (Clostridiales), and Aminobac-
terium as potential propionate-oxidizing bacteria, and 
Blvii28 wastewater-sludge group, Desulfovibrio, Thermo-
virga, Mesotoga, and uncultured members of Syntropho-
monadaceae and Synergistaceae as potential butyric acid 
oxidizing bacteria (see Additional file  1, Section  2.2.5). 
Because mutual exclusion does not necessarily imply the 
same function as Syntrophomonas and Syntrophobacter, 
these inferences only identify potential candidates. Future 
studies applying for example meta-omics approaches are 
required to elucidate the functional roles of these taxa. 
Furthermore, the phylum Cloacimonetes was found to 
be highly abundant in several samples. In the genome 
of Candidatus Cloacamonas acidaminovorans, all genes 
necessary for syntrophic propionate oxidation have been 
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found [29] but no pure or co-culture could be established 
yet to prove the activity of this pathway.

No hints on syntrophic acetate oxidation were found. 
Feeding 13C-labeled acetate to reactor effluent in batch 
experiments resulted in 13C-labeled CO2:13C-labeled CH4 
ratios much lower than 1 (about 0.03), which is an indi-
cator that the major acetic acid utilization pathway was 
acetoclastic methanogenesis [30] (see Additional file  1, 
Table S8).

In conclusion, the higher functional resilience of Rdisco 
could be explained neither by the high abundance of spe-
cific bacterial taxa nor by a general change in bacterial 
diversity or evenness.

Strong difference in composition and activity 
of methanogenic archaea
The methanogenic community showed a similar com-
position for continuous feeding (Rconti) in all experi-
ments at the end of the training phase based on T-RFLP 
analysis (see Fig. 4a and Additional file 1, Figure S15). 
The dominating methanogens were the acetoclastic 

Methanosaeta with 40–57% and the hydrogenotrophic 
Methanomicrobiaceae with 35–56% relative abundance. 
The dominance of Methanosaeta under continuous 
feeding at HRTs of 5.5 and 8 days is remarkable, since 
it has been assumed previously that Methanosaeta will 
be outcompeted by Methanosarcina at HRTs below 
15 days [26].

The methanogenic community composition of Rdisco 
in Experiments 1 and 2 at the end of the training phase 
strongly differed from that of Rconti. Methanosaeta and 
Methanomicrobiaceae were also present but each 10–20 
percentage points less abundant than in Rconti. Methano-
sarcina became one of the most abundant taxa in Rdisco 
with approximately 40% (see Fig. 4a); whereas under con-
tinuous feeding, Methanosarcina was almost washed out 
in all experiments, which can be well seen in Experiment 
2 (see Fig.  4b). However, under discontinuous feeding, 
Methanosarcina could co-exist and even surpass Metha-
nosaeta in abundance (see Fig. 4c). In Experiment 3, the 
differences in the methanogenic communities between 
Rdisco and Rconti were much smaller than in the other 
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experiments, which can be attributed to the lower feed-
ing pulses applied.

The observed advantage of Methanosarcina under 
discontinuous feeding is in accordance with a previ-
ous study, which compared hourly with daily acetic acid 
feeding [21]. This advantage was explained by the higher 
maximum substrate uptake rate of Methanosarcina at 
high acetic acid concentrations that follow the discon-
tinuous feeding [21]. We confirmed this phenomenon 
in our experiments using T-RFLP analysis of mcrA tran-
scripts before and after the feeding (see Fig.  5). Before 
the discontinuous feeding event, acetic acid concentra-
tions were low, and therefore, mostly Methanosaeta was 
active and Methanosarcina was not detectable on mRNA 
level. After the discontinuous feeding, however, acetic 
acid concentrations were high and thus, Methanosarcina 
became temporarily more active than Methanosaeta. In 
conclusion, Methanosaeta was always active, while Meth-
anosarcina could only become active at high acetic acid 
concentrations.

Reaching increased functional resilience by model‑based 
microbial resources management of methanogens
As discussed above, the differences in pH, total micro-
bial biomass concentration and the bacterial community 
composition were all unable to explain the increased 

resilience against organic overloading of Rdisco. Therefore, 
we hypothesized that the increased abundance of Metha-
nosarcina with their beneficial physiological properties is 
the reason for the higher process resilience of Rdisco.

A modified ADM1 was used to simulate the two 
competing acetoclastic methanogens: Methanosar-
cina and Methanosaeta. Previously published kinetic 
growth parameter values for Methanosaeta could not be 
used because they do not support growth at an HRT of 
5.5  days [26]. However, in Experiment 1, Methanosaeta 
clearly dominated Rconti at this HRT. Furthermore, pub-
lished kinetic growth parameters assume a very high 
decay rate of 0.1  day−1 for Methanosarcina, which has 
been derived from long-term starvation experiments [21] 
but has never been measured under continuous or dis-
continuous feeding.

Therefore, new parameter values for the growth kinet-
ics of methanogens were determined. In addition, also 
the growth kinetic parameters values of acetogens were 
adjusted to fit our experimental results (see Table  1). 
Some parameter values could be estimated based on 
the frequent measurement of VFA concentrations over 
the course of 24 h for Rdisco in Experiment 1 (see Addi-
tional file  1, Section  2.1.4). However, the final param-
eter set is based on fitting the simulation results to the 
experimental results concerning total microbial biomass 
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Fig. 5  Activity of methanogens. T-RFLP analysis of mcrA transcripts (cDNA amplicons) using BstNI as restriction enzyme. a Before and after the 
discontinuous feeding event for Experiment 1 compared to the VFA concentration during a daily feeding interval and b Rdisco for all experiments 
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concentration, the VFA concentration and the ratio of 
Methanosarcina and Methanosaeta at the end of the 
training phase as well as the pH drop after the distur-
bance of both Rdisco and Rconti in Experiments 1 and 2.

A new parameter set for acetoclastic methanogens
One of the most important findings was that yield and 
maximum substrate utilization rate values for Metha-
nosarcina cannot differ from the values for Methanos-
aeta as much as suggested previously [26]. Otherwise, 
the co-existence of Methanosaeta and Methanosarcina 
in Rdisco in Experiment  1 and Experiment  2 even after 
several HRTs cannot be achieved in our simulations. A 
major difference between both genera in our model is the 
parameter values for pH inhibition resulting in a stronger 
influence of pH inhibition on Methanosaeta due to the 
higher sensitivity of this genus against low pH values and 
VFA concentration changes [31].

Co‑existence of acetoclastic methanogens and higher 
resilience for Rdisco
Finally, our parameter value set predicted the higher 
resilience of Rdisco against the disturbance (Fig.  6). Fur-
thermore, our parameter value set was able to predict the 
dominance of Methanosaeta in Rconti and the co-exist-
ence of Methanosarcina and Methanosaeta at the end 
of the training phase in Rdisco. The relative abundance of 
Methanosaeta among total acetoclastic methanogens at 
the end of the training phase was 99.8% in Rconti in the 
simulation, while it was 93.7% in the T-RFLP analysis. For 
Rdisco, the simulation predicted a relative abundance of 
Methanosarcina of 56% compared to 65% in the T-RFLP 
analysis at the end of the training phase.

Differences in pH between Rconti and Rdisco
The model was also able to explain the higher pH values 
in Rdisco (Fig.  6). Because all reactors were fed with the 
same medium, the difference in pH can only be explained 
by the dynamics of VFA and dissolved inorganic carbon 
concentrations. The generally higher pH values of Rdisco 
cannot be explained by residual VFAs because the dif-
ference in pH remained even when VFA concentrations 
were almost 0 in both Rdisco and Rconti (see Additional 
file 2, Experiment 2, t = 47 days and t = 53 days). There-
fore, the systematically higher pH seems to be caused by 
the dynamics of dissolved inorganic carbon concentra-
tion in Rdisco. During a discontinuous feeding event in 
Experiment 1, the pH dropped from approximately 7.6 
to 6.5 due to the high amount of VFAs suddenly added 
(see Additional file 1, Figure S4). This shift in pH caused 
a shift in the acid–base equilibrium from bicarbonate to 
dissolved CO2 resulting in a driving force for a decrease 
of dissolved inorganic carbon, which caused the higher 
pH in Rdisco. We could show this effect in model simula-
tions for which the dissolved inorganic carbon concen-
trations were continuously lower with 0.065–0.107 M in 
Rdisco compared to 0.113  M in Rconti resulting in maxi-
mum pH value of 7.56 for Rdisco versus 7.29 for Rconti. VFA 
concentrations were negligible in both simulations (< 6 
mgCOD L−1, see Additional file 1: Figure S21).

Limitations and crucial assumptions
The determination of microbial growth yields was con-
strained by the experimentally determined total micro-
bial biomass concentration. The individual yields could 
not be unambiguously determined by our DNA-based 
analyses because the function of all bacterial taxa could 
not be determined. For example for many bacterial taxa, 

Table 1  Model parameters used for acetic, propionic, and butyric acid as well as hydrogen converting populations

Xac,1 = Methanosarcina, Xac,2 = Methanosaeta, Xh2 = hydrogenotrophic methanogens, Xpro = propionic acid degraders, XC4 = butyric acid degraders, pH_l = lower limit 
and pH_u = upper limit for pH inhibition

Yield Y 
(gCODX gCODS

−1)
Maximum substrate utilization 
rate km (gCODS gCODX

−1 day−1)
Half saturation 
constant  K 
(gCODS L−1)

Decay rate kdec pH inhibition References

Xac,1 0.033 20 0.32 0.02 pH_l = 4; pH_u = 5.5 This study

0.060 8.95 0.32 0.1 N/A [26]

Xac,2 0.033 14.5 0.09 0.02 pH_l = 6.3; pH_u = 7 This study

0.042 2.77 0.09 0.0064 N/A [26]

Xh2 0.032 35 7 × 10−6 0.02 pH_l = 5; pH_u = 6 This study

0.060 35 1 × 10−6 0.02 pH_l = 5; pH_u = 6 [52]

Xpro 0.012 30 0.1 0.02 N/A This study

0.040 13 0.1 0.02 N/A [52]

XC4 0.012 25 0.2 0.02 N/A This study

0.060 20 0.2 0.02 N/A [52]
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it was not clear if they belong to propionic or butyric acid 
oxidizers (see “Little contribution of bacteria to func-
tional resilience” section). Furthermore, DNA-based 
relative abundances do not necessarily reflect mass or 
COD-based relative abundances of the bacterial and 
methanogenic taxa. Inhibition was implemented as 
default in ADM1, which means that a low pH value is the 
major contributor to inhibition of acetoclastic metha-
nogens after an increase in VFA concentrations and not 
direct inhibition by VFAs diffusing into microbial cells.

Most species of Methanosarcina can also convert 
CO2 and hydrogen into methane [31] but we assumed 

Methanosarcina to be purely acetoclastic in our model as 
others did previously for mesophilic continuous stirred 
tank reactors (CSTRs) [26]. In the T-RFLP analysis, an 
increase in Methanosarcina usually coincided with a 
decrease in both Methanosaeta and hydrogenotrophic 
methanogens. However, this does not necessarily mean 
that Methanosarcina additionally consumed hydrogen in 
our reactors because the decrease in relative mcrA gene 
abundance of hydrogenotrophic methanogens could also 
be a result of a higher microbial COD to mcrA gene ratio 
for Methanosarcina. An argument against Methanosar-
cina being additionally a hydrogenotrophic methanogen 
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is its disadvantage against strict hydrogenotrophic meth-
anogens because it requires higher hydrogen partial pres-
sures (> 10  Pa) due to its different energy conservation 
mechanism [32]. Despite this disadvantage, Methano-
sarcina could, nevertheless, considerably contribute to 
hydrogen consumption because of its high abundance. 
This has to be clarified by metatranscriptomics or 
metaproteomics in future studies.

Furthermore, it should be noted that the substrate 
composition could have a crucial impact on the outcome 
of our study. A higher acetic acid concentration in the 
substrate may require less drastic feeding pulses to pro-
vide a niche for Methanosarcina. A higher concentration 
of propionic or butyric acid might lead to niches for other 
VFA-oxidizing bacteria that were not observed in our 
experiment. In the fermentation of complex substrates, 
a variety of products in addition to VFAs can be formed 
with changing compositions depending on the process 
conditions [33, 34]. This complexity is a future challenge 
and a chance to develop feeding regimes as instrument of 
microbial resources management.

Applicability to agricultural biogas plants
We suppose that our feeding regime will not only work 
for VFAs as substrate but also for many other substrates 
as long as hydrolysis and acidogenesis are faster than ace-
togenesis and methanogenesis thus leading to VFA accu-
mulations. To illustrate this, we simulated a maize silage 
fed reactor using our modified ADM1 model with the 
same growth kinetic parameter values used for Experi-
ment 1 (see Additional file 1, Figure S24). Under continu-
ous feeding with maize silage, the reactor was completely 
dominated by Methanosaeta. Changing to discontinuous 
feeding (every second day) led to an increase in the abun-
dance of Methanosarcina by one order of magnitude in 
1  year. We chose the initial concentration of Methano-
sarcina to 0.2 gCOD L−1, which could be easily reached 
in practice by replacing about 5% of the working volume 
with effluent from a digester with a high share of Metha-
nosarcina. In conclusion, simulations with maize silage 
suggested that discontinuous feeding could also be used 
in practice for microbial resources management. How-
ever, insufficient substrate and digestate storage capaci-
ties necessary for discontinuous feeding might limit the 
applicability in some settings such as wastewater treat-
ment plants. In other settings, such as agricultural biogas 
plants, storage capacity may not be limiting.

Further substrates, for which hydrolysis is not the rate 
limiting step, may be suitable for our proposed microbial 
resource management strategy, such as chicken manure 
[35], municipal solid waste co-digested with sewage 
sludge [36], thin stillage [37], sugar beet by-products 
co-digested with pig manure [38] and food waste [39]. 

Lignocellulosic wastes are most likely not suitable with-
out pre-treatment, because of low hydrolysis rates due to 
their compositional and structural features [40].

Conclusions and outlook for microbial resources 
management to increase resilience against organic 
overloading
Our study shows that a model-based microbial resources 
management to increase resilience against organic over-
loading is possible. Concerning methanogens, increasing 
the relative abundance of Methanosarcina at the cost of 
Methanosaeta is recommended. This can be achieved by 
certain discontinuous feeding regimes that lead to tempo-
rary acetic acid accumulations and pH drops to provide 
a niche for Methanosarcina (active only at higher acetic 
acid concentrations and resistant to low pH values) to 
compete with Methanosaeta (always active but inhibited 
at low pH values). In our experiments, acetic acid accu-
mulations of 2.1  gCOD  L−1 accompanied by a pH drop 
to below 6.75 were sufficient to achieve a relative Metha-
nosarcina abundance of about 30% of total methanogens 
(Experiments 1 and 2). The shift of the methanogenic 
community towards higher shares of Methanosarcina 
depends on the intensity of VFA accumulation after the 
discontinuous feeding. Low acetic acid accumulations of 
0.5 gCOD L−1, for example, led to an increase of only 7 
percentage points in relative abundance of Methanosar-
cina on total methanogens after 5 HRTs (Experiment 3). 
The use of T-RFLP fingerprinting based on DNA and 
cDNA of mcrA genes and transcripts as a monitoring 
tool for shifts towards higher shares of Methanosarcina 
was demonstrated. Finally, our model simulations with 
maize silage as a more complex and practically relevant 
substrate showed that our microbial resources manage-
ment scheme is likely transferable to the complete AD 
process. This scheme could be used to strengthen micro-
bial communities for withstanding organic overloads that 
might, for example, occur in demand-driven biogas pro-
duction schemes.

Methods
Laboratory‑scale CSTR experiments and process analytics
Three laboratory-scale CSTR experiments were con-
ducted at 37  °C with various HRTs, OLRs and feeding 
regimes (see Fig.  1). The working volume was 6 L for 
Experiments 1 and 2, and 8 L for Experiment 3. Con-
tinuous stirring at 50  rpm with anchor-type impellers 
was applied in all experiments. In all experiments, a syn-
thetic, liquid substrate was used comprising a mixture of 
VFAs as the only carbon sources in a mineral medium 
containing all necessary trace elements, macronutrients, 
and vitamins (see Additional file  1, Table  S1). The VFA 
composition in this medium was 45% acetic acid, 10% 
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propionic acid, and 45% butyric acid based on COD, 
which corresponds to 65%, 8% and 26% on mol-base, and 
57%, 9% and 34% on mass-base for acetic, propionic and 
butyric acid, respectively. 1 gCOD  L−1 of this medium 
corresponds to 0.74 g L−1 and 14 mM.

In each experiment, at least two reactors were run 
in parallel with two different feeding regimes: a con-
tinuously fed (Rconti) and a discontinuously fed reactor 
(Rdisco). Biological replicate reactors were designated as 
Rconti,B or Rdisco,B. Discontinuous feeding means that a 
certain amount (75–100% of daily feed, see Fig.  1) was 
pumped into the reactor within 20  min. In the “start-
up phase”, the reactors were slowly accustomed to the 
selected feeding regime. In the following “training phase”, 
the selected feeding regime was applied for at least 3 
HRTs. In the following “disturbance phase”, the Rdisco and 
Rconti were exposed to a pulse disturbance with the same 
VFA mixture used as substrate (see Fig.  1) but higher 
concentrations than the usual feeding to simulate organic 
overloading.

All CSTRs were inoculated from a lab scale continu-
ously fed digester operated with the same synthetic sub-
strate. At the start of the experiment, the content of all 
CSTRs was mixed to guarantee a homogenous inoculum. 
VS values of the inoculum were on average 0.87, 0.41 and 
0.46 g L−1 for Experiments 1, 2 and 3, respectively. Total 
VFA concentrations in the inoculum were below 0.5 
gCOD L−1 in all experiments (see Additional file 2, abi-
otic parameters, t = 0 days for details).

Biogas composition (CH4, CO2, O2, H2, and H2S) was 
analyzed with an AWIFLEX gas analyzer (AWITE Bio-
energie, Germany). Rate of biogas production was deter-
mined by drum-type gas meters TG05 (Ritter, Germany) 
and normalized to standard temperature (237.15 K) and 
standard pressure (101,325  Pa). VFA concentrations as 
well as pH values were analyzed as reported previously 
[1].

Microbial community analyses
DNA and RNA extraction
The reactors were sampled before feeding if not indi-
cated otherwise. Samples (1.5 mL) from the reactors were 
centrifuged immediately after sampling at − 7  °C and 
15,000×g for 2  min and the supernatant was removed. 
The samples did not freeze within the 2 min despite the 
low temperature, which was chosen to minimize the risk 
of mRNA degradation. Pellets for DNA extraction were 
stored at − 20 °C. Pellets for RNA extraction were stored 
at − 80 °C.

DNA was extracted with the NucleoSpin® Soil Kit 
(MACHEREY–NAGEL GmbH & Co. KG, Germany) fol-
lowing the manufacturer’s instructions (buffer SL2, no 
enhancer solution). The quantity and quality of extracted 

DNA were determined by NanoDrop® ND 1000 spectro-
photometer (Thermo Fisher Scientific, USA). The DNA 
was stored at − 20 °C.

RNA was extracted with the ZR Soil/Fecal RNA 
MicroPrep™ Kit (Zymo Research, USA) following the 
manufacturer’s instructions. DNA was removed from 
the isolated RNA using the DNA-free™ DNA Removal 
Kit (Invitrogen™, Thermo Fisher Scientific, USA). The 
quantity and quality of extracted RNA were determined 
by NanoDrop® ND 1000 spectrophotometer (Thermo 
Fisher Scientific, USA). The RevertAid H Minus First 
Strand cDNA Synthesis Kit (Thermo Scientific™, Thermo 
Fisher Scientific, USA) with random hexamer primers 
was used to synthesize cDNA from the total RNA follow-
ing the manufacturer’s instructions. T-RFLP analysis of 
cDNA was performed as described below (“Composition 
and dynamics of methanogenic communities” section).

Composition and dynamics of methanogenic communities
For a detailed analysis of abundances and activities of 
methanogenic archaea, T-RFLP analysis of mcrA gene 
DNA and cDNA amplicons was used as described pre-
viously [41]. The primers mlas (GGT​GGT​GTMGG-
DTTCACMCARTA) and mcrA-rev (CGT​TCA​TBGCG​
TAG​TTVGGR​TAG​T) were used [42]. BstNI (New Eng-
land Biolabs) was used as restriction enzyme. A previ-
ously published database was used to assign families to 
the detected T-RFs [43]. Methanogens are supposed to 
contain only one copy of mcrA per genome [42]. Metha-
nobacteriales and Methanococcales contain one copy of 
the mrtA gene, which is also amplified by the primers 
mlas and mcrA-rev [42]. To convert T-RF abundances 
into genome abundances, the T-RFs of these two orders 
were corrected by the factor 2.

Composition of bacterial communities
Bacterial community compositions were analyzed by 
amplicon sequencing of 16S rRNA genes. PCR ampli-
fication and sequencing with the MiSeq platform (V3, 
2 × 300  bp, Illumina) were performed by LGC Genom-
ics GmbH (Berlin, Germany). The primers 341f (CCT​
ACG​GGNGGC​WGC​AG) and 785r (GAC​TAC​HVGGG​
TAT​CTAAKCC) targeting the V3–V4 regions were used 
[44]. LGC Genomics processed the sequencing data by 
de-multiplexing and removing barcodes (max. 1 mis-
match), adapter as well as primer sequences (max. 3 
mismatches). Raw de-multiplexed sequence data were 
deposited at EMBL European Nucleotide Archive (ENA) 
under accession number PRJEB27523 (http://www.
ebi.ac.uk/ena/data/view/PRJEB​27523​). The software 
BBMerge 34.48 (http://bbmap​.sourc​eforg​e.net/) was 
used to merge forward and reverse reads using a mini-
mum overlap of 12 bp. The QIIME 1.9.1 Virtual Box [45] 

http://www.ebi.ac.uk/ena/data/view/PRJEB27523
http://www.ebi.ac.uk/ena/data/view/PRJEB27523
http://bbmap.sourceforge.net/
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was used for further data analysis: quality filtering was 
performed (threshold < 20, truncation after three con-
secutive low quality bases, no ambiguous base calls), and 
chimeras were removed. Reads were clustered into OTUs 
using the usearch tool and a minimum cluster size of 4 
to remove spurious reads [46]. Taxonomic assignment 
was performed using MiDAS taxonomy 2.1 [47] and the 
RDP classifier 2.2 (confidence threshold 0.8) [48]. The 
OTU table was rarefied to 41,305, 18,288, and 57,507 
sequences per sample for Experiments 1, 2, and 3, respec-
tively (see Additional file  1, Figure S10). Archaeal 16S 
rRNA genes are only partially amplified by the applied 
primers and the resulting archaeal community composi-
tion may, therefore, be biased [44]. Thus, the methano-
genic community composition was not analyzed based 
on the amplicon sequencing data.

The relative taxon-specific 16S rRNA gene abundances 
were converted to relative taxon-specific genome abun-
dances by the average strain-specific 16S rRNA operon 
copy number per genome [49]. The 16S rRNA gene 
operon numbers per genome for each OTU at genus level 
were taken from the rrnDB database version 5.2 using 
the taxonomy search function (https​://rrndb​.umms.med.
umich​.edu/, accessed on 05.09.2017, Name type: NCBI—
all names). If the copy number was not available at the 
genus level, the next higher taxonomic level was chosen.

Inference of biological network associations using CoNet
The weights of statistically significant (Pearson correla-
tion, threshold = 0.05) mutual exclusions were calculated 
using the CoNet App (v 1.1.1 beta) inside Cytoscape (v 
3.6.0). The command ‘column normalization’ as stand-
ardization method and otherwise default settings were 
used. All 23 bacterial community compositions from all 
experiments were included in the analysis. Statistically 
significant mutual exclusions of OTUs with Syntropho-
monas and Syntrophobacter were interpreted as potential 
butyric and propionic acid oxidizers, respectively (see 
Additional file 1, Section 2.2.5).

Diversity and evenness indices
Diversity indices qD and evenness indices qE were cal-
culated for the bacterial communities at the end of the 
training phase of Experiment 1 (t = 64 days) and Experi-
ment 2 (t = 55 days) according to [28]. The parameter q 
determines the weight on rare versus abundant OTUs 
in the calculation of the indices. For q = 0, 0D equals the 
number of OTUs in a sample regardless of their relative 
abundance (richness). For q = 1, OTUs are weighted by 
their relative abundance (equals the exponentiated Shan-
non index). For q = 2, abundant OTUs are weighted more 
than rare OTUs (equals the reciprocal of the Simpson’s 

index). The evenness qE for each sample is given by 
qD/0D.

Absolute quantification of microbial COD and biomass
Microbial biomass No particulate organic matter was 
added to the influent of the reactors. Therefore, the 
volatile solids (VS) concentration in the reactor effluent 
was assumed to equal the microbial biomass dry weight 
concentration. Total solids (TS) and VS were analyzed 
as reported previously [1] except that due to the low TS 
and VS contents in the reactors, crucibles were not filled 
directly with sample, but with the pellet from 100  mL 
samples after centrifugation (10,000×g, 10 min, 10 °C).

Microbial COD The COD of the microbial biomass 
was determined by centrifuging 500  μL reactor sample 
(15,000×g, 2 min, 4 °C) removing the supernatant, wash-
ing the pellet with phosphate buffered saline (PBS) solu-
tion, centrifuging the pellet, removing the supernatant, 
resuspending the pellet in 2 mL deionized water and add-
ing it into the COD cuvette test LCK 714 (Hach Lange 
GmbH, Germany).

[2‑13C]‑acetate labeling experiment
[2-13C]-acetate labeling batch experiments were con-
ducted in biological triplicates for each reactor from 
Experiment 1. Each serum bottle had a total volume of 
122 mL, a working volume of 20 mL and was filled with 
18.74  mL reactor effluent and 1.26  mL of 1  M [2-13C]-
acetate (Sigma Aldrich, USA) in an anaerobic chamber 
(97% N2, 3% H2). The bottles were incubated at 37 °C for 
20 h. Gas composition was analyzed using the gas chro-
matograph Clarus 580 (PerkinElmer, Germany) and the 
ratio of 12CO:13CO2 as well as 12CH4:13CH4 was deter-
mined using the gas chromatography-mass spectrom-
eter (GC–MS) Clarus 600 (PerkinElmer, Germany) as 
described previously [50].

ADM1 simulation
The original ADM1 model structure [51] was changed in 
several aspects. The ordinary differential equations for 
inorganic carbon and inorganic nitrogen were amended 
by additional balancing terms to close mass balances in 
all processes. The overpressure in the headspace was 
used to calculate the biogas production rate. Standard 
parameters [52] were used if not indicated otherwise. The 
cation (Scat,in) and anion influent concentration (San,in) did 
not need to be fitted but could be determined based on 
the known composition of the synthetic medium used in 
the experiments to 78.3 and 19.8 mM for Scat,in and San,in, 
respectively.

The single population of acetoclastic methanogens 
(Xac) was split into two separate populations Methano-
sarcina (Xac,1) and Methanosaeta (Xac,2). The differential 

https://rrndb.umms.med.umich.edu/
https://rrndb.umms.med.umich.edu/
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equation for acetic acid concentration was adapted 
accordingly. The original ADM1 inhibition functions 
[51] were used for both Xac,1 and Xac,2 with default 
parameter values [52] except for upper (pH_u_ac) and 
lower limits (pH_l_ac) for pH inhibition (see Table  1). 
The complete model structure can be found as Petersen 
Matrix in Additional file 2.

The kinetic growth parameters k, Y and K for acetic, 
propionic and butyric acid degraders were manually 
optimized to fit the experimental total microbial bio-
mass concentration, the VFA concentration and the 
ratio of Methanosarcina and Methanosaeta at the end 
of the training phase as well as pH changes after the 
disturbance of both Rdisco and Rconti in Experiment 1 
(see Table 1).

The parameter set established for the lab-scale reactors 
was also applied to simulate a maize silage-fed digester. 
Only the HRT (20 days) and the substrate input composi-
tion for maize silage [53] were changed. Disintegration, 
hydrolysis and acidogenesis were simulated with stand-
ard parameters [52]. Continuous feeding was simulated 
until steady state was reached and then switched to dis-
continuous feeding (every second day). Initial conditions, 
input concentrations, and parameters of all simulations 
can be found in Additional file 2.

Additional files

Additional file 1. Details on Methods and Results. Composition of mineral 
medium, details on experimental design, detailed process performance 
data of all experiments, detailed results of microbial community analysis, 
detailed ADM1 simulation results for all experiments.

Additional file 2. Further details on Methods and Results. ADM1 parame-
ter values of all simulations, Petersen Matrix, detailed process performance 
data of all experiments, detailed results of microbial community analysis.

Additional file 3. Bacterial community composition. Zoomable pie chart 
using the visualization tool Krona.
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