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Abstract 

Background:  Biogas production is an attractive technology for a sustainable generation of renewable energy. 
Although the microbial community is fundamental for such production, the process control is still limited to techno-
logical and chemical parameters. Currently, most of the efforts on microbial management system (MiMaS) are focused 
on process-specific marker species and community dynamics, but a practical implementation is in its infancy. The 
high number of unknown and uncharacterized microorganisms in general is one of the reasons hindering further 
advancements.

Results:  A Biogas Metagenomics Hybrid Assembly (BioMETHA) database, derived from microbiomes of biogas plants, 
was generated using a dedicated assembly strategy for different metagenomic datasets. Long reads from nanopore 
sequencing (MinION) were combined with short, more accurate second-generation sequencing reads (Illumina). The 
hybrid assembly resulted in 231 genomic bins each representing a taxonomic unit with an average completeness of 
47%. Functional annotation identified 13,190 non-redundant genes covering roughly 207 k coding sequences. Map-
ping rates of metagenomics DNA derived from diverse biogas plants and laboratory reactors increased up to 73%. In 
addition, an EC (enzyme commission) reference sequence collection (ERSC) was generated whose genes are crucial 
for biogas-related processes, consisting of 235 unique EC numbers organized in 52 metabolic modules. Mapping 
rates of metatranscriptomic data to this ERSC revealed coverages of up to 93%. Process parameters and imbalances 
of laboratory reactors could be reconstructed by evaluating abundance of biogas-specific metabolic modules using 
metatranscriptomic data derived from various fermenter systems.

Conclusion:  This newly established metagenomic hybrid assembly in combination with an EC reference sequence 
collection might help to shed light on the microbial dark matter of biogas plants by contributing to the development 
of a reference for biogas plant microbiome-specific gene sequences. Considering a biogas microbiome as a com-
plex meta-organism expressing a meta-transcriptome, the approach established here could lay the foundation for a 
function-based microbial management system.
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Background
Anaerobic digestion (AD) combines organic waste man-
agement with the generation of biogas (methane), as a 
renewable source of energy. Biogas is easily storable and 
continuously available in contrast to fluctuating energy 
from sun and wind. Due to progress in the field of energy 
transition, the need for such a balanced energy source 
will increase in the future with a promising growth 
potential [1].

Although microbial communities are fundamen-
tal for biogas production, the regulation of the under-
lying processes is still based on optimization of 
technical and chemical parameters yet. The require-
ments of the involved microbial communities are taken 
into consideration by, e.g., adjusting the C:N ratio or 
supplying nutrients and trace elements. In contrast, spe-
cific requirements of microorganisms essential for the 
process are not considered yet. However, the need for 
microbial management and monitoring systems (MiMaS) 
has been highlighted and many efforts have been made 
to optimize them [2, 3]. Accordingly, there are strategies 
that focus on a better characterization of the respective 
microorganisms, whereas others try to define process-
specific marker species and related community dynamics 
[2]. Unfortunately, fundamental knowledge on anaero-
bic biogas microbiomes to establish a reliable MiMaS is 
still lacking to facilitate a robust and flexible operation 
of biogas plants [2]. Consequently, existing databases 
still are limited to fully cover the phylogenic diversity 
and metabolic potential of many different environmental 
sources used to seed biogas plants.

Next-generation sequencing (NGS) has boosted our 
understanding of complex, poorly characterized bio-
logical systems. This technology generates metagenomic 
as well as metatranscriptomic data, providing blue-
prints for the composition and functional diversity of 
microbial communities of environmental samples [4]. 
Furthermore, it allows identification of unknown, non-
cultivable microbial organisms and insight into func-
tional processes of specific ecosystems. In particular, 
whole genome shotgun (WGS) sequencing represents a 
powerful approach which allows de novo assemblies for 
a more accurate assignment of species to distinct taxa 
and also serves as a basis for in silico gene annotation to 
reveal functional properties. A biogas-related database 
containing 236 nearly complete genomes, each represent-
ing a bona fide species, has been published recently [5, 
6]. By this database as a reference to map metagenomic 
DNA from biogas microbiome samples, it became pos-
sible to provide a coverage rate of nearly 50% and to sug-
gest marker species relevant for process recovery for the 
first time [7]. However, knowledge about the functional 
role of identified species is still limited, as a functional 

annotation for this database is not yet published, fur-
ther hindering a deeper understanding of the correlation 
between genomic potential and expressed functions of 
microbial communities relevant for biogas production. 
Consequently, functional annotation of de novo assem-
bled metagenomes of biogas microbiomes will shed light 
not only onto microbial dark matter, but also on their 
functional role.

The aim of this work was to expand on biogas micro-
biome-specific databases, to more comprehensively 
cover respective metagenomes and to facilitate func-
tional evaluation of biogas processes. Within this work, 
a hybrid assembly workflow was adapted for the usage 
of metagenomic data combining long reads from nano-
pore sequencing (MinION) with short, more accurate 
NGS reads (Illumina) resulting in a Biogas METagen-
ome Hybrid Assembly (BioMETHA-) database with a 
comprehensive functional annotation. Thus, BioMETHA 
should allow an enhanced characterization of the rel-
evant microbial community, not only with regard to their 
taxonomic diversity and functional potential, but also on 
the level of activated pathways relevant for biogas pro-
duction. In combination, with a manually curated EC 
reference sequence collection (ERSC), covering known 
biogas relevant pathways, it provides targeted evalua-
tion of transcriptomic data and the functional potential 
of biogas plants. Our findings might support the concept 
of a biogas microbiome as a single complex system com-
prising expression of relevant metabolic modules also 
driving cross-species interactions.

Results and discussion
Establishment of BioMETHA—a comprehensive biogas 
metagenomics database
Assembly of short sequencing reads has some inher-
ent difficulties related to genomes containing tandem 
repeats that can span over thousands of bases [8]. 
Such regions cannot be assembled satisfactorily using 
solely second-generation high-throughput sequenc-
ing. In contrast, third-generation sequencing operates 
with long reads and, therefore, can resolve difficul-
ties in assemblies much more reliably. Using a hybrid 
assembly strategy, combining both long and short 
reads will help to overcome difficulties for assembly 
and making computation more efficient. For BioM-
ETHA assembly, we combined 154.3 million Illumina 
quality-trimmed read pairs (approximately 46 Gbs) 
with 326,223 quality-trimmed MinION reads reveal-
ing a mean length of 3852  bp generated from biogas 
plants 1–4 (Table  1 and Additional file  1). We pooled 
quality-trimmed reads from all samples to achieve 
higher average coverage and to increase overall reli-
ability of the dataset [9]. As currently published hybrid 
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algorithms mostly are just focused on assembly of indi-
vidual genomes [10, 11], we adopted a pipeline based 
on the SPAdes hybrid assembler, for the assembly of 
our metagenomic sequences from biogas plants. The 
resulting first draft genome includes 201,630 contigs 
with a total sequence of 235,568,337  bp and a mean 
sequence length of 1168.32 bp (Fig. 1). To improve the 
assembly, two additional steps were implemented: cor-
rection of the draft assembly using NanoPolish, and 2 
further iterations of the resulting draft metagenomes 
using Pilon. Accordingly, we reduced the number of 
contigs to 42,362, while N50 increased from 3127 to 
24,610  bp with a mean sequence length of 9421  bp. 
This final draft metagenome represents a significant 
improvement over recently published approaches 
from other groups including a N50 of 12,418  bp from 
Güllert’s group [12], as well as for the Symbio data-
base with a N50 of 17,256  bp [5, 6]. Subsequently, we 
used MetaWatt to assign 42,362 contigs from our final 
assembly into genomic bins (GBs). 672 GBs were gen-
erated comprising 357 million nucleotides in total and 
an average profile completeness of 17.8%. We removed 
12,362 of the shortest contigs, roughly representing 

18% of the total assembly length that did not map at 
least two out of four metagenomic samples generated 
with Illumina. Finally, 231  GBs were obtained with 
profile completeness of 10% or more, increasing the 
average profile completeness to 47% (Fig.  1) whereby 
genome completeness was calculated based on 137 
marker genes selected by Campbell et  al. [13], Among 
them, 98 GBs have an estimated profile completeness 
above 50% and 15 GBs above 90%. The final 231  GBs 
were then used for further taxonomic classification and 
gene annotation revealing 10 phyla (Additional file  2). 
127 GBs affiliate with the Firmicutes phylum, with 88 
among those belonging to the Clostridiales order and 
40 to the Clostridia class; the latter harbors the fami-
lies Clostridiaceae, Ruminococcaceae (3 GBs each) and 
Lachnospiraceae (1 GB). Twelve GBs belong to the sec-
ond largest phylum of the data set, namely the Bacte-
roidetes, with 7 members from the Bacteroidales order 
and one from the Petrimonas genus. Such distribu-
tion of GBs from a biogas plant-derived metagenomic 
assembly is in agreement with previous findings [5, 6, 
14, 15]. Furthermore, the ratio between GBs belonging 
to Firmicutes and Bacteroidetes phyla is in accordance 

Table 1  Overview of  the  samples from  agricultural biogas plants and  laboratory reactors used in  this study, showing 
the different operational parameters and the type of sequencing approaches applied

Fermenter Operational parameters Database assembly 
sequencing 
approach

Database evaluation sequencing 
approach

Substrate Temperature, °C DNA seq. HiSeq 
and MinIon 
sequencing

DNA seq. HiSeq 
sequencing

RNA seq. HiSeq 
sequencing

Agricultural biogas plant

 1 Maize silage, cattle slurry, horse + pig + cattle 
manure, organic waste

41 ×

 2 Maize silage, pig + cattle slurry, chicken dung, 
organic waste

54 × ×

 3 Maize silage, grass silage 52 × ×
 4 Maize silage, grass silage 40 ×
 5 Maize silage, cattle slurry, horse manure 51 ×
 6 Maize silage 40 ×
 7 Grass silage, maize silage, grain, cattle slurry 40 × ×

Laboratory reactors

 R1/R2 d0 Maize silage 41 × ×
 R1 7 d Maize silage 41 × ×
 R1 21 d Maize silage 41 × ×
 R1 42 d Maize silage 41 × ×
 R1 84 d Maize silage 41 × ×
 R2 7d Maize silage 35 × ×
 R2 21d Maize silage 41 × ×
 R2 42 d Maize silage 41 × ×
 R2 84 d Maize silage 41 × ×
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to the data from other biogas fermenters [12, 16]. The 
BioMETHA database also includes the bacterial phyla 
Chloroflexi (5 GBs), Synergistestes (2 GBs), Ternicutes 
(2 GBs), Fibrobacteres (2 GBs) and Thermotogae (1 
GB) which can be also found in the Symbio database 
[5, 6]. In addition, identified Candidatus Cloacimon-
etes phyla (3 GBs) and Planctomycetes (1 GB) were also 
already described to be associated with biogas plant 
microbiomes [17, 18]. Sixty bacterial GBs could not 
be unambiguously classified at the phylum level. Nine 
GBs belong to the Euryarchaeota, seven of which could 
be classified at least to the family level. Another seven 
GBs were marked as hybrid as they could not be clearly 

assigned either to bacteria or archaea possibly due to a 
very low estimated completeness of below 20%.

Finally, coding sequences (CDS) were predicted and 
annotated for these 231 GBs resulting in 270,105 pre-
dicted CDS out of which 96,343 could be assigned to EC 
numbers. The assembly consists of 13,190 non-redundant 
transcriptional units, comprising 1873 unique EC num-
bers. To further complement the functional annotation, 
we additionally annotated every GB using InterProScan. 
It was able to match successfully about 1.97 millions 
of protein signatures from different databases such as 
KEGG, Pfam, PANTHER and could also assign 779,094 
GO terms.

Fig. 1  Metagenomic hybrid assembly workflow. On the left panel all processing steps are listed while on the right panel all intermediate workflow 
statistics are listed
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The BioMETHA database and the corresponding anno-
tations are available for download from European Nucle-
otide Archive web page under the PRJEB27149 accession 
number.

Analyses of biogas microbiomes at the metagenomic level
One of the aims of the assembly was to improve the 
mapping coverage for metagenomic data derived from 
biogas plant samples to enable a more comprehensive 
understanding of the biological processes underlying 
biogas production. To test our assembly, metagenomic 
sequences from production scale agricultural biogas 
plants 5 to 7—that were not used for assembly—were 
mapped to the annotated BioMETHA or to the Symbio 
database. On average, we could uniquely map  60% of 
the reads to the 231 GBs of the BioMETHA assembly, 
whereas 46% of the reads were mapped to the 236 GBs 
of the Symbio database. For samples derived from biogas 
plant 7, we increased the mapping rate by 17%. Subse-
quently, we also checked to which extent unmapped 
reads following mapping either to BioMETHA or to 
Symbio can be mapped to the respective other database. 
24.3% of reads unmapped to BioMETHA could be fur-
ther mapped to Symbio, while 41.5% of reads unmapped 
to Symbio could in turn be mapped to BioMETHA. Map-
ping results indicated that both databases contain unique 
sequences not present in the respective counterpart, 
implicating that reconciling both databases holds prom-
ise for even more comprehensive coverage in the future.

Analyses of biogas microbiomes at the metatranscriptomic 
level
Using BioMETHA, we achieved a significant increase in 
mapping rate compared to currently available metage-
nome databases from biogas plants, facilitating the 
investigation of specific characteristics and roles of dif-
ferent genera and families within the respective micro-
bial community. However, each metagenomic assembly 
that increases the phylogenetic diversity of known spe-
cies still represents just the tip of an iceberg compared 
to the unknown microbial dark matter [19]. Therefore, 
especially for such complex and dynamic microbial com-
munities like biogas plant microbiomes, it is challeng-
ing to reach 100% of sequence mapping on the species 
level. Hence, we extended our study on the applicability 

of expression analyses of the genetic repertoire which 
is established by the respective microbiome to better 
describe and understand metabolic processes in biogas 
plants. To get a general view on GO term representation 
that was implicated in biogas production, we mapped 
meta-transcriptomes from high producing reactors R1 
and R2 (day 42 and 84) to BioMETHA and analyzed the 
top 500 expressed transcripts for GO terms. Among the 
30 most prominent GO term categories, methanogenesis 
ranked third place even ranking higher than ribosome 
and translation (Additional file 3). Higher coverage only 
was found for “oxidation–reduction process” and “DNA-
binding” holding promise for the identification of novel 
genes not yet described to be critical for biogas produc-
tion (Additional file  4). Additionally, we also analyzed 
the meta-transcriptomes from samples of low and high 
level producing biogas reactors (different time points 
of R1/R2). Clustering of the top 500 most differentially 
expressed transcripts showed a clear distinction of low 
and high level biogas samples (Additional files 5, 6) indi-
cating that this kind of expression signature might sup-
port optimization of biogas production processes in the 
future.

To provide a more targeted view on genes involved in 
biogas production, a comprehensive pathway map, sum-
marizing all biological processes relevant to anaerobic 
digestion pathway and conversion of common carbon 
sources into methane, was manually reconstructed. The 
corresponding EC numbers, representing numerical 
classifiers for enzymes and enzyme-catalyzed reactions 
derived from different organisms already described by 
literature search to be implicated in biogas generation, 
were integrated and combined to metabolic modules 
summarized in a pathway map (Additional files 7, 8). In 
addition, we also included lipases (EC 3.1.1.-; EC 3.1.1.3; 
EC 3.1.1.23) and proteases (EC 3.4.-.-) to complete for 
hydrolysis processes (Additional file 9).

In total, 10,678 genes derived from BioMETHA could 
be assigned to the functional categories implicated in 
biogas generation, representing 156 (66%) out of the 
235 biogas relevant EC numbers (Fig.  2). All metabolic 
modules are at least represented to 25% by BioMETHA. 
In particular, degradation of polymers and further car-
bohydrate and lipid metabolism are well represented by 
the newly annotated genes (~ 90%). Metabolic modules 

(See figure on next page.)
Fig. 2  Biogas production pathway-related EC modules. Detailed information about AD pathway can be found on the overview map in Additional 
file 3: Figure S1. On the left all enzymatic reactions modules are listed, grouped by categories. Corresponding numbers of ECs in each module 
are in column 2 (number of asterisks indicating number of ECs without known sequence). Some modules may include redundant EC numbers. 
Gray pie-charts in column 3 representing the % of BioMETHA-annotated ECs per module while numbers in column 4 represent number of 
detected genes per module, based on DNASeq read counts. Colored pie-charts demonstrating % of genes expressed in each module with colors 
representing log2 transformed normalized RNASeq reads counts per module from biogas plant 2, 3 and 7
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relevant to amino acid metabolism show higher variance, 
while glycine, proline, serine, glutamine and the aspara-
gine/aspartate metabolic routes are completely covered. 
For tryptophan metabolism, only one out of three EC 
numbers could be annotated. The methanogenesis mod-
ules which are attributed to only 9 archaeal GBs are well 
covered, with the only exception of the (di-)methylamine 
to methyl-CoA pathway (25% coverage). One possible 
explanation to such variability in coverage among meta-
bolic modules could be the fact that archaea are much 
better characterized in the microbiomes of biogas plants 
as compared to the more complex bacterial communi-
ties [5]. In general, methylamines can be used as sub-
strate only by a small number of Archaea. Therefore, it is 
not unexpected that this pathway might be underrepre-
sented in metagenomic assembly [20]. Several metabolic 
modules needed for coenzyme or ammonium oxidation 
are not fully covered either by BioMETHA (asterisks in 
Fig. 2) or publically available EC reference sequence data-
bases, such as KEGG or RefSeq.

To perform expression analyses on the metatranscrip-
tomic level, the gene sequences from publically avail-
able databases of all EC numbers implicated in biogas 
generation were combined with the corresponding gene 
sequences from BioMETHA (156 EC numbers) to estab-
lish a most updated EC reference sequence collection 
(ERSC). However, a few relevant EC numbers could not 
be annotated using BioMETHA. This might be due to 
inaccuracies of the binning strategy or due to underrep-
resentation of species in the microbial population and, 
therefore, lack of sequencing depth [21, 22].

To test the feasibility of the established ERSC, we per-
formed RNA-seq experiments from samples of three 
agricultural biogas plants (Bgp 2, 3 and 7). The total num-
ber of reads was calculated for every metabolic module 
based on read counts assigned to individual EC numbers 
constituting the modules (Fig. 2). The abundance of indi-
vidual metabolic modules was calculated as log2-trans-
formed mean RPKM value for every EC gene sequence 
of the respective module. In contrast to the metagenomic 
data, metatranscriptomic data revealed a much higher 
coverage of respective EC categories (93% compared to 
66%; Fig. 2). Out of 52 metabolic modules only, 12 could 
not be covered completely by the RNA-seq data. Overall, 
from 235 ECs, 219 could be found to be expressed in at 
least one of the investigated biogas plants. Consequently, 
nearly all enzyme sequences relevant for the microbi-
ome of a biogas plant could be deduced using the ERSC 
in combination with our functional annotation follow-
ing hybrid assembly. Therefore, at the transcriptomic 
level, a more complete functional picture of the underly-
ing biogas processes could be provided than just by the 

classical taxonomic analyses of microbial communities at 
the species level.

In the next step, we wanted to figure out how metatran-
scriptomes per se can be used to differentiate between 
various microbiomes derived from different reactor types 
or from different time points during biogas fermentation. 
Consequently, we analyzed the metatranscriptomes of 
three agricultural biogas plants (Bgp2, Bgp3 and Bgp7), 
but also of two laboratory scale reactors fed only with 
maize silage (R1, R2) and assigned respective expression 
data (reads per million) towards the individual functional 
categories (Fig.  3). Additionally, the respective mapping 
rates of the individual samples to BioMETHA as well as 
the percentage of the 235 ECs covered by the metatran-
scriptomes are listed (Fig.  3). These data show that by 
mapping DNA sequence reads to BioMETHA, we could 
increase the mapping rate to 68% on average for the labo-
ratory reactor samples compared to 47% when mapping 
to the Symbio database as previously reported [7]. Clus-
ter analysis of samples revealed that the two thermophilic 
biogas plants Bgp2 and Bgp3 cluster together regard-
less of their substrate components. This result is in good 
agreement with the well-known effect of temperature on 
biogas plant performance and community structure [23–
26]. Clustering also confirms time-dependent differences 
of lab reactors R1 and R2. While R2 experienced an unin-
tended initial process disturbance with a temperature of 
35  °C until day 16, R1 was running with a process tem-
perature of 41 °C directly from the beginning. It has been 
shown that the composition of microbiomes and respec-
tive metatranscriptomes of the two fermenters con-
formed after day 21 [7]. Hence, samples from R1 and R2 
from days 42 and 84 are clustering together, while they 
show clear deviations on days 7 and 21. Having a look at 
the expression of metabolic modules in more detail, it is 
obvious that the mcr expression (related to the conver-
sion of methyl-CoA into methane (EC 2.8.4.1) was nega-
tively affected by the process disturbance as well as the 
genes involved in hydrogenotrophic methanogenesis are 
expressed at lower levels in R2 at day 7 compared to R1 at 
the same and later time points in the process (Additional 
file 10 and Fig. 3).

The combined DNA and RNA data from microbiomes 
of all studied biogas production systems (Fig. 2) revealed 
the varying importance of the individual degradation 
modules. In case of polymer degradation, genes and tran-
scripts for proteases and starch hydrolysis are conspicu-
ously abundant agreeing with the composition of the feed 
material (Table 1). On the level of small metabolites, glu-
tamate apparently plays an important role for catabolic 
and anabolic purposes alike. Finally, as expected, genes 
and transcripts involved in methanogenesis are particu-
larly abundant. Notably, while the number of genes for 
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Fig. 3  Comparative metatranscriptomic analysis of biogas plants. Heatmap colors representing log2 RPM values per module. Hierarchical clustering 
was done for samples as well as for modules. Corresponding dendrogram on the right shows clustering of biogas plants and laboratory reactors. 
The dendrogram for modules clustering is not shown. All modules correspond to modules listed in Fig. 2
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hydrogenotrophic methanogenesis is comparably low in 
number, they display high expression levels.

To date, there have been lots of efforts to monitor the 
complex microbial communities, microbial population 
dynamics and the effects of process parameters and dis-
turbances during biogas production. However, none of 
them was able to bring forward standard characteristics 
on the microbiome to implement microbial management 
into application [2]. In contrast, the relevant pathways 
to convert polymers into methane are less alterable and 
complex, than the underlying community structures, and 
seem to be, therefore, more promising for an implemen-
tation in process control. Nevertheless, a strateg, based 
on transcriptomic data will become even more reliable, 
if environmental-specific reference sequences are avail-
able [27]. Thus, the establishment of BioMETHA and its 
accompanying EC reference sequence collection might 
provide a useful instrument for a better understand-
ing and controlling of biogas processes. In this context, 
repeatability of testing results is an important issue. 
Therefore, a prerequisite for a maximum of repeatability 
for metagenomics and meta-transcriptomics data from 
future studies is that the corresponding databases should 
be as comprehensive as possible. In this respect, our 
BioMETHA and the EC reference sequence collection 
represent the most comprehensive databases currently 
applicable. Nevertheless, additional efforts in the future 
have to be made to further improve such databases which 
includes, but is not limited to, the analyses of other types 
of biogas plants as well as the raising of sequencing depth 
to provide more comprehensive sequencing data to fur-
ther improve assemblies and to complete genomic bins.

Conclusions
This newly established metagenomic hybrid assembly 
in combination with an EC reference sequence collec-
tion might help to advance our functional understand-
ing of microbiomes from biogas plants. In particular, 
this strategy complements the traditional biodiversity-
centered approaches by a database of genes/transcripts 
directly involved in the anaerobic digestion and thereby 
in the process of biogas formation. From these databases, 
truly functional biomarkers might be derived for online 
monitoring and controlling of the process performance 
in biogas plants particularly those fed with agricultural 
wastes including silage and animal manures. The data-
base can be extended and completed with the methods 
reported here, e.g., using samples from biogas plants uti-
lizing other substrates.

Moreover, considering a complex microbiome as a 
meta-organism expressing a meta-transcriptome might 

be a promising approach for improving the knowledge 
about metabolic sequences in methanogenic microbial 
and developing a function-based microbial management 
system, which could be used in future to optimize biogas 
production.

Methods
Biogas plant characteristics and sample collection
For this study, samples were taken from seven different 
agricultural biogas plants with different substrates and 
process temperatures (Table 1). While biogas plants 1–5 
are located in the federal state of Baden-Württemberg, 
biogas plants 6 and 7 are located in the federal state of 
Lower Saxony. Samples were collected from biogas plants 
in two 2-ml reaction tubes and additionally in two 50-ml 
falcon tubes and directly frozen on dry ice. For long-term 
storage, the samples were kept at − 20  °C until DNA/
RNA extraction.

Additionally, samples from two anaerobic digestion 
bioreactors (R1 and R2) which were carried out in a con-
tinuous biogas test (CBT), were analyzed. In R2, a delay 
in process temperature control was initiated from the 
beginning of the fermentation leading to an initial acidi-
fication of the anaerobic sludge. A detailed description of 
the processes has been recently published [7].

Nucleic acid extraction
DNA from biogas plants 1–7 was extracted using the 
ZR Fecal DNA MiniPrep™ Kit (Zymo Research; Irvine, 
USA). Cell lysis was performed with a high-speed cell 
disturber Precellys® 24 Homogenisator (VWR, Germany) 
for 40 s at 5000 rpm. Additional cleanup of the isolated 
DNA was performed by Agencourt AMRure XP beads 
from Beckman Coulter (Brea, CA, USA). Isolated DNA 
was stored at − 20 °C until library preparation. RNA was 
isolated using the ZR Soil/Fecal RNA MicroPrep™ Kit 
(Zymo Research, Irvine, USA). Isolated RNA was stored 
at − 80  °C until further preparation steps. The qualities 
of nucleic acids were checked with the HS NGS and HS 
RNA Fragment Analysis Kit on a Fragment Analyzer 
(AATI, USA).

Nucleic acids from R1 and R2 samples were isolated 
according to a protocol published recently [7].

Library preparation and quality control
For Illumina sequencing samples used for the assem-
bly were prepared using the TruSeq DNA PCR-Free 
Library Preparation Kit (Illumina, San Diego, CA, USA). 
According to the manufacturer’s protocol, the fragmenta-
tion step of the genomic DNA was done using 3000  ng 
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genomic DNA and 2 µl Reaction Buffer v2; total volume 
was adjusted to 18  µl with water. The reaction mix was 
incubated for 18 min at 37 °C. For size selection, we used 
the Bluepippin system with 2% DF Marker M1 Gel and a 
size range selection of 400–800 bp (Beverly, MA, USA). 
The following end repair step was finished by a cleaning 
step without additional size selection. Additional samples 
from biogas plants were not used for the assembly but 
for metagenomic analyses. Samples R1 and R2 were pre-
pared following Illumina’s Nextera DNA Sample Prep Kit 
protocol with an input amount of 50 ng DNA.

For nanopore sequencing, libraries were prepared 
using the Ligation Sequencing Kit 2D (Oxford Nanopore 
Technologies Ltd., Oxford, UK) according to the manu-
facture protocol with DNA inputs ranging between 715 
and 1500 ng.

To analyze the metatranscriptomes, RNA was prepared 
using the ScriptSeq Complete Kit for Bacteria according 
to its low input protocol (Illumina, USA). Depending on 
the available amount of starting material, 20 ng or 100 ng 
of total RNA per sample was used.

Prior to sequencing, all libraries were quality controlled 
using the HS NGS Fragment Analysis Kit on a Fragment 
Analyzer (AATI, USA).

Nucleic acid sequencing
Libraries for the assembly as well as for RNA seq were 
sequenced by a HiSeq  2500 (Illumina, USA) for 150 
cycles in paired-end mode with an average sequencing 
depth of approximately 38 million reads. Same settings 
were chosen for the additional samples from biogas plant 
5–7, with expected sequence depth of only approximately 
15 million reads per sample. Libraries from R1 and R2 
were also sequenced by a HiSeq  2500 (Illumina, USA) 
with a 150 bp paired-end reads and average sequencing 
depth of approximately 13 million read pairs per sam-
ple. To analyze the metatranscriptomes for R1 and R2, 
Illumina sequencing was performed applying 140 cycles 
in single-end mode with an average depth of 34 million 
reads per sample.

Each library prepared for long-read sequencing was 
loaded on Spoton Flow Cells MkI R9.4 and sequenced on 
a MinION according to the manufacture’s instructions 
for 48 h using MinKnow v.1.1.21.1 software, followed by 
a base calling on Metrichor cloud-based service (Oxford 
Nanopore Technologies Ltd., Oxford, UK).

Bioinformatics workflow—Illumina‑generated sequences
All samples were de-multiplexed using Illumina’s 
bcl2fastq (v1.84) software with default settings for 
adapter trimming (at least 90% of bases should match) 
and allowing no mismatch per sequencing bar code 

(–mismatches 0). Raw Illumina reads were cleared from 
potential adapter contamination, quality controlled, and, 
if necessary, trimmed in paired-end mode using BBDuk 
from the BBMap package version 34.41 (https​://sourc​
eforg​e.net/proje​cts/bbmap​/). To pass the quality filter, 
read quality needed to surpass a Phred score of 20 and 
achieve a minimal length of 50 bp after trimming of low 
quality and adapter bases.

Additional data quality control measures were taken: 
each sample was tested before and after trimming with 
the FastQC to evaluate per base sequence quality, average 
base composition, GC content, sequence length distribu-
tion and adapter contaminations (http://www.bioin​forma​
tics.babra​ham.ac.uk/proje​cts/fastq​c/).

Oxford Nanopore Technology (ONT)‑generated sequences
Raw reads (FAST5) were acquired using MinKnow 
v.1.1.21.1 software (samples neo19, neo20, neo21, neo23) 
[28, 29]. Base calling for MinION data is performed 
using a cloud-based service provided by ONT—Met-
richor (metrichor.com). Metrichor applies HMM-based 
methods to extract sequence information from raw data. 
Active internet connection is required to upload raw 
reads to the Metrichor and download resulting fastq 
files. Base-called ONT reads were cleared from potential 
adapter contamination, quality controlled, and trimmed 
in single-end mode using BBDuk from the BBMap pack-
age version 34.41 (https​://sourc​eforg​e.net/proje​cts/
bbmap​/). To pass the quality filter, average read quality 
needed to surpass a Phred score of 7 and achieve a mini-
mal length of 50  bp after trimming of low quality and 
adapter bases.

The quality of resulting sequences was controlled with 
Poretools [30] and NanoPlot [31] packages.

Hybrid metagenome assembly
The assembly was executed on a computational clus-
ter running under CentOS 6.9 by SPAdes v.3.10.1 with 
merged ONT dataset and four paired-end Illumina data-
sets [32]. Since SPAdes v.3.10.1 could not be applied to 
metagenomic samples generated by different sequencing 
technologies, we treated metagenomics sample as if they 
were from a single organism. SPAdes was executed with 
automatic coverage cutoff (–cov-cutoff auto), mismatch 
correction enabled (–mismatch-correction) and iterative 
k-mer lengths optimization (-k 21, 33, 55, 77, 127). All 
contigs smaller than 1000 bp were considered as single-
tons and discarded as they were not supported by other 
reads.

The quality of the draft metagenome was further 
improved with the NanoPolish v.0.6.1 software package, 
which can utilize information from raw MinION reads 

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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[33], followed by two iterations of Pilon v.1.22 [34]. Pilon, 
in contrast to NanoPolish, uses paired-end Illumina short 
reads for corrections. Nano-polishing was conducted 
according to a standard procedure described in the docu-
mentation to the software package: initial draft assembly 
is indexed and mapped to MinION reads converted into 
a single fasta file, using the BWA-MEM algorithm [35, 
36]. The output BAM file is indexed and sorted with the 
Samtools [37, 38] and then used as input by NanoPolish 
together with the metagenome draft assembly and Min-
ION reads.

The improved sequence in turn is used as an input to 
Pilon to correct any inconsistency between draft assem-
bly and evidences in the collection of paired-end Illu-
mina reads. Pilon requires mapping of all Illumina reads 
to a draft assembly at the first step, followed by sorting 
and indexing of mapped reads. We used NextGenMap 
v.0.4.12 in paired-end mode for mapping [39] and Sam-
tools for indexing and sorting of mapped reads. For sub-
sequent iteration, Pilon results of the previous iteration 
were used as an input.

Binning
For a binning procedure of acquired assembly, we have 
applied the MetaWatt package specialized for metagen-
omic samples [40]. MetaWatt utilizes multivariate sta-
tistics of tetranucleotide frequencies combined with 
interpolated Markov models. The MetaWatt pipeline 
includes parallel ORF prediction with Prodigal [41], taxo-
nomical classification and blastx search with sequence 
aligner DIAMOND [42], predicting tRNAs with Aragorn 
[43], taxonomical classification based on conserved genes 
with hmmsearch [44] as well as usearch algorithms [45].

Only bins with profile completeness of 10% or more 
(based on mapping to a set of conservative genes) and 
with coverage of at least 50% or more (mapping of at least 
2 out of 4 metagenomic Illumina samples) were selected 
for final assembly.

Selected bins were classified to taxa by the “DIA-
MOND blastx” included in the MetaWatt workflow [42]. 
Each contig belonging to a particular bin was first split 
into 1000  bp fragments, and then the software module 
performed a blastx search for each fragment against the 
RefSeq database, containing only organisms with com-
plete reference genomes. For taxonomical classification 
of the bin, the total number of top-scoring blastx hits is 
counted for every fragment of every contig. The sum of 
all counts for each taxon divided by the number of frag-
ments in the bin was calculated. Bins were assigned to 
taxonomic level according to closest common ancestor of 
top-scoring taxons.

Functional annotation of metagenome hybrid assembly
The final hybrid metagenome assembly was annotated 
using Prokka v.1.11—a tool for rapid prokaryotic genome 
annotation [46]. Prokka was executed for Archaea, Bac-
teria and Viruses kingdoms separately enabling improved 
gene prediction for highly fragmented genomes with the 
–metagenome flag. Final annotation includes annota-
tions of individual bins according to their taxonomical 
classifications assigned by MetaWatt. Annotation for bins 
sharing mixed taxonomic background was produced by 
merging corresponding Bacteria and Archaea annota-
tions. This was accomplished by the custom Perl script 
“merge_gff_annotation.pl”, which complemented pre-
dicted CDS from bacteria with predicted and annotated 
CDS from archaea. We consider predicted CDS to be 
“annotated” when either gene ID or EC number is known.

To wrap up the functional annotation generated by 
Prokka, we additionally annotated every genomic bin 
with InterProScan v5.30 [47]. InterProScan was executed 
with all default databases, default analysis algorithms 
selection, additional pathways lookup algorithm and 
DNA sequence as a search template. Resulting tab-delim-
ited TSV text files generated for every genomic bin were 
either merged together to generate a full annotation or 
used separately for follow-up analysis.

Anaerobic digestion pathway map
The comprehensive pathway overview map, summariz-
ing and reconstructing all biological processes relevant to 
anaerobic digestion pathways of carbohydrates lipids and 
proteins, was created by detailed literature and database 
research (KEGG, MetaCyc, BRENDA). A correspond-
ing list of references is provided separately as Additional 
file 8.

Biogas production specific EC reference sequence 
collection (ERSC)
The EC number (enzyme commission) is a numerical 
classification scheme for enzymes and enzyme-catalyzed 
reactions derived from different organisms. We down-
loaded all reference sequences from KEGG or NCBI 
databases belonging to enzymes relevant for anaerobic 
digestion. All downloaded sequences were supplemented 
using BioMETHA sequences specific to the previ-
ously described enzymatic map (Additional file  7). EC 
sequences are assigned to metabolic modules; whereas, 
the term metabolic module refers to the complement of 
enzymes involved in the conversion of a given substrate 
and a metabolic process, respectively.
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transcripts.

Additional file 7. Pathway map of EC numbers involved in anaerobic 
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Additional file 9. Summary of EC numbers with assignments to meta-
bolic modules.

Additional file 10. Heatmap of log2-transformed RPKM values of 
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