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Abstract 

Background:  Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. 
Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, 
we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the 
relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB.

Results:  Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, 
cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop 
residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was 
consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass 
enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of 
LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose 
content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis.

Conclusions:  Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided 
direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships 
that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could 
be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for 
biofuel production.

Keywords:  Carbohydrate-binding module, Cellulose accessibility, Enzymatic hydrolysis, FTCM, Lignocellulosic 
biomass, Pretreatment
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Background
Biofuel production from lignocellulosic biomass (LCB) 
represents a greener alternative to fossil fuels [1, 2]. For 
the production of biofuels from LCB, such as bioetha-
nol, the principal goal is the complete hydrolysis of the 
polysaccharide components (mainly cellulose) in the raw 
material into monomers for subsequent fermentation 
[3]. Although LCB is a promising, abundant and renew-
able resource, the complete hydrolysis of its polysaccha-
rides remains difficult [3, 4]. Indeed, it is difficult to break 
down the rigidity of plant biomass due to its complex 
structure, which consists of cellulose fibrils wrapped in a 
network of lignin and hemicelluloses [3, 4]. This network, 
collectively referred to as the lignin–carbohydrate com-
plex, is highly recalcitrant and difficult to deconstruct [3, 
4]. Consequently, several steps including pretreatments 
are needed to improve access to polysaccharides, mainly 
cellulose, before it can be used in value-added applica-
tions [5].

The main objective of pretreatments for subsequent 
biochemical conversion is to increase access to cellulose 
(also known as cellulose accessibility), which can later 
be hydrolyzed by enzymatic hydrolysis processes [4, 5]. 
However, pretreatments vary greatly in the way they help 
to expose cellulose. Physical pretreatments help reduce 
particle size and fiber crystallinity [6, 7], alkali (and acid) 
pretreatments remove lignin and hemicelluloses and can 
lead to loss of cellulose [8–10], solvent fractionation leads 
to disruption of biomass components with lesser impact 
on lignin [11–13], while liquid hot water mainly removes 
hemicelluloses [14–16]. Because of the variety of ligno-
cellulosic composition found among feedstocks, not all 
feedstocks require the same pretreatment [16, 17].

An in-depth understanding of the impact of pretreat-
ment on a particular biomass is believed to be a key issue 
for reducing costs associated with biofuel production [18, 
19]. Indeed, pretreatment is the most important step and 
plays a significant role in the commercial viability of bio-
fuel production [20]. Accordingly, optimizing pretreat-
ment is part of ongoing development efforts that will 
help the competitiveness of LCB-derived ethanol. Fur-
thermore, any variation in such impact (due to variation 
in feedstock properties, chemical efficiency, mechanical 
wearing, changes in temperature and humidity) should 
be monitored on a continuous basis, or “on line” when 
feasible, to maintain optimal process operations.

The effectiveness and impact of pretreatment on a 
biomass substrate can be monitored using physical 
and chemical methods. Among them, the most com-
monly used are: compositional analysis (e.g., by NREL/
TP-510-42618), scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), atomic force 
microscopy (AFM), X-ray diffraction (XRD), nuclear 

magnetic resonance (NMR), X-ray photoelectron spec-
troscopy (XPS), nitrogen adsorption and water swelling 
capacity [21–24]. However, unfortunately, these methods 
are laborious (tedious sample preparation and long anal-
ysis time), expensive (requires specialized equipment and 
manpower) and have low throughput [23–25].

One of the major difficulties in studying pretreat-
ments and process parameters is the lack of rapid, high 
throughput and reliable tools for monitoring and/or 
tracking lignocellulosic polymers at the surface of bio-
mass [25, 26]. In recent years, spectral parameters from 
Fourier transform infrared photoacoustic spectroscopy 
(FTIR-PAS) and lignin auto-fluorescence have been 
used to accurately predict sugar release after hydrolysis 
of wheat straw, miscanthus and poplar biomass [27, 28]. 
Apart from these reliable methods, a promising avenue 
involves the use of molecules that bind specifically to a 
target individual polymer, such as monoclonal antibod-
ies or carbohydrate-binding modules (CBMs). CBMs are 
advantageous as detection probes compared to others 
(such as chemical dyes, monoclonal antibodies, etc.) due 
to their high specificity toward the polysaccharide com-
ponents of lignocellulosic polymers [29–31]. They are 
non-catalytic protein modules that are typically attached 
to glycoside hydrolases via a linker and whose function is 
to act as substrate-recognition devices, thereby enhanc-
ing the catalytic efficiency of these enzymes [29–35]. 
They have been successfully employed for the characteri-
zation of fiber surfaces composed of simple and complex 
carbohydrates [29, 36, 37]. Advances in applying CBMs 
as bioprobes were achieved by using CBMs fused to a flu-
orescence protein, such as the green fluorescent protein 
(GFP or any of its variants) [25, 33, 38]. CBMs coupled 
with fluorescence protein have been used for mapping 
the chemistry and structure of various carbohydrate-con-
taining substrates (lignocellulosic biomass) [25, 38–41]. 
Using fluorescent  protein-tagged CBMs, Gao et  al. [33] 
and Hong et  al. [39] successfully quantified the change 
in crystalline and non-crystalline (amorphous) celluloses 
accessibilities during enzymatic hydrolysis.

Considering that the ability to directly and rapidly 
monitor changes to the surface of LCB fibers after a pre-
treatment is essential, we developed a rapid and low-
cost method to directly monitor the surface of wood 
fibers using selected CBMs. Named “Fluorescent pro-
tein-tagged  carbohydrate-binding modules method”, 
or FTCM, this method relies on the use of four specific 
ready-to-use probes made of recombinant CBMs geneti-
cally linked to a designated fluorescent protein of the 
green fluorescent protein (GFP) family [25, 38, 40, 41]. 
In these probes, the recombinant CBM part binds to a 
specific component of the substrate surface. The fluores-
cence emitted by the GFP (or a selected derivative of GFP 
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with different spectroscopic properties) permits rapid 
and specific quantification of the probes bound to the 
surface. The fluorescence can be measured using an ordi-
nary fluorescence plate reader. We developed four fluo-
rescent protein-tagged fusion proteins for FTCM: Probe 
GC3a, specific to crystalline cellulose (made of the fluo-
rescent protein eGFP and CBM3a); Probe CC17, specific 
to non-crystalline cellulose (fluorescent protein mCherry 
linked to CBM17); Probe OC15, specific to xylan (com-
posed of mOrange2 and CBM15); and Probe CC27, spe-
cific to mannan (a chimera made of eCFP and CBM27). 
Probes production and characterization (spectroscopic 
maxima, affinity to related substrate, and discrimination 
among substrates) were described in our earlier reports 
[25, 38, 40].

We successfully used FTCM for monitoring the 
mechanical, chemical and enzymatic treatment on many 
wood biomass samples [25, 38, 40, 41]. This allowed us 
to detect layers of polysaccharides as they were exposed 
by treatments (mechanical, chemical and enzymatic) 
[25], confirming existing models of the location of man-
nan and xylan in relationship to cellulose and lignin [38]. 
An investigation of pulp treatments and papers produced 
from such pulps allowed us to relate FTCM probes bind-
ing with paper properties [40]. Recently, the potential of 
FTCM as a powerful surface analysis method was dem-
onstrated using pulps treated with different enzymes. It 
promoted the prediction of biomass compatibility and 
enzymatic treatments with related target bioproducts, 
such as nanocellulose production, composites or new 
paper products [41]. Throughout these studies, FTCM 
was shown to be more informative than X-ray photoelec-
tron spectroscopy (XPS) and total composition analysis 
(using NREL/TP-510-42618) [25, 40], because it specifi-
cally detects surface-exposed cellulose and hemicellu-
loses unambiguously.

In this study, we explored the applicability and adapt-
ability of FCTM to the study of agricultural LCB pre-
treatments. To this end, four LCB residues with varying 
lignin and cellulose contents (alfalfa stover, corn crop 
residues, cattail stems and flax shives) and three pretreat-
ments (liquid hot water, alkali and alkali extrusion) were 
selected. These pretreatments were designed to promote 
different impacts on LCB surface polymer contents. We 
used an adaptation of FTCM (named FTCM-depletion 
assay) and investigated the relationships between FTCM 
probes binding and enzymatic production of reducing 
sugars.

Methods
Chemicals, microbial strains and LCB
Unless otherwise noted, all chemicals were of reagent 
grade and purchased from Sigma-Aldrich and/or Fisher 

Scientific. Escherichia coli XL10 cells (Agilent Technolo-
gies) were used for all DNA manipulations, while E. coli 
BL21-Gold(DE3)pLysS competent cells (Agilent Tech-
nologies) were used for recombinant protein expres-
sion. Samples of α-cellulose (C8002; Sigma-Aldrich) 
and Avicel PH-105 microcrystalline cellulose (FMC cor-
poration, Philadelphia, PA, USA) were used as positive 
controls, whereas a commercially available alkali lignin 
(370959; Sigma-Aldrich) was used as a negative control 
for this study. According to the suppliers’ specification, 
the alkali lignin was produced by kraft delignification of 
Norway spruce, contained 4% sulfur impurities and had 
an average Mw of 10,000 Da. Regenerated amorphous cel-
lulose (RAC) was prepared from Avicel PH-105 micro-
crystalline cellulose as described by Zhang et  al. [42]. 
Four different LCBs were used in this study to quantify 
and compare the lignocellulosic composition and their 
enzymatic hydrolysis. These LCBs were derived from 
alfalfa (Medicago sativa) stover provided by TH-Alfalfa 
Inc. (Quebec, Canada), corn (Zea mays) crop residues 
provided by Ferme Olivier and Sébastien Lépine of 
Agrosphère Co. (Quebec, Canada), cattail (Typha) stems 
provided by International Institute for Sustainable Devel-
opment (IISD) (Manitoba, Canada) and flax (Linum) 
shives provided by SWM International (Manitoba, Can-
ada). Accellerase® DUET (Dupont Industrial Biosciences, 
USA) was used in this study to hydrolyze LCB. Carbox-
ymethyl cellulose sodium salt (CMC; C5678; Sigma), 
4-nitrophenyl-β-d-glucopyranoside (pNPG; Sigma) and 
arabinoxylan (ABX; Megazyme) were used for enzymatic 
activity measurements using the 3,5-dinitrosalicylic 
acid (DNS) method [43]. The activities of Accellerase® 
DUET enzyme determined using commercial substrates 
are presented in Additional file  1. Carboxymethyl cellu-
lose sodium salt (C5678; Sigma), xylan from beechwood 
(X4252; Sigma) and galactomannan (P-GALML; Mega-
zyme) were used for affinity gel electrophoresis (AGE). 
Xylohexaose (O-XHE; Megazyme), mannohexaose 
(O-MHE; Megazyme) and cellohexaose (O-CHE; Mega-
zyme) were used for determination of the probes affinity 
using isothermal titration calorimetry (ITC).

Construction, expression and purification 
of fluorescent protein‑tagged carbohydrate‑binding 
modules probes
Four different fluorescent protein-tagged carbohydrate-
binding modules, eGFP-CBM3a (GC3a), mCherry-
CBM17 (CC17), mOrange2-CBM15 (OC15) and 
eCFP-CBM27 (CC27), were used in this study to detect 
crystalline cellulose, non-crystalline cellulose, xylan and 
mannan, respectively. The detailed information about 
these recombinant probes is described in Additional 
file 2. Expression systems, production and purification of 
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all the four probes used in this study have been described 
in our previous studies [25, 40]. Probe purity was assessed 
by SDS-PAGE (Additional file 3). The amount of proteins 
was quantified by the Bradford method [44].

Determination of probes’ affinities and specificities
CBM probe affinities and specificities toward soluble and 
insoluble polysaccharides, and soluble hexasaccharides, 
were determined using affinity gel electrophoresis (AGE), 
solid-state depletion assay (SSDA) and isothermal titra-
tion calorimetry (ITC), respectively (Additional files 4 
and 5). The presence of fluorescent protein did not mod-
ify the affinity and specificity of the CBMs.  SSDA was 
used to measure the binding affinities of GC3a and CC17 
probes using the insoluble polysaccharides Αvicel and 
RAC. Experimental conditions for AGE, ITC and SSDA 
are described in Khatri et  al. and Hébert-Ouellet et  al. 
[25, 38, 40]. Experiments were performed in triplicate.

LCB preparation and pretreatments
The LCB residues underwent various pretreatment pro-
cesses to either partially or completely remove hemicellu-
loses and/or lignin. All four raw LCB named alfalfa stover 
(AR, where “A” represents alfalfa and “R” stands for raw), 
corn crop residues (CoR), cattail stems (CaR) and flax 
shives (FR) were subjected to three different treatments: 
(1) liquid hot water, (2) alkali and (3) alkali extrusion. The 
pretreatment conditions were as follows. (1) For liquid 
hot water pretreatment, 10% (w/v) of LCB was mixed 
with water and held at 121 °C and 1.034 bar (15 Psi) for 
60 min using a laboratory-scale autoclave. This pretreat-
ment essentially removes the hemicelluloses. Biomass 
treated by hot water is expressed as “XW” (i.e., “AW” for 
alfalfa stover, “CoW” for corn crop residues, etc.). (2) For 
alkali pretreatment, 10% (w/v) of LCB was mixed with 
NaOH (5% w/w of LCB) and held at 121 °C and 1.034 bar 
(15 Psi) for 60 min, using an autoclave (the letter “N” is 
used to represent this pretreatment, for example: “AN” 
for alfalfa treated with alkali). This pretreatment removes 
a significant portion of both lignin and hemicelluloses. (3) 
For alkali extrusion pretreatment, LCB was subjected to 
reactive extrusion fractionation using an E-max 27  mm 
twin-screw extruder (Entek Extruder, OR, US) using 5% 
NaOH at a rotation speed of 200  rpm at 180  °C. This 
pretreatment substantially helps to break the fiber walls, 
causing them to release their main components (cellu-
lose, hemicelluloses and extractives), which are bound 
together by lignin. This process also removes (partially) 

the lignin and hemicelluloses [45]. The letter “E” is used 
for identifying this pretreatment (i.e., “FE” for flax shives 
treated by alkali extrusion). After each pretreatment, all 
the samples were washed eight to ten times with distilled 
water (200 mL for 5 min) at room temperature until the 
filtrate became clear. These pretreated sample residues 
were dried at 50  °C for 48  h to ensure a moisture con-
tent of < 2%. They were then ground and passed through 
a 2-mm-mesh sieve. The pretreatment conditions used 
here involve chemical or physical treatments that are 
commonly used for biomass treatment, but they are not 
representative of industrial conditions required for eco-
nomic biofuel production.

Determination of cellulose, hemicellulose and lignin 
content
The National Renewable Energy Laboratory (NREL/
TP-510-42618) standard method described by Sluiter 
et al. [21] was used to determine the quantitative compo-
sition of cellulose, hemicellulose and acid-insoluble lignin 
content in α-cellulose, Avicel and in the different raw and 
pretreated LCB. The hydrolyzed monosaccharide con-
tents of α-cellulose, Avicel and LCB (raw and pretreated) 
were determined by ion-exchange chromatography (ICS-
5000, Dionex) and detection was performed using an 
electrochemical detection cell (combined pH-Ag/AgCl 
reference electrode). Each experiment was conducted at 
40 °C with 1 mL/min isocratic elution of NaOH (1 mM) 
on a Dionex CarboPac SA10 (250 × 4 mm) column cou-
pled with a Dionex CarboPac PA100 (50 × 4 mm) guard 
column. Data analysis was performed using Dionex 
Chromeleon 7 software. Experiments were performed in 
triplicate.

Enzymatic treatment of LCB
The enzymatic hydrolysis of substrates (α-cellulose, Avi-
cel and LCB, all set at 5% w/v) was carried out using 
Accellerase® DUET enzyme (0.25  mL/g of substrate) in 
0.05  M of citric acid buffer at pH 4.4. Each enzymatic 
hydrolysis was performed over 144-h (6  days) period at 
55  °C with continuous agitation at 200  rpm. An aliquot 
(1  mL) of the enzymatic reactions was collected every 
24th hour. All the aliquots were centrifuged at 4000 rpm 
for 1  min and the supernatant was then transferred 
to a clean tube before storing them at − 20  °C until the 
analysis of total reducing sugar. The release of the total 
reducing sugars was measured using the 3,5-dinitrosali-
cylic acid method (DNS) as described by Miller [43]. All 
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absorption readings (at 540 nm) were performed in trip-
licate to calculate the variability of measurements.

Quantification of the variations of the carbohydrates 
on the surface of LCB using FTCM‑depletion assay
The FTCM-depletion assay is a modified version of the 
FTCM methodology described by Khatri et  al. [25, 38] 
and Hebert-Ouellet et  al. [40], which is adapted from 
SSDA [46, 47]. SSDA has been defined as a method for 
qualitative and quantitative assessment of the interaction 
between CBMs and insoluble polysaccharides [46, 48]. 
Insoluble polysaccharide substrates (α-cellulose or Avicel 
or LCB) were prepared by weighing 25 mg of dry powder 
and suspending it in Eppendorf tubes. To keep polysac-
charides suspended, the reactions were performed under 
constant tumbling in a 20 Tris–HCl pH 7.5 buffer con-
taining 20 mM NaCl, 5 mM CaCl2 and 3% (w/v) bovine 
serum albumin (BSA). BSA was used as a blocking agent 
to prevent lignin from competitively binding to CBM 
probes. Reaction series were set up with identical sub-
strate amounts (2.5% w/v) and identical CBM probe con-
centrations (0.5  µg/µL) of GC3a, CC17, OC15 or CC27 
(for the detection of crystalline cellulose, non-crystalline 
cellulose, xylan and mannan, respectively). Following an 
hour incubation under constant tumbling at room tem-
perature, all the reactions were centrifuged (20,000×g for 
5  min) to separate solids from liquid phase. The super-
natant was then removed and quantitatively analyzed 
by fluorescence spectroscopy. A volume of 200  µL of 
each reaction supernatant sample was transferred into 
a 96-well, black microplate (Costar, Corning Life Sci-
ences). Later, fluorescence measurement of supernatants, 
containing unbound probes or free probes (FFree), was 
acquired using a Synergy Mx microplate reader (BioTek) 
with the end point feature active and the filter bandwidth 
set at 9  mm. Fluorescence intensities [total (FTotal) and 
background (FBackground)] were measured using the reac-
tion set containing CBM probes without polysaccharides 
and polysaccharides in buffer (without CBM probes), 
respectively. The excitation and emission wavelengths 
for measuring fluorescence intensities of fluorescent pro-
tein-tagged CBM probes were set at 488 and 510 nm, 587 
and 610, 549 and 568 nm and 434 and 477 nm for GC3a, 
CC17, OC15 and CC27, respectively. The fluorescence 
intensities of bound probes (FBound) to the α-cellulose, 
Avicel, raw and pretreated LCB were calculated using the 
following equation:

FBound = FTotal −
(

FFree − FBackground

)

.

These fluorescence values were then converted into 
µmol/g of substrate using the appropriate fluorescence 
standard curves for each probe (Additional file 6). Con-
trol experiments using FTCM probes without substrates, 
and substrates without FTCM probes, were carried out 
to evaluate and eliminate non-specific fluorescence emis-
sion contributions to final FTCM signals. All reactions 
were performed in triplicate.

X‑ray diffraction (XRD)
X-ray diffraction patterns of α-cellulose and Avicel sam-
ples were recorded with an X’Pert PRO X-ray diffrac-
tometer (PANanalytical) at room temperature from 10 
to 60 °C, using Cu/Kα irradiation (1.542 Å) at 45 kV and 
40 mA. The scan speed was 0.021425° s−1 with a step size 
of 0.0167°. Crystallinity index (CrI) was calculated using 
the peak intensity method [49]:

where I002 is the intensity of the peak at 2θ = 22.5° and Iam 
is the minimum intensity, corresponding to the non-crys-
talline content, at 2θ = 18°.

Results and discussion
Adaptation of FTCM to a depletion assay for investigation 
of biomass suspensions
As described earlier, the FTCM method was designed 
to perform monitoring of surface-exposed composition 
of pulp and paper samples [25, 38, 40, 41]. The original 
method relies on the formation of a fiber sheet to which 
probes are allowed to bind. Then, fluorescence measure-
ments of bound probes on drained sheets are recorded 
and converted into the number of probes bound per sur-
face area (typically, square mm). Here, we adapted the 
method to biomass suspension analysis, and recorded 
unbound probe fluorescence in what is hereafter referred 
to as a “FTCM-depletion assay”. This adaptation of 
FTCM to suspension measurements was tested by sim-
ple control experiments with well-characterized cellulose 
preparation. To this end, we used two different commer-
cialized celluloses having different crystallinity index 
(CrI): α-cellulose (CrI = 62%) and Avicel (CrI = 81%). Avi-
cel has a higher crystallinity index as a consequence of a 
lower content of non-crystalline cellulose than α-cellulose 
[50, 51]. The binding of all four probes to these purified 
cellulose preparations is represented in Fig. 1a. The sur-
face analysis by the FTCM-depletion assay clearly shows 
the domination of crystalline cellulose at the surface of 

CrI = (I002 − Iam)/I002 × 100,
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both α-cellulose and Avicel samples. The non-crystalline 
cellulose specifically recognized by the CC17 probe was 
found in smaller amount, but it was higher in α-cellulose 
when compared to Avicel, which is compatible with 
their crystallinity index. Increased binding of CC17 was 
detected for α-cellulose compared to binding to Avicel, 
indicating that adaptation of the FTCM probes to a solid-
state depletion assay performed adequately.

No binding of probes OC15 and CC27 was detected 
for Avicel, while very low binding of OC15 (xylan specific 
probe) was detected in α-cellulose. This is fully compat-
ible with the high purity of such cellulose preparations 

and the sensitivity of the FTCM-depletion assay. We 
then summed the binding of GC3a and CC17 to repre-
sent total cellulose surface exposure or cellulose acces-
sibility to probes; likewise, OC15 and CC27 binding 
was added to obtain total hemicelluloses accessibility at 
the surface. Total cellulose surface exposure was found 
to be higher in α-cellulose compared to Avicel (Fig. 1b). 
The total composition analysis (NREL/TP-510-42618) 
of such cellulose preparations also confirmed that both 
were mainly composed of cellulose in the bulk, without 
information on their exposure at the surface (Fig.  1c). 
After demonstrating that adaptation of FTCM probes to 

Fig. 1  Tracking surface accessibility of lignocellulosic components in α-cellulose and Avicel using FTCM-depletion assay (a, b) and total 
composition analysis using the NREL/TP-510-42618 method (c). a α-Cellulose and Avicel were incubated with the GC3a probe (0.5 µg/µL; for 
crystalline cellulose detection), CC17 probe (0.5 µg/µL; for non-crystalline cellulose detection, OC15 probe (0.5 µg/µL; for xylan detection) and the 
CC27 probe (0.5 µg/µL; for mannan detection) for 1 h at room temperature under tumbling agitation. The fluorescence values were converted 
to bound probes (µmol/g of biomass) using the standard curves (Additional file 6). Green, cherry, orange and cyan colors represent the GC3a, 
CC17, OC15 and CC27 probe detection, respectively. b The addition of the binding of GC3a and CC17, from (a), represents the total cellulose 
(GC3a + CC17) and the addition of the binding of OC15 and CC27, from (a), represents the total hemicelluloses (OC15 + CC27). c Total composition 
analysis of α-cellulose and Avicel using the standard NREL/TP-510-42618 method
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FTCM-depletion assay worked well with such simple cel-
lulose preparations (positive controls), we then applied it 
to purified lignin (negative control). Non-specific binding 
of CBMs to lignin was reported earlier [52–54] and such 
a phenomenon would affect FTCM-depletion assay reli-
ability. No binding was observed between FTCM probes 
and lignin under our assay conditions (data not shown), 
possibly a consequence of our BSA blocking strategy 
that specifically minimizes non-specific probe binding or 
adsorption [13, 38, 40, 53, 55]. BSA has been shown to 
bind irreversibly to the accessible lignin fraction of LCB, 
but not to cellulose [13, 19, 53].

It has been reported that cellulose crystallinity plays 
a key role in determining the enzymatic hydrolysis rate 
of a biomass: crystalline cellulose was shown to be more 
resistant to enzymatic hydrolysis compared to non-
crystalline cellulose [51, 56–60]. Therefore, to detect the 
possible relationships between the binding of FTCM-
depletion assay probes and carbohydrate conversion 
(reducing sugars released by enzymatic hydrolysis), we 
studied the enzymatic hydrolysis of both commercial cel-
lulose preparations using Accellerase® DUET enzyme. 
α-Cellulose showed a higher rate of carbohydrate conver-
sion than Avicel (Fig.  2a). The results also show a clear 
relationship with the total surface-exposed cellulose 
detected by the FTCM-depletion assay and carbohydrate 

conversion (Fig. 2b), which is in full agreement with their 
crystallinity index.

Tracking surface accessibility of lignocellulosic 
components in LCB
Four types of biomasses were used in this study: alfalfa 
stover, corn crop residues, cattail stems and flax shives. 
Prior to performing any pretreatments, these biomasses 
were investigated to determine the differences in the lig-
nocellulosic polymer content and their exposure at the 
fiber surface via FTCM-depletion assay. The binding of 
all four probes are represented in Fig. 3a. We added the 
binding of GC3a and CC17 to represent total cellulose 
(GC3a + CC17) and added OC15 to CC27 signals to rep-
resent the total hemicelluloses (OC15 + CC27) (Fig. 3b). 
The surface analysis by the FTCM-depletion assay indi-
cates the dominance of hemicelluloses in all the raw bio-
mass studied here, except for corn crop residues (CoR). 
Further, the total cellulose surface exposure was found 
to be higher in both corn crop residues (CoR) and cattail 
stems (CaR) compared to other biomasses.

The total composition analysis of biomass was also 
conducted using the standard NREL method (NREL/
TP-510-42618) for comparison. The total composition 
analysis of the biomass indicates the dominance of cellu-
lose (Fig.  3c) and confirms the earlier observations that 
cellulose dominates hemicelluloses by nearly twofold, 

Fig. 2  Comparison of hydrolysis and surface-exposed polysaccharide detected by FTCM-depletion assay. a Enzymatic hydrolysis of α-cellulose and 
Avicel. b Surface-exposed polymer detection by FTCM-depletion assay and its relationship with the percent carbohydrate conversion after 96 h of 
enzymatic hydrolysis of α-cellulose and Avicel
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and that the lignin content is similar to that of hemicel-
luloses in these LCB residues [61–64]. The picture at the 
fiber surface is different: probe binding indicates that 
hemicelluloses dominate at the surface of such biomass 
preparations (probably in the form of lignin–hemicel-
luloses complexes), which is compatible with the typical 
organization of plant cell wall ultrastructure [65].

The accessibility of lignocellulosic polymers is an 
important substrate characteristic that influences the 
enzymatic hydrolysis rates [39, 66–68]. Here, by using 
multiple CBM probes on diverse biomasses, we address 
the surface exposure of various polysaccharides, not only 
cellulose, which might reflect the enzymatic efficiency of 
multi-enzyme commercial cellulase formulations.

In this context, we studied the enzymatic hydrolysis of 
the raw biomass to establish a relationship between the 
binding of FTCM-depletion assay probes to biomass and 
the hydrolysis of polysaccharide into soluble reducing 

sugars. Without any pretreatment, the raw LCB residues 
were exposed to Accellerase® DUET cellulase prepara-
tion and then the release of reducing sugars was meas-
ured over time (Fig. 4a). The result showed that highest 
rates of carbohydrate conversion were detected with corn 
crop residues (CoR) and cattail stems (CaR) biomass 
(Fig. 4a). Comparison of the binding of FTCM-depletion 
assay probes with the percent carbohydrate conversion 
reveals that the total cellulose content at the surface (as 
revealed by FTCM-depletion assay) is related to reducing 
sugar production (Fig. 4b). No relationship was observed 
between the total hemicelluloses (as revealed by FTCM-
depletion assay) and the percent carbohydrate conver-
sion. Also, there was no clear trend in total composition 
analysis, which would explain the high rates of hydrolysis 
measured for corn crop residues (CoR) and cattail stems 
(CaR) biomass (Fig. 4c). The results suggest that the lig-
nocellulosic polymers accessibility monitored by FTCM 

Fig. 3  Tracking surface accessibility of lignocellulosic components in raw LCB. a Individual probe binding to LCB (GC3a, CC17, OC15 and CC27). b 
The addition of the binding of GC3a and CC17, from (a), representing the total cellulose (GC3a + CC17) and the addition of the binding of OC15 and 
CC27, from (a), representing the total hemicelluloses (OC15 + CC27). c Total composition analysis of raw LCB using the NREL/TP-510-42618 method. 
AR raw alfalfa stover, CoR raw corn crop residues, CaR raw cattail stems, FR raw flax shives
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probes can be used to predict the efficiency of enzymatic 
hydrolysis for such crop and herbaceous residues.

Tracking surface accessibility of lignocellulosic 
components in pretreated LCB
Subsequently, we also investigated the impacts of vari-
ous pretreatments on biomass. All four types of LCB 
were exposed to three different pretreatments: liquid 
hot water, alkali and alkali extrusion. Biomasses (raw and 
pretreated) were first analyzed for their total polymer 
contents (using NREL/TP-510-42618 method) as shown 
in Additional file 7. When compared to raw biomass, all 
pretreatments led to a decrease in hemicelluloses, while 
lignin was only removed from fibers treated with alkali 

and alkali extrusion treatments. These results are consist-
ent with earlier observations on the general impact of liq-
uid hot water, alkali and alkali extrusion on plant fibers 
[8, 45, 69–72]. The goal of pretreatment is to make cellu-
lose more accessible to enzymatic hydrolysis, which leads 
to improved yield and decreased processing costs [3, 4]. 
From total composition analysis, one can reasonably 
infer that more cellulose will become available at the fiber 
surface when lignin and/or hemicelluloses are partially 
removed from biomass. However, such an interpreta-
tion of pretreatment impact is indirect: total composi-
tion analysis does not interrogate fiber surface properties 
(such as cellulose accessibility).

Fig. 4  Comparison of hydrolysis and polysaccharides detected by FTCM-depletion assay and total composition analysis. a Enzymatic hydrolysis 
of AR, CoR, CaR and FR LCB. b Surface-exposed polymer detection by FTCM-depletion assay and its relationship with the percent carbohydrate 
conversion after 96 h of enzymatic hydrolysis of AR, CoR, CaR and FR LCB. c Total composition analysis using the NREL/TP-510-42618 method and 
their relationship with the percent carbohydrate conversion after 96 h of enzymatic hydrolysis of AR, CoR, CaR and FR LCB. AR raw alfalfa stover, CoR 
raw corn crop residues, CaR raw cattail stems, FR raw flax shives
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The impact of pretreatments on the surface expo-
sure of lignocellulosic polymers was studied using 
FTCM-depletion assay probes. When compared with 
raw biomasses, alkali-pretreated biomass led to the 
highest loss in surface hemicelluloses, followed by 
the alkali extrusion-pretreated samples (Fig.  5). The 
impact of alkali pretreatment led to significant (fivefold 
or more) removal of hemicelluloses at the surface of 
alfalfa stover, corn crop residues, cattail stems and flax 
shives. The hemicelluloses removal was accompanied 
by a moderate increase (less than twofold) in the acces-
sibility of cellulose at the surface of all LCBs (Fig.  5). 
Regarding alkali extrusion pretreatment, the hemicellu-
loses detection was reduced to a lesser extent than with 

alkali, and cellulose was increased by about twofold for 
all LCBs (Fig. 5). The individual binding of all the four 
probes to LCB are represented in Additional file 8. The 
results from FTCM-depletion assays provide strong 
support for the contention that cellulose accessibility 
at the surface has been increased after both alkali and 
alkali extrusion pretreatments.

The possible relationships between the biomass pre-
treatments and the hydrolysis efficiency were also 
explored. Polysaccharide hydrolysis is presented in Fig. 6 
for all the raw and pretreated biomasses. For alfalfa 
stover, maximal carbohydrate conversion was detected 
for alkali extrusion-pretreated biomass (AE), followed by 
alkali-pretreated biomass (AN) (Fig.  6a). Similar trends 

Fig. 5  Tracking surface accessibility of lignocellulosic components of untreated (raw) and pretreated LCB using FTCM-depletion assay. a Alfalfa 
stover, b corn crop residues, c cattail stems and d flax shives. AR raw alfalfa stover, AW alfalfa stover pretreated by liquid hot water, AN alfalfa stover 
pretreated by alkali, AE alfalfa stover pretreated by alkali extrusion, CoR raw corn crop residues, CoW corn crop residues pretreated by liquid hot 
water, CoN corn crop residues pretreated by alkali, CoE corn crop residues pretreated by alkali extrusion, CaR raw cattail stems, CaW cattail stems 
pretreated by liquid hot water, CaN cattail stems pretreated by alkali, CaE cattail stems pretreated by alkali extrusion, FR raw flax shives, FW flax 
shives pretreated by liquid hot water, FN flax shives pretreated by alkali, FE flax shives pretreated by alkali extrusion
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were observed for both cattail stems and flax shives bio-
masses, where maximal carbohydrate conversion was 
observed for alkali extrusion-pretreated (CaE and FE) 
biomass (Fig.  6c and d). In the case of corn biomass, 
alkali pretreatment (CoN) led to the highest conversion 
into reducing sugars, followed by alkali extrusion (CoE) 
pretreatment of corn crop residues (Fig. 6b).

Figure 7 provides a direct comparison of probe binding 
and production of reducing sugars after 96 h. Conversion 
to reducing sugars by enzymes is clearly related with total 
cellulose at the fiber surface (GC3a + CC17) observed by 
FTCM-depletion assay, for all biomasses and all pretreat-
ments. However, there is no such relationship between 
reducing sugar production and any polymer content vari-
ation shown by total composition analysis (using NREL/
TP-510-42618 method) (Additional file 9).

The relationship between exposed total cellulose and 
conversion into reducing sugars after 96 h did not pre-
vail for all hydrolysis periods. Detailed examination 

of Fig.  6b reveals that alkali extrusion pretreated corn 
crop residues (CoE) has a higher carbohydrate conver-
sion rate in the first 24 h of incubation compared to the 
alkali-pretreated sample (CoN). Carbohydrate conver-
sion at 24  h did not consistently relate with the total 
cellulose content (GC3a + CC17) observed by FTCM-
depletion assay, as shown in Additional file 10, while it 
was clearly related after 96 h (Fig. 7). The initial phase 
of carbohydrate release over 24  h did, however, relate 
with the exposure of the non-crystalline cellulose at 
the surface (detected using CC17), which was maxi-
mal for alkali extrusion-pretreated biomass (Fig. 8). We 
also observed the same relationship between surface-
exposed non-crystalline cellulose and early digestion 
of polymers for raw cattail stems (CaR) and liquid hot 
water-pretreated cattail stems (CaW) biomass (Figs. 6c 
and 8).

Comparison of the biomass hydrolysis results indi-
cates that FTCM-depletion assay corroborates the 

Fig. 6  Enzymatic hydrolysis of the untreated (raw) and pretreated LCB. a Alfalfa stover, b corn crop residues, c cattail stems and d flax shives. See 
Fig. 5 caption for a description of abbreviations
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preferential digestion of non-crystalline cellulose in 
early phase of hydrolysis, and that past this first phase, 
the yield becomes dependent on total cellulose expo-
sure. These results are consistent with earlier obser-
vations on cellulose hydrolysis, which suggest that 
non-crystalline cellulose is preferentially hydrolyzed 
at the very early phase of hydrolysis and that fur-
ther hydrolysis is a layer-by-layer process, i.e., both 
non-crystalline and crystalline cellulose hydrolyzed 
simultaneously [33, 36, 51]. In recent years, FTIR and 
auto-fluorescence have been used as potential methods 
for studying pretreatments of LCB and predicting the 
biomass saccharification [27, 28]. To our knowledge, 
FTCM surpasses such methods because it can directly 
and unambiguously detect the sequential removal of 
various forms of cellulose and hemicellulose as hydrol-
ysis progresses.

As described earlier, current analytical methods to 
study the pretreatment efficiency are cumbersome and 
cannot unambiguously predict their impact on biocon-
version yield. In contrast, our results suggest that FTCM-
depletion assay, which is rapid and affordable, provides 
an unambiguous approach for direct assessment of 
surface-exposed cellulose, which relates very well with 
the enzymatic hydrolysis of all biomass pretreatment 
combinations studied here. Regarding the total compo-
sition analysis, a decrease in total lignin content and an 
increased cellulose content (i.e., alkali and alkali extru-
sion pretreatment) generally led to increased hydrolysis 
efficiency. However, the relationship did not apply to all 
biomass pretreatment combinations and would be less 
reliable when optimizing or predicting pretreatment 
efficiency.

Fig. 7  Relationship between carbohydrate conversion at 96 h and total surface-exposed cellulose detected by FTCM-depletion assay. a Alfalfa 
stover, b corn crop residues, c cattail stems and d flax shives. See Fig. 5 caption for a description of abbreviations
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Thus far, several studies have addressed the possi-
ble association of lignin content, crystallinity, degree of 
polymerization, porosity, enzyme adsorption and cellu-
lose accessibility to enzyme with bioethanol production 
yield. In some of these studies, cellulose accessibility to 
cellulase has been shown to be an important factor for 
achieving a high scarification yield [13, 19, 39]. However, 
these studies neither look for both non-crystalline cel-
lulose and hemicelluloses, nor introduce a possible rela-
tionship between cellulose accessibility and sugar yield 
as a prediction indicator for pretreatment selection. In 
this study, using multiple CBM probes we can monitor 
surface exposure of various polysaccharides, not only 
crystalline cellulose, which might reflect the enzymatic 
efficiency of multi-enzyme commercial cellulases and on 
a LCB with higher hemicellulose content. Even though 

Accellerase® DUET contains hemicellulase activities, 
FTCM-depletion assay did not show any strong relation-
ship between surface-exposed hemicelluloses and hydrol-
ysis yield. However, binding of FTCM probes allowed to 
directly monitor hemicellulose removal at the surface, in 
support of the expected impact of pretreatments used 
here.

Conclusions
Adaptation of FTCM method to a FTCM-depletion assay 
allowed analyzing surface exposure of polysaccharides of 
various LCB samples. The results suggest that surface-
exposed cellulose (total and non-crystalline) was strongly 
related with the production of reducing sugars by hydrol-
ysis, in a much better way than with total lignin and/or 
total cellulose content (using total composition analysis) 

Fig. 8  Relationship between carbohydrate conversion at 24 h and non-crystalline cellulose detected by FTCM-depletion assay. a Alfalfa stover, b 
corn crop residues, c cattail stems and d flax shives. See Fig. 5 caption for a description of abbreviations
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of LCB. The clear relationships that were observed here 
between the polysaccharides’ accessibility by FTCM 
probes and enzymatic hydrolysis of the biomasses can 
be evolved into a powerful prediction tool for the simple, 
rapid and efficient determination of optimal biomass and 
pretreatment strategies for bioenergy production (100 
samples can be analyzed in less than 2  h with FTCM-
depletion assay).
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