
Branska et al. Biotechnol Biofuels  (2018) 11:99 
https://doi.org/10.1186/s13068-018-1096-x

RESEARCH

Flow cytometry analysis of Clostridium 
beijerinckii NRRL B‑598 populations exhibiting 
different phenotypes induced by changes 
in cultivation conditions
Barbora Branska, Zora Pechacova, Jan Kolek, Maryna Vasylkivska and Petra Patakova*

Abstract 

Background:  Biobutanol production by clostridia via the acetone–butanol–ethanol (ABE) pathway is a promising 
future technology in bioenergetics , but identifying key regulatory mechanisms for this pathway is essential in order 
to construct industrially relevant strains with high tolerance and productivity. We have applied flow cytometric analy-
sis to C. beijerinckii NRRL B-598 and carried out comparative screening of physiological changes in terms of viability 
under different cultivation conditions to determine its dependence on particular stages of the life cycle and the 
concentration of butanol.

Results:  Dual staining by propidium iodide (PI) and carboxyfluorescein diacetate (CFDA) provided separation of cells 
into four subpopulations with different abilities to take up PI and cleave CFDA, reflecting different physiological states. 
The development of a staining pattern during ABE fermentation showed an apparent decline in viability, starting 
at the pH shift and onset of solventogenesis, although an appreciable proportion of cells continued to proliferate. 
This was observed for sporulating as well as non-sporulating phenotypes at low solvent concentrations, suggesting 
that the increase in percentage of inactive cells was not a result of solvent toxicity or a transition from vegetative to 
sporulating stages. Additionally, the sporulating phenotype was challenged with butanol and cultivation with a lower 
starting pH was performed; in both these experiments similar trends were obtained—viability declined after the 
pH breakpoint, independent of the actual butanol concentration in the medium. Production characteristics of both 
sporulating and non-sporulating phenotypes were comparable, showing that in C. beijerinckii NRRL B-598, solven-
togenesis was not conditional on sporulation.

Conclusion:  We have shown that the decline in C. beijerinckii NRRL B-598 culture viability during ABE fermentation 
was not only the result of accumulated toxic metabolites, but might also be associated with a special survival strategy 
triggered by pH change.
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Background
The production of butanol from clostridia through ace-
tone–butanol–ethanol (ABE) fermentation is a well- 
established process with a long and rich history involving 
many industrial productions worldwide [1]. Moreover, 
butanol is a very promising biofuel, in many respects, 
better than ethanol, having a higher low heating value 
(LHV), higher energy content per volume, can be used in 
diesel engines and is less corrosive [2, 3]. Unfortunately, 
restoration of industrial scale butanol production is not 
yet in sight, despite continuing efforts to re-establish the 
industry (e.g. green biologics plans to produce butanol 
in the USA) [4] and interest in the technology persists in 
China [5]. Nowadays, fermentative production of butanol 
cannot compete economically with chemically synthe-
sized butanol or first generation ethanol. The main bot-
tlenecks in the process are low butanol yields and final 
concentration, which increase the final product cost. 
Most research in the field is therefore focused on over-
coming these obstacles. Different strategies have been 
used including utilization of low value waste material as 
a substrate [6–10], by optimizing cultivation conditions 
and process design employing, e.g. simultaneous sacchar-
ification and fermentation (instead of separate hydrolysis 
and fermentation), continuous or semi-continuous cul-
tivation, the application of immobilized cells [11–13], or 
use of symbiotic co-cultures [14, 15]. Other approaches 
include removal of butanol in  situ from the medium [8, 
16–18], adaptation [19, 20] or engineering of strains 
[21–25] for higher tolerance, production and improved 
yield by altering metabolite flux (e.g. by reduction of 
by-product formation via disruption of respective genes 
[26]), enhancement of expression of genes responsible for 
solvent formation [27] or by totally suppressing acid for-
mation and directly stimulating butanol formation from 
saccharides [28]. The issue of tolerance and solvent titres 
seems to be a tricky one, as it might be assumed that 
the final butanol concentration is limited by the strain’s 
tolerance to butanol. However, many experiments have 
revealed that an improved ability of clostridia to tolerate/
survive higher concentrations of butanol might not nec-
essarily be commensurate with increased production [29, 
30].

Through database searches of different species, we 
can identify strains with superior butanol tolerance, e.g. 
Pseudomonas putida (up to 50 g/L) [31], which suggests 
that there might exist powerful natural mechanisms to 
cope with butanol stress, providing us with an optimistic 
perspective that construction of highly tolerant produc-
ing strains is realistic. However, first, the main cause of 
limited production and a decline in viability during ABE 
fermentation must be properly understood. The second 
point is the one that we want to touch upon in this work. 

Generally, during their life cycle, solventogenic clostridia 
produce substances that are detrimental to them, includ-
ing the production of acetic and butyric acids that 
decrease the pH, the formation of undissociated mol-
ecules that are able to penetrate the cell membrane and 
also cause a decrease in intracellular pH, and the inability 
of clostridia to maintain a transmembrane pH gradient 
[1, 32]. Solventogenesis, to some extent, attenuates the 
pH pressure by partial reutilization of acids in the pro-
duction of solvents—substances provoking a range of 
stress responses that again threaten clostridia [33]. More-
over, solventogenesis is usually accompanied by sporu-
lation and the formation of autolysins [34], enzymes 
contributing to the lysis of cell cultures. Nevertheless, 
all processes appear to be tightly regulated, well bal-
anced and ensure culture survival. Transcriptomic, pro-
teomic and metabolomics approaches have been used to 
identify cell responses to self-generated stressors. Even 
more information would be gained if such studies were 
supplemented with data on other cell features such as 
morphological status and the proportion of viable cells. 
Until recently, the overall ability of cells to survive was 
mostly measured as colony forming units (CFU) and 
changes in morphology were observed microscopically. 
Introducing high throughput methodologies such as 
flow cytometry (FC) into the analysis of solventogenic 
clostridia [35–37] has enabled a more detailed insight. 
The tendency of clostridia to behave in unpredictable 
ways was seen in first attempts to introduce fluores-
cence based viability assays by Tracy et al. [37] or Jones 
et al. [38], who observed the opposite staining pattern of 
Syto 9 and propidium iodide (PI) than was expected (the 
majority of cells in exponential phase were stained with 
PI instead of Syto 9, suggesting the prevalence of inac-
tive cells). However, this staining pattern has been shown 
to be a supporting tool for the identification of different 
morphological states. Linhová et  al. [39] tested a wide 
range of fluorescent viability probes, suggesting that PI—
an indicator of membrane integrity, carboxyfluorescein 
diacetate (CFDA)—an indicator of intracellular enzy-
matic activity and bis-oxonol (BOX)—a potentiometric 
probe penetrating depolarised cells, would be the most 
convenient for particular clostridial species. In 2016 our 
lab introduced a one-step methodology for the evalua-
tion of clostridial viability, together with spore enumera-
tion [35].

In this paper we have improved the methodology 
in terms of higher precision of spore counting and 
have applied the modified methodology on system-
atic screening for changes in viability/staining patterns 
during ABE fermentation, using either sporulating 
or non-sporulating phenotypes, a butanol challenge 
and a decrease in initial pH. A combination of two 
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fluorescent probes was used: CFDA (an uncharged, 
non-fluorescent substance that can freely diffuse into 
cells, where it is enzymatically cleaved into a fluores-
cent product) and PI, the most well-known viability 
indicator that can only penetrate cells with a compro-
mised cytoplasmic membrane.

Results
ABE fermentation with a sporulating phenotype
Clostridium beijerinckii grown on TYA medium showed 
a typical bi-phasic ABE fermentation, starting with the 
formation of organic acids and then subsequent produc-
tion of solvents accompanied by glucose consumption 
and partial reutilization of the organic acids (Fig. 1) took 
place. In comparison to the generally observed growth 
cessation after acidogenesis by C. acetobutylicum ATCC 
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Fig. 1  The time course of a cell growth and total amount of active cells (OD multiplied by reciprocal value of inactive cells from chart c), b metabo-
lite formation, c pH and percentage of inactive cells, d distribution of different sub-populations according to their LS and fluorescence staining 
pattern for sporulation phenotype and ABE fermentation carried out on TYA medium without addition of external stress factors. Error bars represent 
standard deviations of three independent biological replicates, and calculated values are presented without error bars
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824 [1, 25], the onset of solvent production in C. bei-
jerinckii NRRL B-598 was associated with growth of a 
population, even though the growth rate slowed shortly 
before the culture pH reached its minimal value (Fig. 1).

Viability and spore formation were measured using 
light scatter (LS) parameters of cells and spores together 
with staining with a combination of two fluorescent 
probes, carboxyfluorescein diacetate (CFDA) and propid-
ium iodide (PI). The CFDA and PI mixed used in viability 
studies is a common approach [40] providing complex 
information about enzyme activity and membrane integ-
rity of cells. Propidium iodide bears two positive charges 
that prevent diffusion into cells with retained membrane 
integrity [41], and if some dye is taken up by cells it 
should be immediately removed by active pumping. Once 
inside the cells it binds to nucleic acids and after bind-
ing, fluorescence is considerably multiplied enabling rec-
ognition of such stained cells by bright red fluorescence. 
By contrast, CFDA is a non-fluorescent electroneutral 
ester of fluorescein that can penetrate cell membranes 
by diffusion and, once inside cells, it is cleaved by non-
specific esterases to the carboxyfluorescein anion that 
cannot leak out by diffusion and accumulates within the 
cell providing green fluorescence. During ABE fermenta-
tion, at least 4 subpopulations could be recognized after 
CFDA and PI staining (Fig.  2)—(i) a population stained 
solely by PI (cells with damaged membranes with no or 
negligible enzyme activity or no ability to retain released 
fluorescein), (ii) a group of cells stained solely by CFDA 
(cells with intact membrane functions as well as enzyme 
activities), (iii) cells stained by both probes (cells with 
somehow weakened membrane functions but still with 

considerable enzyme activity and membrane integrity, at 
least to prevent fluorescein leakage; cell doublets; spor-
ulating cells) and (iv) a non-stained population with LS 
parameters of a clostridial culture. This last group con-
tained spores, non-cell particles and cell residues. Spores 
were subsequently recognised from the rest of unstained 
particles based on their typical LS signal (see Fig. 2).

Active (viable) populations were identified in two 
groups, solely CFDA stained cells and combined PI and 
CFDA positive particles. In the case of a doubly stained 
pattern, it is questionable how to classify this population 
in terms of its viability/reproducibility. Doubly stained 
populations are usually formed by more cell types as 
described above, namely cell doublets, which, after cell 
sorting, form colonies on agar plates [42], double stained 
single cells in a particular physiological state [38] with 
lowered ability to efflux PI, and spore forming cells [35]. 
The development of fluorescence staining during sporu-
lation is shown in Fig.  3—the mother cell appearing at 
the beginning as an active healthy cell gradually attenu-
ates enzyme activity and loses the ability to prevent PI 
penetration, providing a change of microscopic view 
from bright green via orange to a clearly red cell. After 
the spore envelope is developed and matured, none of 
the probe can penetrate it and the spore remains non-
fluorescent (although some intrinsic autofluorescence is 
present).

Despite the disputable culturability of doubly stained 
cells, in this work, they were considered as a viable/active 
population able to form acids or solvents. On the other 
hand, spores, together with solely PI positive cells, were 
counted as metabolically inactive populations. Although 

Fig. 2  Identification of different sub-populations based on their light scatter and fluorescence signals after incubation with PI and CFDA. a 
Clostridial cells were separated from the background noise and gated as the P1 gate; only the P1 region was analysed for fluorescence, b fluores-
cence staining patterns: upper left (UL)—solely PI stained population, upper right (UR)—doubly stained cells, lower left (LL—non stained particles, 
R1—particles with fluorescence properties of mature spores released from mother cells, lower right (LR)—CFDA stained cells, and c identification of 
spores based on light scatter parameters (only particles occurring in the R1 gate were analysed in this step). FL1 green fluorescence, FL3 red fluores-
cence, FSC forward scatter signal, SSC side scatter signal
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Shi et al. [43] questioned the reliability of PI as a viability 
indicator, due to its ability to penetrate cell membranes 
of living cells at particular stages of the life cycle, this 
seemed not to be the case with C. beijerinckii [35].

From the viability staining profile it is apparent that 
the number of active cells was highest until the meta-
bolic shift, which occurred when the minimum pH 
was reached (Fig.  1c). A detailed analysis of the stain-
ing profile (Fig.  1d) shows that the proportion of cells 
solely stained by CFDA declined after the first meas-
ured point at the 4th hour. This was accompanied by an 
increase in the doubly stained population formed at this 
stage, mostly by incompletely separated cells forming 
short chains, so the percentage of the active population 
remained constantly high until the onset of solventogen-
esis and cell thickening (accumulation of granulose prior 
to sporulation). From the 10th hour, it is apparent that 
viability of the whole culture gradually decreased, even 
though glucose was present in excess and the butanol 
concentration was still low enough to not be a cause of 
cell damage and death. This phenomenon of losing viabil-
ity was attributed to the start of sporulation and related 
to processes such as production of autolysins, scarify-
ing of vegetative cells, and survival of a population in 
the form of spores. The total number of active cells (cal-
culated as OD600 multiplied by the proportion of the 
active population) peaked around the 18th hour when 
the second pH minimum was reached and the butanol 
concentration was 5.1  g/L. Flow cytometry-determined 
viability was only 50% at this point. The influence of 
this sub-lethal concentration was tested in an additional 
experiment when 5 g/L of butanol was added to the cul-
tivation medium prior to inoculation and cultivation was 
carried out under the same conditions as the reference 
cultivation with the sporulating phenotype. Moreover, 
to obtain a better insight into a possible role of sporula-
tion in the decline in viability, an experiment under con-
ditions for which it was experimentally proved that cells 

of C. beijerinckii NRRL B-598 do not sporulate, was per-
formed. Non-sporulating cultures of C. beijerinckii NRRL 
B-598 were prepared on modified RCM medium [35, 44].

ABE fermentation with non‑sporulating phenotype
ABE fermentation carried out on RCM medium, where 
no spore formation was expected, showed quite simi-
lar production characteristics (Fig. 4) as the sporulating 
phenotype, with some exceptions. Low levels of solvents 
were formed from the start of the ABE fermentation, 
together with the production of organic acids. Lactic acid 
was formed in significantly higher titres and glucose was 
completely utilized. The first pH drop was comparable 
with previous cultivations in terms of time and pH but 
the following pH change was much slower, reaching the 
second maxima and minima later than was seen in the 
reference ABE fermentation (Fig. 1c). Although the spor-
ulating phenotype is believed to be profitable for solvent 
formation, the maximum concentration of butanol pro-
duced on RCM medium was surprisingly high, reaching 
8.5 g/L, even though no sporulation or typical cell thick-
ening occurred. The sporulating phenotype produced 
7.7 g/L of butanol (Fig. 1).

Even though apparent differences in morphologies 
and sporulation patterns were observed on TYA and 
RCM media, the curves representing changes in the total 
proportion of active cells in the population followed 
the same pattern, having their minima at the metabolic 
switch point. The 50% viability point corresponded to 
approx. the 16th hour of cultivation with a butanol con-
centration of less than 4 g/L, less than a half of the total 
butanol produced. No spores were formed, and this was 
confirmed microscopically (see Fig. 5) as well as by using 
FC (Fig.  4d). Similar to cultivation on TYA media, the 
proportion of solely CFDA stained cells declined over the 
cultivation period, starting from pH reversion and the 
total number of active cells peaked at the 18th hour.

Fig. 3  Development of staining pattern of C. beijerinckii NRRL B-598 during sporulation for cells stained by CFDA and PI (particular states were used 
from different microphotographs)
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Growth on TYA medium supplemented with butanol
To determine the role of butanol in the early loss of via-
bility during ABE fermentation, TYA medium (a typical 
sporulation life cycle was expected) was supplemented 
with butanol at a concentration 5  g/L prior the inocu-
lation. The chosen concentration represented amount 
of butanol produced until the stage when the culture 
showed approximately 50% viability under sporulating 
conditions (Fig.  1). Cell growth was apparently slower 

with a significantly lower cell concentration and pro-
longed acidogenic phase that reached its minimal pH 
value approximately 5  h later than without a butanol 
challenge. Interestingly, profiles of production curves 
(Fig. 6) show that the onset of solvent formation occurred 
in the 6th hour of cultivation, similar to the first refer-
ence cultivation on TYA medium and was not accom-
panied by an increase in pH. The proportion of inactive 
cells revealed the same declining trend after the pH 
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Fig. 4  Time course of a cell growth and total amount of active cells (CDW multiplied by reciprocal value of inactive cells from chart c), b metabo-
lite formation, c pH and percentage of inactive cells, d distribution of different sub-populations according to their LS and fluorescence staining 
patterns for the non-sporulating phenotype carried out on RCM medium. Error bars represent standard deviations of three independent biological 
replicates, and calculated values are presented without error bars
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level recovered, even though it was about 5 h later than 
the start of solvent formation and corresponded to the 
rate of acid formation (pH trend) rather than solvent 
production, suggesting that pH plays an important role 
in the attenuation of viability during the clostridial life 
cycle. Furthermore, from the staining profile of the cul-
ture, where butanol stress was mimicked by the artificial 
addition of butanol, it was evident that the proportion of 
active cells in early stages of cultivation was as high as 
under conditions of no stress. This supports our assump-
tion that C. beijerinckii NRRL B-598 is able to tolerate 
and adapt to sub-lethal concentrations of butanol and the 
presence of such butanol titres should not be responsible 
for the sharp decline in viability that was observed during 
previous ABE fermentation experiments. Moreover, the 
total butanol titre was the highest (9.3 g/L), although this 
was probably a consequence of lower acetone produc-
tion. The sum of total ABE was 12.6 g/L, which is simi-
lar to both previous experiments, with 11.9 and 12.9 g/L 
ABE on TYA and RCM media, respectively.

Decreased initial pH
The previous viability results were surprising taking into 
account the assumption that butyric acid accumulation 
together with a low pH are usually considered to be detri-
mental to cells and that solventogenesis serves as a rescue 
to overcome this unfavourable condition [1, 25]. There-
fore, a decline in viability during the last stages of aci-
dogenesis and a subsequent increase after the metabolic 
switch would be a logical outcome for this phenomenon. 
Such behaviour was observed when ABE fermentation 

started at a lower pH, pH 6.0, using TYA medium. 
Whereas a starting pH of 6.3 resulted in minimal values 
of pH 5.3, decreasing the starting pH to 6.0 resulted in 
lower minimum values being reached, around pH 4.9.

The comparison of pH and active cell curves in Fig. 7 
clearly shows that the culture recovered shortly after 
the pH started to increase. In the acidogenic phase, the 
percentage of viable cells remained constant and was 
divided between solely or doubly stained cells where 
CFDA positive cells decreased at the expense of doubly 
stained ones. For a sample withdrawn at the 10th hour 
of cultivation, the number of solely CFDA positive cells 
increased sharply as a result of both culture revitaliza-
tion and reduction of chain formation. After this appar-
ent viability revival, FC data followed the same pattern as 
was observed in all previous experiments—cells proceed 
to death.

From the point of metabolite formation there was no 
apparent difference between cultivation carried out with 
an initial pH of 6.3 or 6.0 except that the lower starting 
pH provided lower titres of acids as well as solvents. The 
final spore number achieved was lower in comparison 
with the first cultivation (see Figs. 1 and 7) but otherwise 
the population exhibited a typical sporulating phenotype.

Comparison of ABE yield and productivity
The main production characteristics were calculated 
according to formulas in “Methods” and are summarized 
in Table 1. The yield of butanol and solvents produced on 
glucose were the highest for fermentation carried out at 
a lower pH for a culture showing a typical, sporulation 

Fig. 5  Morphology of the sporulating phenotype of C. beijerinckii grown on TYA and non-sporulating phenotype grown on RCM. Microphoto-
graphs were taken at the 8th, 18th and 35th hour during the mid-solventogenic phase
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based, life cycle. When fermentations with a sporula-
tion phenotype were compared, a lower initial pH led to 
decreased formation of acids and solvents together with 
decreased glucose consumption. The concentration of 
both butanol and total ABE was the highest on modified 
RCM, where no sporulation occurred, but the yield of 
solvents produced from glucose was lower. Contrary to 
the rest of experiments, all glucose was consumed until 
the end of the ABE process. A decreased yield of ABE for 

non-sporulating cells was in contradiction with the pre-
sumption that such a phenotype would be economically 
more advantageous as there would be no need for energy 
to be spent on sporulation.

Cells subjected to butanol stress had the lowest volu-
metric productivities and yields related to glucose con-
sumption, but simultaneously produced more butanol 
and ABE in relation to biomass concentration; this yield 
reached 8.2 g solvent per 1 g of dry biomass, adaptation 
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mechanisms and stress cell response might play a role 
in this phenomenon where more energy for cell main-
tenance was needed, and production was prioritized to 
growth.

Discussion
High butanol toxicity is often presented as a key bottle-
neck hindering the achievement of higher solvent titres 
during ABE fermentation. The complete range of cell 
stress responses has been described in detail, but the 

exact mechanism of tolerance and its relationship to 
metabolism has not been fully elucidated [33]. Engineer-
ing of strains for increased butanol tolerance has been 
successful many times and some studies have shown that 
enhanced tolerance can also improve production [45–
47]. On the other hand, there is an evidence that higher 
tolerance does not necessarily increase production even 
though tolerance is significantly increased (e.g. [30]). 
This could be explained by the existence of additional 
regulatory mechanisms involved in solvent production. 
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Viability data obtained in this work clearly show a 
decrease in culture viability in relation to the pH break-
point rather than the concentration of butanol, support-
ing the assumption that a tolerance-independent/(or of 
unknown dependence) regulatory mechanism is involved 
in this phenomenon. A decisive point for such a mecha-
nism could be the onset of sporulation—an attempt by 
cells to survive, giving preference to the development of 
a dormant status while simultaneously sacrificing vegeta-
tive cells in favour of the next generation. Spontaneous 
large scale autolysis after the exponential growth phase 
can be observed and is attributed to a potential need for 
nutrients required for sporulation [34]. This theory is 
supported by our observation that cell dry weight (CDW) 
in later stages declined only in the sporulating phenotype, 
but this process takes place far later than when viability 
starts to decline and thus autolysis cannot be an explana-
tion for the gradual loss in viability. Rather, it might be 
associated with a strategy for long term survival of the 
population, which has been developed in nature by some 
bacterial populations and which is coupled with alternat-
ing high and low cell densities and re-cycling/reutiliza-
tion of material originating from dead cells [48]. Allcock 
et  al. [49] measured the autolytic activity of C. aceto-
butylicum P262 and found that it peaked in the middle 
of exponential phase; however, autolysins are enzymes 
with a wide range of physiological functions and their 
increased activity in exponential phase is more probably 
related to an increased need for peptidoglycan turno-
ver and cell enlargement rather than digestion of meta-
bolically inactive cells. Massive autolysis of commercial 
strains was known to occur during industrial processes 
and this was assumed to be due to higher concentrations 
of butanol. Van Der Westhiuzen et al. [50] described the 
increased tendency to autolysis at butanol concentrations 
of 7–16 g/L whereas higher butanol concentrations had 
the opposite effect and inhibited autolysis. A comparison 
of growth characteristics obtained for sporulating and 

non-sporulating phenotypes of C. beijerinckii NRRL-
B598 shows that only for the sporulating phenotype was 
there a decrease in OD as well as CDW after reaching 
their maximum. CDW of biomass grown on modified 
RCM with no spore formation remained constant until 
the end of the experiment (zero viability)—no apparent 
autolysis was observed. Viability development during 
these two ABE fermentations seemed to be very similar, 
which leads us to the assumption that a natural decline in 
viability at early stages of fermentation is not influenced 
by the rate of autolysin formation or sporulation.

The solventogenic phase of ABE fermentation is gen-
erally associated with a cessation of cell growth and cell 
metabolic activity is maintained until the accumula-
tion of solvents reaches an inhibitory level [1]. However, 
cessation or slowing of growth is not a prerequisite for 
solventogenesis for all strains across the solventogenic 
clostridia. This feature is strain dependent; e.g. C. pas-
teurianum ATCC 6013 produced butanol from glycerol 
simultaneously with cell growth [51] in contrast with C. 
acetobutylicum ATCC 824, where solvent production 
was connected with stationary phase [37, 38, 52]. C. bei-
jerinckii NRRL B-598 used in this study reduced growth 
rate shortly before the pH breakpoint but continued in 
growth after commencement of solventogenesis. Similar 
growth characteristics can be found for C. beijerinckii 
NCIMB 8052 (e.g. [53]). Based on phylogenetic analy-
sis [54], C. beijerinckii NRRL B-598 shares high genome 
homology with C. beijerinckii NCIMB 8052 and there-
fore similar behaviour seems probable. Jones and Woods 
[1] mention the fact that even though growth is stopped, 
CDW and OD values can still increase due to the accu-
mulation of granulose and changes in cell morphology; 
however, this was not the case for C. beijerinckii NRRL 
B-598, where the OD600 for reference cultivation on TYA 
medium increased more than 5 times since the change 
in growth rate. Moreover, in selected samples, cell con-
centration was measured by FC and a good correlation 

Table 1  Butanol and solvent yields and productivity achieved under different cultivation conditions

YB/G yield of butanol produced from consumed glucose (g/g)

YABE/G yield of ABE produced from consumed glucose (g/g)

PB (g L−1 h−1)—volumetric productivity of butanol

PABE (g L−1 h−1)—volumetric productivity of ABE

YB/CDW—amount of butanol produced per unit of dry weight biomass (g/g)

YABE/CDW—amount of ABE produced per unit of dry weight biomass (g/g)

The highest values of all parameters are given in italics

YB/G YABE/G PB (g L−1 h−1) PABE (g L−1 h−1) YB/CDW YABE/CDW

Sporulation phenotype TYA 0.22 0.34 0.23 0.35 3.08 4.76

Non-sporulation phenotype RCM 0.20 0.30 0.25 0.37 3.54 5.38

Butanol stress, TYA 0.15 0.27 0.12 0.21 4.56 8.22

Decreased initial pH, TYA 0.23 0.35 0.22 0.33 3.81 5.77
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between OD and cell number was obtained (data not 
shown). Nevertheless, all such data assessing a bulk cul-
ture do not possess a deeper insight into changes of cell 
physiology and culture heterogeneity. The FC approach 
used in this study produced valuable information about 
the state of individual cells beyond culturability, where 
only vegetative cells and early sporulation states (reversi-
ble) can be quantified without additional treatment. Even 
though FC can offer a nearly infinite number of options 
for analysis of particular cell features at the individual cell 
level (see, e.g. [55, 56]), its application in the analysis of 
microbial cells is difficult due to the small size of cells, 
enabling only a limited number of probes to be applied 
at the same time (generally only two for bacterial cells) 
and the enormous variability in their metabolism and 
structure causes problems in setting up reliable assays 
[57]. This applies doubly for solventogenic clostridia, 
which have long resisted efforts to identify and imple-
ment a protocol to determine their viability and physi-
ological state based on fluorescence staining [36–38, 58]. 
Nevertheless, these studies provided a robust basis for 
the design of quick and reliable methodologies that were 
applied for C. beijerinckii [35], Clostridium pasteurianum 
[11] and Clostridium tetanomorphum [59]. From our 
results, as well as those published, it is clear that viability 
was seldom close to 100%, as can be observed for a wide 
range of microorganisms in exponential phase [60–62]. 
Generally, at least four populations can be distinguished 
when multi-parameter cytometry and double fluores-
cence staining is applied [42, 62] to a bacterial commu-
nity. C. beijerinckii was not an exception and four clearly 
recognisable populations were apparent on FC dot-plot 
diagrams. The development of a staining pattern clearly 
indicated the beginning of a decline in viability together 
with the pH breakpoint and onset of solventogenesis, 
which was consistent with previous observations for 
C. beijerinckii CCM 6218 [59] and C. beijerinckii NRRL 
B-598 [35].

As pH has an important role in the rearrangement of 
metabolic pathways [63], it might also be a key factor in 
the decision to attenuate viability. The butanol concen-
tration at the decisive point was too low to be responsi-
ble for this change although it certainly contributed to 
the later decline in viability as hydrophobic solvents can 
alter membrane fluidity, subsequently leading to desta-
bilization of membrane-bound complexes, and have a 
negative impact on their functions. Other solvent effects 
are biomolecular misfolding, damage, and generation 
of reactive oxygen species (ROS) [64, 65]. A combined 
effect of carboxylic acids and solvents should be consid-
ered as they both act primarily on the cell membrane and 
influence overall energy balance. Decreased extracellu-
lar pH requires more ATP for H+ ATPase to maintain a 

constant internal pH and at the same time solventogene-
sis provides less ATP than acidogenesis. Such a combina-
tion can cause a collapse of cellular functions and energy 
dissipation. However, Wang et  al. [66] showed that low 
butanol titres (up to 0.8%) had little effect on ΔpH main-
tenance, but low pH and the presence of carboxylic acids 
might still enhance butanol toxicity. All of these factors 
can result in cell death, although solvent concentration 
at the final stage of ABE fermentation was consider-
ably lower for C. beijerinckii NRRL B-598 (around 8 g/L 
butanol and 12 g/L ABE) compared to related clostridia 
(up to approx. 20 g/L [67]).

Nevertheless, we hypothesise that there might be some 
additional mechanisms involved in cell culture inhibition, 
activated at some point of the metabolic switch and inde-
pendent of sporulation or the actual solvent concentra-
tion when present at low titres. This is consistent with the 
observations of Grimmler et  al. [68] that in C. acetobu-
tylicum, transcriptional regulation of genes involved in 
the stress response are linked to the metabolic shift and 
not butanol stress.

Since a range of genes was found to be responsible for 
solvent tolerance and/or increased production, we think 
that one of the factors playing an important role in reg-
ulating the relationship between cell death and solvent 
concentration might be Spo0A (the supposed master reg-
ulator of solventogenesis and sporulation). This is sup-
ported by Kolek et al. [44], who overexpressed Spo0A in 
C. beijerinckii NRRL B-598 and came to the conclusion 
that increased transcription of Spo0A led to a cessation 
of production and metabolism at a low ABE concentra-
tion. The same was observed by Harris et al. [69], whose 
Spo0A transformed C. acetobutylicum strain produced 
higher titres of solvents than the control strain but lower 
than that of parental. Reversely, Sandoval et al. [51]. inac-
tivated Spo0A in C. pasteurianum and reached higher 
production characteristics. Thus Spo0A, or another fac-
tor, might be jointly responsible for the decline in viabil-
ity. Such a mechanism should ensure culture survival 
even in a dormant form. Recently, it was proposed for C. 
acetobutylicum ATCC 824 [22, 70] that cell density might 
be the factor that could cause a pleiotropic response in 
the culture under the same conditions. Xue et al. [22, 70] 
considered a quorum sensing mechanism, together with 
AbrB regulators, to be of key importance when a culture 
of a specific cell density reached a decisive point defined, 
e.g. by a specific pH and/or a specific butanol concentra-
tion. This might also be the case for our strain; however, 
this issue needs a more in-depth investigation. C. bei-
jerinckii strains, including strain NRRL B-598, generally 
contain genes for the agr-based quorum sensing system 
[4], which was found to be responsible for regulation of 
sporulation in C. acetobutylicum. At the same time, the 
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agr-based system in C. acetobutylicum did not signifi-
cantly influence solventogenesis and final solvents titres 
[71, 72].

Jones and Woods [1] presented industrial fermentation 
as a process where full maturation of spores was not usu-
ally reached due to accumulation of toxic butanol con-
centrations, so strains with a disrupted mechanism of 
self-preservation might have been selected for industrial 
applications. Whereas the clostridial response to butanol 
challenge is complex and the regulation of tolerance and 
production remains a scientific challenge, adaptive labo-
ratory evolution and culture domestication [20] can lead 
to the development of promising butanol producers. Irre-
spective of whether the strains are prepared by targeted 
manipulations or naturally selected, FC-based analysis 
can be a valuable tool for the rapid selection of the best 
high producing and tolerant candidates [25].

Next to butanol and ABE, a low pH, together with the 
influence of organic acids (the toxicity of which is pH 
dependent [73]) are another lethal combination from 
which, solventogenesis together with acid reutilization 
should be the rescue action. This is clearly visible from 
the experimental data acquired under lower initial pH, 
where the pH breakpoint took place at values slightly 
under pH 5. Growth under this acidic condition nega-
tively influenced the proportion of metabolically active 
cells in the culture at the first stages of cultivation and 
considerably improved after the pH increased. Following 
that, the viability profile followed the same trend as in all 
previous experiments. This demonstrates the assump-
tion regarding directed and inevitable cell fate in batch 
culture.

Simultaneously with screening for cell viability during 
ABE fermentation, ABE yield, volumetric productivity 
and specific production were compared. Cells chal-
lenged by butanol revealed low volumetric productivity 
but superior solvent yield relative to biomass, which was 
significantly decreased comparing to the reference culti-
vation. A lower biomass concentration at butanol chal-
lenge was already observed (e.g. [74]) and the results are 
in agreement with the previously described inverse pro-
portion of specific and volumetric productivity [75]. As 
the viability of the culture with added butanol did not 
deviate from the patterns of other experiments, a neces-
sarily lower total number of cells had to produce similar 
amounts of butanol. Another interesting output was the 
lower yield of ABE from glucose, as found for the non-
sporulating phenotype, because sporulation indisputably 
represents a demand for additional energy and therefore 
should be unfavourable for economic aspects of com-
mercial production [76]. The non-sporulating phenotype 
used in this work was induced by cultivation conditions, 
which were discovered by chance and, unfortunately, 

a deeper understanding of regulatory mechanisms 
or triggers of a particular phenotype are still under 
investigation.

Another interesting question associated with the FC 
analyses of different populations is which part of the pop-
ulation is responsible for solvent production. In the past 
[1] it was generally considered, at least for C. acetobu-
tylicum, that solvents were formed by sporulating, gran-
ulose-containing cells (clostridium-like cells). However, 
this was contradicted by multiple observations of solvent 
producing asporogenous cultures [68, 77] and others. In 
addition, Tracy et al. [37], based on FC analysis, hypoth-
esized that a proportion of vegetative cells within the 
clostridial population was actually responsible for solvent 
production. Our results confirm this observation and 
support the hypothesis.

Conclusion
Viability changes of C. beijerinckii NRRL B-598 during 
ABE fermentations and their relationship to production 
characteristics and pH changes have unambiguously 
proven that an increase in the proportion of inactive 
cells (those stained by PI) was not only dependent on 
solvent or acid concentrations but was also connected to 
metabolic transitions. The most important point in the 
decision regarding cell destiny seemed to be tightly inter-
connected with the pH breakpoint and the onset of sol-
ventogenesis. Moreover, it was shown that PI and CFDA 
could be used for a physiological heterogeneity assay of 
solventogenic clostridia, and together with multi-param-
eter flow cytometry, could be an invaluable tool in these 
studies.

Methods
Microorganism
All the experiments were carried with C. beijerinckii 
NRRL B-598 obtained from NRRL/ARS Culture Col-
lection, Peoria, Illinois, USA as C. pasteurianum NRRL 
B-598. Based on its genome information [78] it was pro-
posed for re-classification to C. beijerinckii species [54]. 
Cells were maintained in a form of spore suspension kept 
in distilled water at a temperature of 4  °C. To initiate 
spore germination prior to cultivation, spore suspensions 
were subjected to 2 min treatment at 80 °C.

Fermentation experiments
Clostridium beijerinckii NRRL B-598 was grown in par-
allel Multiforce bioreactors (Infors HT, Bottmingen, 
Switzerland) equipped with an electrode for on-line pH 
measurements. Conditions were as follows: 37  °C, agi-
tation 200 RPM, initial pH 6.3 (experiments with lower 
initial pH started with pH 6.0; 10% NaOH solution was 
used for pH regulation prior to cultivation, if necessary). 
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Anaerobic conditions were established with CO2 or N2 
and maintained using an inflated bag connected to a 
bioreactor fitting that terminated above the liquid level. 
Medium (630  mL) was inoculated with 70  ml of over-
night culture prepared in respective culture broths with 
20  g/L of glucose in the Concept 400 (Ruskinn, UK) 
anaerobic chamber. Composition of the TYA medium 
for bioreactor experiments was: 50  g/L glucose, 2  g/L 
yeast extract (Merck, Darmstadt, Germany), 6 g/L tryp-
tone (Sigma-Aldrich, St. Louis, Missouri, USA), 0.5  g/L 
KH2PO4, 3 g/L ammonium acetate, 0.3 g/L MgSO4·7H2O 
and 0.01  g/L FeSO4. Modified RCM broth contained: 
50 g/L glucose, 10 g/L tryptone (Sigma-Aldrich, St. Louis, 
Missouri, USA), 10 g/L meat extract (Merck, Darmstadt, 
Germany), 3  g/L yeast extract (Merck, Darmstadt, Ger-
many), 5 g/L sodium chloride and 3 g/L sodium acetate.

Cell staining procedure, flow cytometry, microscopy
Cells were harvested from the bioreactor through a sam-
pling valve with the help of self-generated overpressure 
to prevent oxygen exposure. Cells were immediately 
washed twice with sterile physiological saline solution 
(1  min, 3000×g) and diluted to OD 0.5 ± 0.1 (measured 
at 600  nm, path length 1  cm). Propidium iodide stock 
solution (2  μL) (PI, 1  mg/mL) and 2  µL of 6-carboxy-
fluorescein diacetate (CFDA, 1  mg/mL) were added to 
200  µL of prepared aliquots of cell suspension. Both 
fluorescent probes were purchased from Sigma-Aldrich 
(St. Louis, Missouri, USA). Samples were mixed thor-
oughly and incubated in the dark at room temperature. 
After 7 min of incubation, 50 µL of cell suspension was 
mixed with 2  mL of freshly filtered (0.22  µm) deminer-
alised water and immediately measured in a BD Accuri 
C6 (BD Accuri Cytometer Inc., USA) flow cytometer. 
The FC was equipped with 20 mW, 488 nm, Solid State 
Blue Laser. For each sample, at least 10,000 particles 
were analysed and data were processed as shown in 
the Fig.  2. Forward scatter (FSC) and side scatter (SSC) 
signals were used to trigger and define the cell popula-
tion. Green (FL1; 515–565 nm) and red (FL3; > 605 nm) 
fluorescence emission was recorded and the FL3 signal 
was compensated with 3% of FL1. The dot-plot diagram 
was divided into four quadrants according to the stain-
ing pattern. Those particles that were in a non-stained 
region (lower left) were subsequently analysed for their 
FSC and SSC parameters and particles with uniform and 
typical light scatter signals (LS) were counted as spores 
and their ratio was calculated to a population gated in the 
first step. For microscopic examination of C. beijerinckii 
morphology and staining pattern, phase contrast and epi-
fluorescence microscopy were employed using an Olym-
pus BX51 microscope (Olympus, Tokyo, Japan) equipped 
with a 120 W mercury vapour arc lamp and a U-MWB2 

filter cube (excitation 460–490 nm, emission + 520 nm). 
The microphotographs in this article are real images shot 
directly by camera (EOS 600D, Cannon, Tokyo, Japan). 
To illustrate development of the staining profile during 
sporulation (Fig.  3), particular states were chosen from 
different images and combined into one image.

Analysis of cell growth and metabolite formation
Cell growth was measured as cell dry weight (CDW) 
after washing and drying to constant weight at 105  °C 
and/or as the OD600 of the culture (Varian Cary 50 UV–
VIS spectrophotometer, Varian Inc.). Metabolite and 
glucose concentrations were analysed by HPLC (Agilent 
series 1200, Agilent, Spain) under the following condi-
tions: mobile phase 5 mM H2SO4, flow rate 0.5 mL/min, 
column temperature 60  °C, injection volume 20 µL, sta-
tionary phase IEX H polymer (Watrex, Czech Republic), 
refractive index detection.

Formulas
YB/G yield of butanol produced from consumed glucose 
(g/g)

YABE/G yield of ABE produced from consumed glucose 
(g/g)

PB (g L−1 h−1)—volumetric productivity of butanol

PABE (g L−1 h−1)—volumetric productivity of ABE

YB/CDW—amount of butanol produced per unit of dry 
weight biomass (g/g)

YABE/CDW—amount of ABE produced per unit of dry 
weight biomass (g/g)

cBmax, cABEmax, cCDWmax, the highest achieved concen-
tration of the respective parameters, butanol, ABE and 
CDW in g/L.

YB/G =

cBmax − cBt0

cGt0 − cGfin

YABE/G =

cABEmax − cABEt0

cGt0 − cGfin

PB =

cBt33 − cBt0

t33

PABE =

cABEt33 − cABEt0

t33

YB/G =

cBmax − cBt0

cCDWmax

YABE/G =

cABEmax − cABEt0

cCDWmax
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cBt0, cABEt0, cGt0—concentration of butanol, ABE and 
glucose after bioreactor inoculation at time 0 h in g/L.

cGfin—concentration of glucose (g/L) at the end of 
experiment

cBt33, cABEt33, concentration of respective substances 
after 33 h (period when most of the processes were fin-
ished in all experiments). In case sampling was not done 
exactly at this time, a linear interpolation was used to cal-
culate the values.

t33—time corresponding to 33 h of cultivation.
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