
He et al. Biotechnol Biofuels  (2017) 10:275 
DOI 10.1186/s13068-017-0967-x

METHODOLOGY

Label-free, simultaneous quantification 
of starch, protein and triacylglycerol in single 
microalgal cells
Yuehui He1,2†, Peng Zhang1,2†, Shi Huang1,2, Tingting Wang1,2, Yuetong Ji1,2 and Jian Xu1,2,3* 

Abstract 

Background: Current approaches for quantification of major energy-storage forms in microalgae, including starch, 
protein and lipids, generally require cell cultivation to collect biomass followed by tedious and time-consuming 
analytical procedures. Thus, label-free, non-destructive and simultaneous quantification of such macromolecules at 
single-cell resolution is highly desirable in microalgal feedstock development and bioprocess control.

Results: Here, we established a method based on single-cell Raman spectra (SCRS) that simultaneously quantifies 
the contents of starch, protein, triacylglycerol (TAG) and lipid unsaturation degree in individual Chlamydomonas 
reinhardtii cells. Measurement accuracy for the contents based on full SCRS spectrum each reached 96.86–99.24%, 
all significantly higher than single peak-based models. However, accuracy and reliability of measurement are 
dependent on the number of cells sampled, thus a formal mathematical framework was proposed and validated to 
rationally define “minimal sampling depth” for a given state of cellular population. Furthermore, a barcode con-
sisting of 13 marker Raman peaks was proposed to characterize the temporal dynamics of these energy-storage 
products, which revealed that the average contents of starch and TAG increased, while their heterogeneity indices 
decreased, with those of protein being exactly the opposite. Finally, our method is widely applicable, as meas-
urements among cells from liquid suspension culture, wet paste and frozen dried powder all exhibited excellent 
consistency.

Conclusions: When sampled at proper depth, SCRS can serve as a quantitative and generally applicable tool for 
characterization and screening of strains and bioprocesses based on the profile of energy-storage macromolecules 
and their among-cell heterogeneity.

Keywords: Single-cell Raman spectroscopy, Starch content, Protein content, Triacylglycerol content, Phenotypic 
heterogeneity, Sampling depth, Chlamydomonas reinhardtii, Microalgae
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Background
The co-existence of multiple intracellular energy-storage 
forms and the interconversion among them are a com-
mon theme of microbial, plant or animal cells on Earth. 
For example, microalgae, a huge and diverse group of 

unicellular plants, can efficiently convert solar energy and 
carbon dioxide into a variety of co-present intracellular 
energy-dense macromolecules, which mainly include 
polysaccharides (e.g., starch), proteins and lipids (e.g., tri-
acylglycerol, TAG) [1–3]. Thus, the ability to simultane-
ously measure the cellular contents of these compounds 
with high throughput and low cost is of value to strain 
development, process engineering and mechanistic stud-
ies of cell factories.

However, current approaches for profiling starch, pro-
tein and TAG contents in microalgae and plant cells gen-
erally consist of multiple tedious and time-consuming 
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steps, including accumulation of biomass, extraction 
of metabolite mixtures from the bulk biomass and then 
quantification of the target compounds by separate 
assays. After the extraction of metabolite mixtures, the 
inherently inefficient “one procedure per target com-
pound” paradigm was generally followed: (i) for starch, 
enzymatic conversion to glucose and then quantification 
by colorimetric analysis [4, 5]; (ii) for proteins, purifica-
tion of proteins via alkaline lysis and then quantification 
by bicinchoninic acid-based spectrophotometric assays 
[6] and (iii) for TAG, conversion to fatty acid methyl 
esters (FAMEs) via transesterification and then quantifi-
cation by gas chromatography–mass spectrometry (GC–
MS) [7]. Notably, due to the requirement for significant 
amounts of microalgal biomass (typically at the µg–mg 
range) to start with, these approaches are dependent on 
a priori cultivation of cells. This limitation further slows 
down the analysis, hinders the increase of through-
put and even renders the analysis impossible, as many 
or most of the microbial cells (including microalgae) in 
nature remain difficult to culture.

To tackle these challenges, single-cell-based meth-
ods for metabolite analysis have emerged [8, 9]. For 
example, oligosaccharides and flavonoids in single yeast 
cells were successfully analyzed by mass spectrometry 
(MS) [10]. However, MS-based methods usually require 
destructive and sophisticated sample preparation which 
excludes downstream additional analysis of genomes or 
transcriptomes. On the other hand, fluorescent protein-
based sensors [11, 12] or aptamer-based technology [13, 
14] were used to image proteins and nucleic acids such 
as calmodulin-binding peptides and ribozymes. However, 
these methods usually are applicable to only those cells 
that can be labeled and those metabolites that can be 
labeled quantitatively with fluorescence tags or aptamers. 
Clearly, single-cell technologies capable of simultane-
ously, rapidly and readily measuring starch, protein and 
TAG contents in a non-destructive, label-free and gener-
ally applicable manner are of great value.

Single-cell Raman spectra (SCRS) represent the col-
lective Raman spectra of molecules in one cell and pro-
vide an intrinsic chemical profile of the cell in a label-free 
and non-destructive manner [15–17]. As each molecule 
carries characteristic Raman spectra, many studies 
have attempted to model the contents of certain mol-
ecules in an isogenic cell population based on a collec-
tion of SCRS randomly sampled from the population 
(also called a Ramanome; [18]). However, a number of 
key questions remain unanswered. (i) Most past studies 
have selected one or just a few Raman peaks (typically 
derived from Raman spectra of reference chemicals) for 
the quantification of target compounds, yet did not eval-
uate the reliability of such choices [19–21]. For example, 

the relative abundance of lipids, paramylon and chloro-
phyll in Euglena gracilis was estimated via 2850, 2910 
and 2937 cm−1 [19], while that of lipids and astaxanthin 
in Haematococcus pluvialis was estimated via 1448 and 
1520  cm−1 [20]; however, whether and to what degree 
these peaks can specifically quantify the target com-
pounds were actually not assessed. (ii) Most studies that 
aimed for quantification only target one singular com-
pound, such as the starch content in Chlamydomonas 
reinhardtii and Chlorella pyrenoidosa [22] or the TAG 
content in Nannochloropsis oceanica [23], yet it is not 
clear whether the cellular contents of the co-existent 
energy-storage compounds, e.g., starch, protein, TAG 
and others, can be simultaneously quantified. This is 
important as many factors including the potential over-
laps of Raman bands assignment among compounds, 
choice of sample pre-treatment methods, parameters 
of Raman measurement and species-specific property 
of microalgae can all potentially limit the practicability 
and reliability of SCRS in generating the measurements 
in a quantitative and ‘landscape-like’ manner. (iii) To 
derive the overall content and its degree of variation for 
target molecules in a cellular population, most studies 
have either sampled cells at a very low sampling depth 
[24–26], i.e., the number of cells measured for SCRS (e.g., 
only three cells sampled from each population [24]), or 
have not provided any rationale for their choice of sam-
pling depth [19, 22, 23, 27, 28]. In fact, the link between 
method performance and sample depth, an experimental 
parameter directly determining throughput and common 
to all SCRS-based experiments, has not been critically 
probed. (iv) Most studies have tested method perfor-
mance on live single cells from suspended liquid cultures 
[21–24], and whether the method is robust under other 
frequently encountered storage conditions is not clear, 
which however can be a crucial limiting factor as living 
cells may be either unobtainable or of limited shelf live 
(thus, sample freezing might be inevitable before SCRS 
acquisition).

Here, by deep sampling the SCRS of C. reinhardtii at 
16 time points over 8 days under nitrogen depletion, we 
established a method based on single-cell Raman spec-
tra (SCRS) that simultaneously quantified the contents 
of starch, protein, triacylglycerol and lipid unsaturation 
degree in individual cells. The measurement accuracy for 
the contents based on full spectrum each reached 96.86–
99.24%, all significantly higher than single peak-based 
models. However, accuracy and reliability of measure-
ment are dependent on the number of cells sampled, thus 
a formal mathematical framework was proposed and 
validated to rationally define “minimal sampling depth” 
for a given state of cellular population. Furthermore, 
a barcode consisting of 13 marker Raman peaks was 
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proposed to characterize the temporal dynamics of these 
energy-storage products, where the average contents of 
starch and TAG increased while their heterogeneity indi-
ces decreased, with those of protein being exactly the 
opposite. Finally, measurements among cells from liquid 
suspension culture, wet paste and frozen dried powder 
exhibited excellent consistency, suggesting applicabil-
ity under a wide range of cell-storage conditions. Thus 
SCRS, when sampled at proper depth, can serve as a 
quantitative and generally applicable tool for the char-
acterization and screening of strains and bioprocesses 
based on cellular biosynthetic profile and its among-cell 
heterogeneity.

Results
Dynamics of starch, protein and TAG contents and lipid 
unsaturation degree at the population level as measured 
by conventional approaches
To test whether the contents of starch, protein and TAG 
can be simultaneously quantified at the single-cell level 
via SCRS, the stress response process of C. reinhardtii 
under nitrogen depletion was employed as a model (Addi-
tional file  1: Figure S1a). To validate the new method, 
conventional approaches were separately used, via the 
aforementioned “one procedure per target compound” 
paradigm, to measure starch, protein and TAG contents 
based on metabolite mixture extracted from bulk micro-
algal biomass (“Methods”). The results revealed distinct 
temporal dynamics of these energy-storage compounds 
(Fig. 1a). Specifically, the starch content of the population 
increased by  >  50-fold, starting from 6.04 ±  2.98  mg/g 
dry weight (DW) at 0 h to 323.58 ± 7.78 mg/g DW dur-
ing Day 1, and then plateaued until a slight decrease 
to 284.79 ±  2.98  mg/g DW at Day 8. TAG content also 
increased (although to a much lower level than starch), 
from 1.20 mg/g DW at 0 h to the maximum of 35.0 mg/g 
DW at Day 6. However, the protein content sharply 
decreased from 565.90  ±  11.67  mg/g DW at 0  h to 
225.86 ±  13.15  mg/g DW at Day 2, and then gradually 
reduced to 160 mg/g DW during the next 6 days (Fig. 1a).

The change in neutral lipid content was validated by 
Nile Red staining under confocal fluorescence micros-
copy, which revealed that the number of lipid bodies in 
cells increased along the process (Additional file 2: Figure 
S2). Transmission electron microscopy further revealed 
that the number and average size of starch granules sig-
nificantly increased during the process, while lipid bod-
ies gradually emerged and then merged into larger ones 
(Additional file  3: Figure S3). Moreover, lipid unsatu-
ration degree, as assessed by mass unsaturation ration 
NC=C/NCH2 of the mixed fatty acids in the cellular extract 
via gas chromatography–mass spectrometry (GC–
MS) analysis, underwent an increase from 1 to 8  days 

(Additional file 4: Figure S4a). Thus during the 8 days, car-
bon storage mode of the cells had switched from a pro-
tein-central one to a starch-central one where TAG also 
made a contribution (albeit much smaller than starch).

Simultaneous quantification of starch, protein, TAG 
contents and lipid unsaturation degree at the single‑cell 
level via SCRS
From the liquid suspension cultures that underlie the 
above analysis, SCRS from 60 randomly selected live 
cells were also collected (20 from each of three biologi-
cal replicate cultures; Fig. 1b), at each of 16 time points 
over 8  days. Based on the reference chemical Raman 
spectra of pure starch, protein and TAG molecules, five 
Raman bands for starch, three for protein and five for 
TAG were proposed as the marker bands for quantifi-
cation (Table  1). Their intensity, when averaged over all 
cells at a time point, exhibits positive correlation with 
the starch, protein and TAG contents measured via con-
ventional approaches (correlation coefficient R2 ranging 
from 0.6976 to 0.9300 for starch, from 0.7638 to 0.9105 
for protein, and from 0.7721 to 0.8974 for TAG; Table 1). 
Moreover, the ratio of unsaturated-to-saturated car-
bon–carbon bonds, as measured by the relative inten-
sity between the Raman bands of 1658 cm−1 (allyl C=C 
stretches proportional to the amount of unsaturated 
C=C bonds) and 1441 cm−1 (Alkyl C–H2 bend propor-
tional to the amount of saturated C–C bonds), was used 
to model the lipid unsaturation degree of the cells [27, 
29]. Consistently, I1658/I1441 exhibits positive correlation 
with lipid unsaturation degrees measured by GC–MS 
(R2 = 0.9096) (Additional file 4: Figure S4b), which vali-
dated the ability of I1658/I1441 to model the unsaturation 
degree of total lipids.

On the other hand, to take advantage of the rich and 
comprehensive information content in the SCRS, a 
chemometric multivariate method called partial least 
square regression (PLSR) was employed for predict-
ing starch, protein and TAG contents of individual cells 
based on the full spectra of SCRS. PLSR is a method 
for developing multivariate calibration models for test-
ing the correlations between the investigated proper-
ties and spectroscopic data. The normalized fingerprint 
region (393.8–1801.4 cm−1) and the hydrocarbon region 
(2701.6–3051.6  cm−1) were extracted for PLSR mod-
eling due to their richness in information content. For 
each time point, two of the triplicate cultures were used 
as training dataset and the remaining one as test dataset 
for model validation. For example, for starch content, the 
PLSR model was established using the averaged SCRS 
of 20 cells in a biological replicate and the correspond-
ing starch content measured by the amyloglucosidase/α-
amylase method.
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The full spectrum-based PLSR model for starch content 
featured coefficient value (R2) of 0.9966 for the calibra-
tion dataset and 0.9766 for the validation dataset, with the 
overall coefficient value (R2) at 0.9892, suggesting the high 
accuracy in modeling starch content in single cells (Fig. 1c). 
Similarly, the PLSR models for protein and TAG contents 
in single cells were built and validated, achieving overall R2 
of 0.9924 and 0.9686, respectively (Fig. 1d, e). Each of the 
starch, protein and TAG contents derived via the full spec-
trum, when averaged from that of the individual cells as 
predicted by SCRS, was highly consistent with those exper-
imentally determined from the bulk of microalgal biomass 
(Pearson correlation, ρ = 0.9984, 0.9988 and 0.9988, respec-
tively; P  <  0.01). Simultaneous visualization of the starch, 
protein and TAG contents of each of the 960 C. reinhardtii 
cells sampled over the 16 time points revealed the temporal 
landscape for microalgal energy storage compounds in the 
population at single-cell resolution (Fig. 2).

Collectively, these results underscore the advantages 
of full spectrum-based modeling of metabolite contents 
versus that based on the just a few marker Raman bands 

(Table 1), as it provides higher accuracy in measurement 
yet without replying on reference chemical spectra. Since 
they are generally applicable for C. reinhardtii CC124 
cells, the datasets and scripts for building and validat-
ing the PLSR models can serve as valuable community 
resources (Additional file 5: Dataset S1, Additional file 6: 
Dataset S2, Additional file 7: Dataset S3, Additional file 8: 
Appendix S1). In conclusion, SCRS is able to simultane-
ously and accurately quantify starch, protein and TAG 
contents and lipid unsaturation degree at the single-cell 
level; moreover, the approach can be expanded to include 
other abundant metabolites in the cell.

Heterogeneity of starch, protein, TAG contents and lipid 
unsaturation degree among individual cells
The ability to model the four phenotypes at the single-cell 
level allows measurement of their degree of among-cell 
heterogeneity in a given population. The heterogeneity 
index (HI) of a quantitative phenotype or trait is defined 
as the RSD (relative standard deviation) of individual cells 
within the population. For each of the four phenotypes, the 
phenotypic frequency distribution indicated a high degree 
of heterogeneity in energy-storage compounds, which was 
prevalent in the C. reinhardtii population regardless of its 
state (Fig. 3a–c; Additional file 4: Figure S4c).

However, the temporal change of HI was quite distinct 
among the four phenotypes. For starch, while the average 
content was increased, HI decreased sharply during Day 
1 and then stayed at the lowest level for the remaining 
7  days (Fig.  3d). For protein, while the average content 
decreased, HI increased during the first 18  h and then 
stabilized for the next 7 days and was always much lower 
than HIs of starch or TAG at each time point (Fig.  3e). 
For TAG, HI exhibited a high level of fluctuation during 
the first 12 h and then decreased afterward (Fig. 3f ). As 
for lipid unsaturation degree, the HI stayed largely stable 
at a relatively low level along the full course of observa-
tion (Additional file 4: Figure S4d).

Sampling depth affects the accuracy of metabolite content 
and HI measurements
Due to the inherent heterogeneity among cells in any 
population, phenotype measurements derived from 

(See figure on previous page.) 
Fig. 1 Quantification of starch, protein and TAG contents in individual Chlamydomonas reinhardtii cells via SCRS. a Dynamics of starch, protein and 
TAG contents in the bulk biomass as measured by conventional approaches. b Temporal alteration of the averaged SCRS sampled from 60 cells 
over three culture replicates at each time points along the 16 time points. Reference Raman spectra of starch (corn starch), protein (bovine serum 
albumin V) and TAG (triacylglycerol 48:3) are shown above the SCRS for comparison. The contents of starch (c), protein (d) and TAG (e) of individual 
cells were derived using PLSR models, and the averaged contents in the population (Y axis; two of the three culture replicates were used for calibra-
tion and one for validation) was plotted versus the corresponding value measured with conventional methods at the population level (X axis). PLSR: 
partial least square regression. TLC–GC–MS: Thin-layer chromatography coupled with gas chromatography–mass spectrometry. R2: correlation 
coefficient
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Fig. 2 Starch, protein and TAG contents of individual Chla-
mydomonas reinhardtii cells along the process of nitrogen depletion. 
Each data point represents one cell, with color indicating the time 
point when the SCRS was acquired
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SCRS might be potentially affected by the depth of sam-
pling. Yet, the link between the accuracy of measurement 
and sampling depth remains untested. To quantitatively 
evaluate the observed diversity of SCRS at a particular 
sampling depth, a series of concepts were introduced. 
Briefly, (i) the Euclidian distance between any pair of 
SCRS sampled from a given population was used to 
measure the degree of divergence between the two SCRS; 
(ii) diversity index (DI), i.e., the maximal Euclidian dis-
tance among the set of SCRS sampled from a cellular 
population, was proposed to quantify the observed diver-
sity of SCRS; (iii) cumulative DI is defined as the mean 
of the DI from a number of (N =  1000 here) simulated 
sampling trials. In the end, a saturation analysis plot was 
devised that depicts the relationship between cumula-
tive DI and sampling depth, so as to provide a theoretical 
basis for rational assessment and selection of sampling 
depth (Fig. 4a, b).

First, we assembled a virtual pool of SCRS consisting of 
all the 960 SCRS collected over the 16 time points start-
ing from the onset of nitrogen depletion, which presuma-
bly includes all possible SCRS for the C. reinhardtii strain 
under the given culture condition. The observations of 
DI over 1000 in silico trials of SCRS acquisition from this 
virtual pool of SCRS were compared over each sampling 
depth, which ranged from 2 to 960 (Fig. 4a). The results 
revealed that the higher the sample depth, the closer is 
the cumulative DI to the full SCRS diversity in the popu-
lation (i.e., the more completeness in sampling the SCRS 
diversity); however at and after a certain threshold of 
sample depth, the cumulative DI would reach satura-
tion where the SCRS diversity sampled no longer fur-
ther increases. For this virtual dataset of 960 cells, the 

sampling depth required to reach 90% of the full SCRS 
diversity sampled is 234 cells, which is termed the “safest 
sampling depth” for a given strain under a particular cul-
ture condition. Moreover, the choice of sampling depth 
greatly affects the cumulative DI and thus the degree 
to which the acquired SCRS collection captures the full 
diversity of SCRS: for example, at the sample depth of 3, 
20 and 60 cells, the cumulative DI is 2.12, 3.46 and 3.91, 
which correspond to 43, 70 and 80% of the theoretical 
maximal diversity of SCRS sampled (i.e., 4.91) (inset of 
Fig.  4a). On the other hand, in reality, one might never 
be able to thoroughly and exhaustively sample the SCRS 
space of a given isogenic cell population. Even for the 
960-cell SCRS collection pooled from 16 time points 
here, the total SCRS diversity captured is still just an 
approximation of the “full” diversity. In fact, it is possi-
ble that no upper bounds are present for certain popu-
lations. Therefore, a definition of a “minimal sampling 
depth” that is not dependent on the total number of cells 
actually sampled is also valuable. To quantitatively deter-
mine whether the cumulative DI of an SCRS collection is 
saturated at a certain sampling depth, a term called “rate 
of cumulative DI” is defined, which measures the degree 
of cumulative DI increase with stepwise elevation of sam-
pling depth (“Methods”). The parameter of “minimal 
sampling depth” is thus designated as the sampling depth 
at a cutoff of 1% for rate of cumulative DI, i.e., at this par-
ticular sampling depth, no more than 1% of increase in 
cumulative DI will be gained by sampling one more cell 
(“Methods”). The “minimal sampling depth” of the 960-
cell collection is 25 (Additional file 9: Figure S5a), which 
is, not surprisingly, much lower than the “safest sampling 
depth” of 234.

Table 1 The 13 reference Raman bands that are highly correlated with starch, protein and TAG contents in Chla-
mydomonas reinhardtii CC124 during the process of nitrogen depletion

Correlation coefficient (R2) between averaged intensity of the Raman bands derived from SCRS and the corresponding quantitative trait shown
a Correlation coefficients calculated based on post-1d datasets, since the TAG content of C. reinhardtii cells during the first day of nitrogen depletion was very low

Component Raman bands  (cm−1) R2 Assignments

Starch 478 0.6976 C–C–C deformation

865 0.9300 C–C–H and C–O–C deformations

940 0.8895 C–O stretching; C–O–C and C–O–H deformation; α-helix C–C backbone

1049 0.8308 C–O and C–C stretching; C–O–H deformation

1127 0.8862 C–O and C–C stretching; C–O–H deformation

Protein 1003 0.7638 Phenylalanine ring breath; carotene C–H bending

1586 0.9105 Phenylalanine

1610 0.8850 C=O stretching of protein amide I; –NH2

Triacylglycerola 972 0.8438 ν (C–C) wagging

1265 0.8783 Alkyl=C–H

1441 0.8974 Alkyl C–H2 bend

1658 0.7721 Allyl C=C stretches

2851 0.8902 C–H2, C–H3 asymmetric and symmetric stretches
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The 960-cell virtual pool of SCRS consists of cells from 
16 distinct time points; thus, it represents the theoretical 
upper limit of SCRS diversity for a strain under a particu-
lar condition. In practice, a cellular population sampled 
for SCRS at a particular time point may represent only 
a subset of the 960-cell SCRS pool. To test whether and 
how the relationship between the observed SCRS diver-
sity and sampling depth changes over the various time 
points, the observations of DI over 1000 in silico tri-
als of SCRS acquisition from each of the 16 time points 
were compared over each sampling depth (from 2 to 60; 
Fig.  4b). The results revealed that sampling depth can 
greatly affect cumulative DI. For example, at the sampling 
depth of 3, the observed cumulative DI ranges from 1.44 
to 1.84, which are merely 45–62% (raised to 76–94% at 
the depth of 20 cells) of those at the depth of 60 cells. 
Thus, the sampling depth of 3 provides a highly incom-
plete and thus biased view of overall SCRS diversity at 
any of the time points, whereas in contrast the sampling 
depth of 20 or 60 cells yields a much better performance 
(Fig. 4b). Based on the definition above, the minimal sam-
pling depth at each of the 16 time points was computed 
(Additional file 9: Figure S5b; also highlighted on Fig. 4b). 
They varied from 23 (at 12 h) to 59 (at 0 h), which sug-
gested that the actual sampling depth of 60 in this experi-
ment was sufficient at each of the time points.

For any quantitative trait at the single-cell level, assum-
ing it follows normal distribution in an isogenic popu-
lation, the mean and the degree of heterogeneity (or 
heterogeneity index; HI) are its most fundamental fea-
tures. To provide a rational basis for determining the 
proper sampling depth of SCRS, we then tested the link 
between sampling depth and the measurements of mean 
and HI for the quantitative traits of interest. To test how 
the sampling depth influences the accuracy of measuring 
the metabolic contents and their respective HI for a given 
population state, we proposed the cumulative mean 
(cumMean) and cumulative HI (cumHI) as the observed 

mean and HI that were derived from 1000 in silico trials 
of SCRS acquisition at a particular sampling depth. At 
each of the trials, cells were randomly selected from the 
60 cells at a certain sampling depth for SCRS acquisition, 
which were used to derive the mean and HI of quantita-
tive traits (e.g., starch content, protein content and TAG 
content) as above. Their respective standard deviation 
errors over the 1000 trials (gray areas in Fig. 4c, d) were 
then computed to estimate the degree of variabilities in 
measurements of mean and HI.

For the measurement of population-averaged metabo-
lite contents, at a low sampling depth, such as three cells 
per sample, for each of starch, protein and TAG under 
each of the 16 time points, experimental measurements 
of contents exhibit much higher variability than those at 
a higher sampling depth of 20 or 60. Thus, the measure-
ment at a sampling depth of three cells would be usu-
ally of low reliability, poor accuracy and can sometimes 
deviate from the actual mean (Fig.  4c). However, with 
the increase of the sampling depth, the measurements 
rapidly converge toward the actual mean and the stand-
ard deviation errors gradually turn lower (gray areas in 
Fig.  4c), which indicates that measurements of starch, 
protein and TAG contents would be of much higher 
accuracy and excellent reliability under higher sampling 
depth such as 20 or 60 cells. In fact, the minimal sam-
pling depth for each of the three phenotypes at each of 
the time points was calculated, based on the boundary 
condition of deviation of no more than 5% from the true 
means of metabolite contents (“Methods”; Additional 
file  9: Figure S5c). Clearly, the minimal sampling depth 
is not only time point dependent, but phenotype spe-
cific: for protein content, they vary from 3 (0, 2 h) to 13 
(18 h, 8 days) (average of 9), while for starch content, they 
range from 7 to 57 (average of 25), with the time points 
before 18 h all higher than 20; in contrast, for TAG con-
tent, the values are generally even higher, ranging from 
30 (5, 6 days) to 56 (6, 10, 12 h) (average of 47; Additional 

(See figure on previous page.) 
Fig. 4 Effect of sampling depth on SCRS-based measurements. Quantitative relationship between sampling depth and the observed diversity of 
SCRS for an in silico population that includes all the cells sampled for SCRS over the 16 time points (a) or for the actual populations sampled for 
SCRS at each time point (b). At each sampling depth, 1000 permutations of sampling trials were performed, and the mean and standard devia-
tions of the cumulative diversity index (DI) were calculated to estimate the extent to which the diversity of SCRS was observed and variation of the 
observation. In addition, quantitative relationship between sampling depth and the population average measurements of single-cell quantitative 
traits (c) and of their heterogeneity (d) is shown. Similarly, at each sampling depth, 1000 permutations of sampling trials were performed, and the 
cumMean and cumHI were calculated to estimate the observed values of quantitative traits and the variation of such observations. Gray areas rep-
resent the standard deviation of such measurements from the 1000 trials. The sampling depths of 3, 20 and 60 cells, each highlighted by a vertical 
line, were used as examples to quantitatively assess how the choice of sampling depth affects the accuracy and reliability of measuring the traits. 
For a and b, the minimal sampling depth, defined as the depth when no more than 1% of gain in cumulative DI will be gained by sampling one 
more cell (“Methods”; Additional file 9: Figure S5a, S5b), is highlighted for the 960-cell virtual population and for each time point. For c and d, the 
minimal sampling depth, defined based on the boundary condition of deviation of no more than 5% from the true means or true HI of metabolite 
contents (“Methods”; Additional file 9: Figure S5c, S5d), is highlighted for each time point. Minimal sampling depth was highlighted with red point 
and the corresponding text
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file 9: Figure S5c; also highlighted in Fig. 4c). Such varia-
tion originated from the distinct degrees of heterogeneity 
for the phenotypes.

For measurement of HI of the starch, protein and TAG 
contents, at a low sampling depth such as three cells 
per sample, the mean HI calculated from 1000 simu-
lated experiments at most of the time points (in par-
ticular 0 and 2  h) significantly deviated from the actual 
HI, suggesting that HI measurements under low sam-
pling depth would rarely be accurate at such a sampling 
depth (Fig.  4d). Moreover, under all the 16 time points, 
at a low sampling depth such as three cells per sample, 
the HI measurements show great variability, indicating 
the measurement results would be of low reliability and 
poor accuracy and likely deviating from the actual HI. 
However, with the increase of the sampling depth, the 
measurements rapidly converge toward the actual HI and 
the standard deviation errors gradually turn lower (gray 
areas in Fig. 4d), which indicates that measurement of the 
heterogeneity of metabolite contents is of much higher 
accuracy and excellent reliability under high sampling 
depth, such as 20 or 60 cells. Similar to the measurement 
of the mean content, the minimal sampling depth for 
each of the three HI at each of the time points was calcu-
lated (“Methods”; Additional file 9: Figure S5d). Interest-
ingly, for each of starch, protein and TAG, the minimal 
sampling depth for HI are all within a narrow range of 
40–57 (Additional file  9: Figure S5d; also highlighted in 
Fig. 4d). This suggests that to accurately profile the HI of 
a phenotype, generally higher minimal sampling depth is 
required.

In conclusion, the formal definition of sampling depth 
and the associated terms and saturation curves provide 
a theoretical basis for rational selection of proper sam-
pling strategy for SCRS analysis. The simulation based on 
actual data proved that our strategy of sampling totally 
60 SCRS (20 cells in each of triplicate cultures) at each 
time point provides an adequate coverage of the diver-
sity of SCRS at the time point and thus yields accurate 
and reliable estimation of SCRS heterogeneity, as well as 
the content and HI measurements of starch, protein and 
TAG within a population.

SCRS barcode for tracking the dynamics of the product 
profile
To facilitate strain screening or bioprocess monitoring 
via SCRS, a signature barcode derived from SCRS was 
proposed that consisted of two panels, one for popu-
lation-averaged traits and the other from the degree of 
among-cell heterogeneity. The barcode is based on the 
13 marker Raman bands that include 478, 865, 940, 1049 
and 1127  cm−1 for starch, 1003, 1586 and 1610  cm−1 

for protein, 972, 1265, 1441, 1658 and 2851  cm−1 for 
TAG. Moreover, I1658/I1441 was included to indicate lipid 
unsaturation degree (Table 1).

As proof of concept, the barcode was employed to 
unveil the dynamics of main energy-storage compounds 
and their among-cell heterogeneity in C. reinhardtii 
CC124 and an oleaginous industrial microalga N. oce-
anica (strain IMET1; Additional file 1: Figure S1b), both 
under the stress of nitrogen deprivation. Panel I defines 
the averaged population-level features (Fig.  5a). For 
example, for C. reinhardtii CC124 cells during nitrogen 
deprivation, the marker Raman bands for both starch and 
TAG exhibited an upward tendency in intensity, while 
those for protein exhibited an opposite trend, which were 
consistent with the population-level measurements. On 
the other hand, the SCRS barcode of N. oceanica IMET1 
revealed that a large amount of TAG, yet little starch, 
was accumulated under nitrogen deprivation, which was 
consistent with previous reports [7, 23]. Furthermore, 
comparison of the I1658/I1441 section of SCRS barcode 
suggested that the lipids C. reinhardtii and N. oceanica 
produced under nitrogen deprivation differed in prop-
erty: increase in relative abundance of unsaturated lipids 
in the former (as indicated by the gradual increase of 
I1658/I1441 ratio), yet rapid decrease (particularly during 
the first day) of unsaturated lipids in the latter (Fig. 5a). 
Such a temporal shift in the unsaturation degree of lipids 
synthesized upon the onset of nitrogen deprivation is 
supported by our published time series lipidomics data 
for N. oceanica IMET1 [30].

Panel II of the barcode defines the corresponding HI 
for each of the quantitative traits in Panel I (Fig.  5b). 
For example, for C. reinhardtii CC124 cells under nitro-
gen deprivation, HI of most starch-related Raman bands 
exhibited a slight upward tendency at the early phase and 
gradually decreased afterward, which was largely con-
sistent with the findings derived from the full spectrum 
of SCRS (Fig. 3d). For HI of TAG-related Raman bands, 
an upward trend was observed at the early phase, which 
was followed by a downward trend after around 4 days. 
This suggested that for TAG content, the among-cell het-
erogeneity increased first and then decreased. As for N. 
oceanica IMET1 under nitrogen deprivation, HI of pro-
tein-related Raman bands showed an upward tendency, 
yet on the opposite that of TAG-related Raman bands (as 
well as I1658/I1441) exhibited a downward tendency, sug-
gesting decrease in among-cell heterogeneity in TAG 
content and lipid unsaturation degree during the process. 
Thus by graphically highlighting the temporal changes of 
metabolite contents and their heterogeneity, comparison 
of the SCRS barcodes unveiled the shared and distinct 
biosynthetic features between microalgal species.
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Applicability of the method under a wide range 
of cell‑storage conditions
In many circumstance, fresh living cells may be unavail-
able prior to SCRS acquisition. In fact, freeze drying (i.e., 
lyophilization), which works by freezing the biomass and 

then reducing the surrounding pressure to allow the fro-
zen water to sublime directly from the solid phase to the 
gas phase, is the most common storage condition for algal 
cells. To test whether the method is robust under common 
cell-storage conditions beyond suspension culture, wet C. 
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Fig. 5 SCRS barcodes of Chlamydomonas reinhardtii CC124 and Nannochloropsis oceanica IMET1 under nitrogen depletion conditions. Population 
average (a) and heterogeneity index (b) of protein content, starch content, TAG content and lipid unsaturation degree (I1658/I1441) based on the 13 
marker Raman bands in averaged SCRS of three biological replicates of culture at each time point are shown, which revealed graphically the distinct 
dynamic features of these key traits between the starch biosynthetic process of C. reinhardtii and the TAG-accumulating process of N. oceanica 
under nitrogen depletion conditions. The color of barcode indicates the relative intensity of Raman bands and was assigned based on the normal-
ized intensity value within each Raman band
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reinhardtii cell pastes preserved in a − 80 °C refrigerator 
and dry C. reinhardtii powders lyophilized by vacuum 
freezing dryer were, respectively, analyzed by the SCRS 
approach. The results from simultaneous quantification 
of starch, protein, TAG contents and lipid unsaturation 
degree were compared to those from suspension culture.

Briefly, a small amount of wet algal paste or dry algal 
powder was first suspended in  ddH2O and then intact 
cells under the microscope were subject to acquisition 
of SCRS (Fig.  6a). The PLSR models to quantify starch, 
protein and TAG by Raman spectra of wet algal paste or 
dry algal powder were established and validated similarly 
to that of live cells in liquid suspension culture. For wet 
algal paste, SCRS-based quantification of starch, protein 
and TAG contents was accurate and reliable, as demon-
strated by the high coefficient values (R2) for both cali-
bration datasets and validation datasets (the overall R2 
reached 0.9855, 0.9864 and 0.9318; Fig.  6b; Additional 
file  10: Table S1). The performance was similar for dry 
algal powders, since the overall R2 reached 0.9827, 0.9923 
and 0.9568 respectively (Fig. 6c; Additional file 10: Table 
S1). Importantly, no significant difference was found in 
starch, protein and TAG contents among those measured 
by conventional methods and those predicted via SCRS 
in liquid suspension culture, wet paste or dry powder 
(Student t test, P > 0.1; Fig. 6d).

As for lipid unsaturation degree, the I1658/I1441 derived 
from SCRS as measured via both wet algal paste and 
dry algal power showed significant positive correlation 
with that measured by GC–MS (R2 = 0.6342 and 0.6233 
respectively). Thus, SCRS acquired from wet algal paste 
and dry algal power can also be interpreted for lipid 
unsaturation degree of individual cells. Therefore, the 
SCRS approach appears to be generally applicable to a 
wide range of cell-storage conditions, including those 
most commonly used in preservation and storage of bio-
logical samples (e.g., cryopreservation or lyophilization).

Conclusion and discussion
"Ramanome", i.e., a collection of SCRS randomly sampled 
from a cellular population at a given condition and time, 
captures the “metabolomic state” of cells in a rapid, label-
free, non-invasive and single-cell resolution manner [18]. 

Here, we demonstrated that the SCRS of C. reinhardtii 
is able to simultaneously quantify four key phenotypes 
of microalgae-based production: starch content, protein 
content, TAG content and lipid unsaturation degree. The 
marker peaks that can model the quantity of these major 
intracellular energy-storage compounds were identified 
and their performance was critically assessed (Table  1). 
Quantitative models based on the full spectrum of SCRS 
provide higher accuracy than those based on the marker 
peaks; thus, such models can be established and then 
shared as a valuable community resource for SCRS-based 
analysis and screening of microbial cell factories and bio-
logical processes mediated by them.

Phenotypic heterogeneity among cells, a universal 
trait of cellular populations, can dramatically affect cel-
lular processes and thus lead to profound biological 
implications or practical applications. For example, sub-
stantial cell-to-cell variations might be advantageous 
to the robustness of the cellular population and subject 
to evolutionary selection [31, 32]. In contrast, for many 
industrial biotechnological processes, a high degree of 
heterogeneity can cause low yields, suboptimal produc-
tivity or even failures [33, 34]. In this study, the degree 
of heterogeneity of energy-storage compounds (i.e., 
starch and TAG) decreased sharply at the early phase 
and stabilized at low level later under the stress of nitro-
gen deprivation. The observation reflects the dynamic 
response and eventual homeostasis of C. reinhardtii cells 
under stress and might serve as a direct indicator for 
bioprocess monitoring and control. Therefore, the abil-
ity to track the heterogeneity of multiple physiological 
parameters (i.e., starch content, protein content, TAG 
content and lipid unsaturation degree) in a rapid, label-
free and simultaneous manner should be of value to the 
dissection of mechanisms underlying cellular systems’ 
performance, and to the optimization and control of 
bioprocesses.

Actually, single-cell Raman spectra can potentially cap-
ture two levels of heterogeneity for an isogenic cellular 
population: intracellular heterogeneity and intercellular 
heterogeneity. On one hand, when the diameter of the 
laser spot is smaller than the cell size, one SCRS theoreti-
cally samples only a particular region of a cell. This leads 

(See figure on next page.) 
Fig. 6 Quantification of starch, protein and TAG contents via single-cell Raman spectra from wet algal paste and dry algal powder. a Integrity of 
individual algal cells under the three algal cell-storage conditions of liquid suspension culture, wet algal paste and dry algal powder (Bar = 2 μm). 
The PLSR models for quantifying starch, protein and TAG contents via SCRS were built for cells in the form of wet algal paste (b) or dry algal powder 
(c). d Measurements of starch, protein and TAG contents for each of the three algal cell-storage conditions were highly consistent between the 
conventional method and the SCRS-based approach. PLSR: partial least square regression. TLC–GC–MS: thin-layer chromatography coupled with 
gas chromatography–mass spectrometry. R2: correlation coefficient. Larger error bar in TAG measurement might be caused by the relative low level 
of TAG content in C. reinhardtii cells and the multiple largely manual operations (e.g., lipid extraction and thin-layer chromatography) in determining 
the TAG content of the cellular biomass
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to SCRS variation among regions in a cell, i.e., the intra-
cellular heterogeneity. On the other hand, at any given 
state of an isogenic population, phenotypes among cells 
can vary greatly, due to difference in cell cycle phases, 
micro-environmental conditions and even spontaneous 
mutations [33]. This leads to intercellular heterogeneity.

To assess the intracellular heterogeneity, a recent study 
compared three Raman spectra acquisition modes, i.e., 
single spectra, spectra of images and integrated Raman 
spectra, for the classification of large eukaryotic cells (i.e., 
T lymphocyte and pancreatic cell lines). To overcome the 
effects of intracellular heterogeneity, acquisition of inte-
grated Raman spectra that covered an 8 ×  8 µm2 region 
of a cell was suggested for classification of cells [35]. A 
related study estimated a minimum number of local spec-
tra sampling within a cell (i.e., “sampling density” instead 
of “sampling depth”) for characterizing single cells of lym-
phocytes (~ 20 μm of cell diameter), and claimed that 30 
measurements of Raman spectra from random locations 
within a cell showed a performance that is similar to that 
of acquiring a whole-cell Raman image [36]. Both of these 
studies stressed that intracellular heterogeneity affected 
the ability of Raman spectra to characterize or classify cells 
and proposed ways to overcome these intracellular het-
erogeneities. However, they did not address intercellular 
heterogeneity within a cellular population. In contrast, our 
manuscript mainly addressed intercellular heterogeneity, 
i.e., the effect of sample size (i.e., “sampling depth”) per cel-
lular population on the performance of SCRS in character-
izing cells, using microalgal cells (of ~ 10 μm in diameter 
and thus are much smaller than lymphocytes) as a model.

Due to the presence of intracellular heterogeneity, 
large cells typically require acquisition of multiple SCRS 
to properly characterize them (e.g., the lymphocyte 
cells mentioned above). However, for small size cells, 
the overall functional state can be described by a single 
SCRS, especially measured under aqueous conditions. 
In this study, SCRS of C. reinhardtii cells were acquired 
via Raman tweezers which used the 532  nm laser and 
50 × objective to create an optical trap for holding indi-
vidual cells under aqueous condition, and the same laser 
was used to acquire the whole-cell spectra. Importantly, 
when the cell was held in the single-beam gradient force 
trap, the cell under the aqueous condition was rolling in 
random orientation. Therefore, our measurements repre-
sent the averaged spectra of a whole cell instead of a spe-
cific region in the cell.

The presence and importance of intercellular heteroge-
neity, both for diversity of SCRS as a whole and for a par-
ticular SCRS-derived phenotype, demands methods to 
quantitatively determine minimal sampling depth. Here, 
we showed that sampling depth, a parameter generally 
ignored in past studies, greatly influences the accuracy 

and reliability of SCRS-based measurement. Moreover, 
we proposed two kinds of “minimal sampling depth” 
for a given population “state”: (i) for exploring diversity 
of SCRS, the minimal sampling depth is defined as the 
depth when no more than 1% of increasement in cumula-
tive DI is gained by sampling one more cell; (ii) for meas-
uring the mean and HI of a particular phenotype such as 
metabolite content, minimal sampling depth is defined 
based on the boundary condition of deviation of no more 
than 5% from the true means or true HI. The method-
ology introduced here to rationally determine mini-
mal sampling depth for a given population is generally 
applicable. It should not only guide the design of future 
studies, but also enable retrospective assessment of past 
studies that either sampled at only a few cells per popu-
lation [24–26] or offered no rationale for their choice of 
sampling depth for a particular system [19, 22, 23, 27, 28]. 
Our study also suggests that efforts to automate SCRS 
acquisition from a given sample will be highly valuable, as 
it might allow routine analysis at sampling depth of doz-
ens or even hundreds of cells.

Due to the rich information harbored in the SCRS, 
the type and number of phenotypes that can be tackled 
by SCRS are theoretically unlimited. For example, as 
many valuable compounds carry characteristic Raman 
signal, this method should be able to rapidly provide a 
landscape-like view of biosynthetic capability of cells 
at single-cell resolution. Moreover, SCRS can be inter-
preted for a much greater range of phenotypes beyond 
metabolite profile: for example, SCRS has recently been 
used to characterize substrate metabolism [37, 38], met-
abolic activity [39], stress response [18, 40] and inter-
species interactions [37, 41]. Therefore to gauge and 
fulfill the potential of the SCRS approach, one research 
direction is to probe whether, and to what degree, the 
plethora of phenotypes can be simultaneously meas-
ured or modeled via SCRS. On the other hand, consid-
ering that acquisition of SCRS is non-destructive and 
cells of targeted SCRS can be subsequently isolated by 
Raman-activated cell sorting (RACS) [42–44], novel 
applications such as Raman-activated mutant screening, 
which links SCRS-based phenotyping to sequencing at 
single-cell resolution, might be possible and deserve 
investigation.

Finally, as it requires only a trace number of cells, yet its 
performance is insensitive to variation in sample storage 
conditions, SCRS approach might find particular value in 
circumstances where cells grow slowly (or are yet to be 
cultured), SCRS acquisition cannot be performed onsite, 
or only cryopreserved or lyophilized biomass is available. 
This good feature can be taken advantage of to greatly 
expand the application of SCRS and Raman-activated cell 
sorting and sequencing technologies [45].
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Methods
Strains and growth conditions
Chlamydomonas reinhardtii strain CC124 was grown in 
standard Tris acetate phosphate (TAP) medium at 25 °C 
under continuous lighting (approximate 150  µmol  pho-
tons m−2 s−1) and bubbled with air to ensure mixing and 
prevent settling. Cells grown to late log phase were re-
inoculated to a final concentration of 2 × 106 cells  mL−1 
in nitrogen-depleted TAP medium, in which  NH4Cl was 
omitted. The re-inoculation was carried out in triplicate 
cultures. One milliliter of cell culture was collected at 0 h 
(right after inoculation), 2, 4, 6, 8, 10, 12, 18 h and 1, 2, 3, 
4, 5, 6, 7 and 8 days for analysis. Nannochloropsis ocean-
ica IMET1 were grown in a modified f/2 liquid medium 
with 4 mM  NO3

− under continuous light (approximately 
50 μmol photons  m−2  s−1) at 25 °C and induced in nitro-
gen depletion f/2 medium, in which  NO3

− was omitted. 
Cultures in triplicate at 0, 6, 12 h, 1 day, 36 h and 2, 3, 4 
and 5 days were sampled.

Quantification of starch, protein, TAG content and lipid 
unsaturation degree in cultures
The algal biomass was lyophilized via vacuum freezing 
dryer. The starch content of the dry algal biomass was 
quantified using an enzymatic starch assay kit (Mega-
zyme K-TSTA 07/11). Briefly, samples of about 20 mg dry 
algal power were treated with 80% ethanol to remove sug-
ars, hydrolyzed into soluble maltodextrins with thermo-
stable α-amylase and then digested into d-glucose with 
amyloglucosidase. The generated glucose was exposed 
to a reagent containing glucose oxidase, peroxidase and 
4-aminoantipyrine and then its content quantified spec-
trophotometrically at a wavelength of 510 nm.

The total protein content of algal cultures was measured 
as previously reported [7]. Briefly, approximately 10 mg of 
lyophilized algal biomass was hydrolyzed in 200 μL lysis 
buffer (1  M sodium hydroxide, NaOH) and then incu-
bated at 80  °C for 10 min in a water bath. Then, 800 μL 
 ddH2O was added to the hydrolysate to bring the volume 
to 1  mL. Cellular debris was centrifuged at 12,000g for 
30  min before the supernatant was transferred to a new 
tube. The extraction was repeated two more times and all 
the supernatant extracts were pooled together. Then, the 
total protein in the supernatant was determined by the 
BCA Protein Assay kit (cat no. cw0014s).

Thin-layer chromatography coupled with gas chro-
matography–mass spectrometry (TLC–GC–MS) and 
gas chromatography–mass spectrometry (GC–MS) was 
performed to analyze the TAG content and the lipid 
unsaturation degree of the total lipids. The procedures 
mainly included total lipid extraction, TLC, transesteri-
fication and GC–MS analysis [7]. Specifically, total lipids 
of about 30 mg lyophilized algal powder were extracted 

with 6  mL chloroform:methanol (2:1, v/v) and recov-
ered in chloroform:methanol (2:1, v/v). For TAG quan-
tification, around 0.3  mg lipid extract was loaded onto 
10  ×  20  cm silica TLC plates (Merck KGaA, Darm-
stadt, Germany). TAG was separated, visualized and 
scraped from the plate. Then TAG was extracted with 
chloroform:methanol (2:1, v/v) from TLC powder and 
used to prepare fatty acid methyl esters (FAMEs) as pre-
viously described [7]. Briefly, 20  μL 2  mg  mL−1 methyl 
tridecanoate (C13Me), 200 μL chloroform:methanol (2:1, 
v/v) and 300  μL 5% (v/v) HCl:methanol were added to 
TAG extracts, which were transesterified in tightly sealed 
vials at 85 °C for 1 h. Finally, the FAMEs extracted were 
analyzed on an Agilent 7890-5975C gas chromatogra-
phy mass spectrometer fitted with an HP-INNOWAX 
30 m ×  0.25 mm ×  0.25 μm column. The FAMEs were 
quantified using pentadecane as the internal standard 
and C8–C24 FAMEs mixture as FAMEs standards. The 
TAG content was determined by conversion from the 
content of FAMEs.

To measure the lipid unsaturation degree of total lipids 
from bulk microalgal biomass, 1  mg total lipid extract 
was directly transesterified to FAMEs, which were then 
analyzed via GC–MS as described above. The abundance 
of individual fatty acids in the total lipid extract was cal-
culated based on the GC–MS data. The lipid unsatu-
ration degree was calculated via the ratio between the 
number of C=C bonds and the number of  CH2 bonds 
of total fatty acids as previously described [23, 27, 29]. 
Briefly, the average mass unsaturation ration NC=C/NCH2 
can  be  represented  as ∑(niNi

C=C)/∑(niNi
CH2), where ni 

refers to the relative abundance of the individual fatty 
acids in the total lipid extract (mg/mg dry weight), Ni

C=C 
refers to the number of C=C bonds of the individual fatty 
acids and Ni

C=C refers to the number of  CH2 bonds.

Fluorescent microscopy and transmission electron 
microscopy
For microalgal cells sampled at 0, 12  h and 1, 3, 5 and 
7  days, lipid droplets were first stained by Nile Red 
(Sigma, USA). Briefly, 5  μL of stock Nile Red solution 
(50 μg/mL) was added to 0.5 mL microalgae culture and 
incubated in the dark for 10  min. Fluorescence images 
were then acquired using an Olympus BX51 florescence 
microscope with a 100×/1.3 oil immersion objective 
and U-MWB2 mirror unit. For transmission electron 
microscopy, microalgae cells were sampled at 0 h and 3 
and 5 days and then centrifuged (500g, 5 min). Cell pel-
lets were fixed by 2.5% glutaraldehyde for 12  h at 4  °C 
and then washed three times with phosphate-buffered 
saline (PBS, pH7.4). After post-fixation in 1% osmic acid 
for 1 h, samples were again washed three times with PBS. 
The samples were dehydrated through an acetone series 
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(30–95%; followed by pure acetone three times) and then 
embedded in Spurr’s resin. Micrographs of ultrathin sec-
tions were captured using a Hitachi H-7650 transmission 
electron microscope (Hitachi High-Technologies Co., 
Japan).

Acquisition of single‑cell Raman spectra
Single-cell Raman spectra were measured using a modi-
fied Horiba LabRam HR with an excitation wavelength 
of 532 nm [44]. For acquisition of SCRS from live cells, 
1  mL of microalgal culture was collected at each of the 
time points. After centrifugation, cells were washed with 
 ddH2O for three times and loaded into a capillary tube 
(50 mm length × 1 mm width × 0.1 mm height, Camlab, 
UK). The Raman spectra of 20 cells and four background 
sites in each of the three biological replicate cultures (i.e., 
60 cells per time point) were randomly recorded. Briefly, 
an individual cell was trapped, photobleached and meas-
ured by a 532 nm laser with about 25 mW output power. 
Each Raman spectrum was acquired between 393.8 and 
3341.3 cm−1 and the acquisition time was 2 s.

For preparation of wet algal pastes, 10 mL of each algal 
culture was centrifuged at 3000g and cell pellets pre-
served at − 80 °C until use. For preparation of dry algal 
powders, the wet algal pastes were lyophilized in a vac-
uum freezing dryer for 24 h and then stored at − 80  °C 
until use. Before SCRS acquisition, aliquots of the wet 
algal paste thawed at 4 °C or about 1 mg of dry algal pow-
ders were resuspended in 0.2 mL  ddH2O by gentle shak-
ing, and then SCRS of individual algal cells were acquired 
as described above.

Analysis of single‑cell Raman spectra
Raw SCRS were pre-processed for background subtrac-
tion, baseline correction and normalization with Lab-
spec5 software (HORIBA JobinYvon Ltd., UK). Two 
information-rich regions of SCRS, the biochemical fin-
gerprint region (393.8–1801.4  cm−1) and the hydro-
carbon region (2701.6–3051.6  cm−1), were separately 
extracted for further analysis [46]. For both regions, a 
spectrum was normalized via division by its area. PLSR, a 
method for developing multivariate calibration models to 
study correlation between the investigated properties and 
spectroscopic data, was employed to predict the starch, 
protein and TAG contents from SCRS at both the popula-
tion level and the single-cell level as previously described 
[23, 47]. At certain time points, the predicted starch, 
protein or TAG contents of a small number of cells were 
lower than the detection threshold (i.e., < 0 mg/g DW); 
these contents were regarded as 0  mg/g DW in subse-
quent analysis. the ratio of the intensity of the two Raman 
bands at 1658 cm−1 (cis C=C stretching mode which is 
proportionate to the amount of unsaturated C=C bonds) 

and 1441  cm−1  (CH2 scissoring mode which is propor-
tionate to the amount of saturated C–C bonds) was 
employed to estimate the lipid unsaturation degree [23, 
27, 29]. Procedures to quantify the starch, protein and 
TAG content via SCRS of wet algal paste and dry algal 
powder were established and validated in a manner simi-
lar to that of live microalgal cells in liquid suspension cul-
ture. PLSR models were produced using Matlab R2010a 
(Mathworks, USA).

Quantifying the influence of sampling depth 
on measurement accuracy
The degree of divergence between the two SCRS was 
quantified via the Euclidian distance between any pair of 
SCRS sampled from a given population. Diversity index 
(DI), i.e., the maximal Euclidian distance among the set of 
SCRS sampled in an SCRS population, was proposed to 
quantify the observed diversity of SCRS for a particular 
state of a given cell population. Cumulative diversity index 
was proposed to estimate the observed SCRS diversity in 
a series of SCRS collections sampled at a particular depth 
for a particular state of the population. To perform satu-
ration analysis, whether for a time point (60 cells) or for 
the collective cells from all the 16 time points (960 cells), 
an SCRS collection was acquired by randomly sampling 
the population for SCRS at a particular sampling depth 
that ranged from two to all cells, and such trials were per-
formed for 1000 times at each sampling depth. At each 
sampling depth, the mean and standard deviation of the 
cumulative DI were calculated to estimate the extent to 
which the diversity of SCRS was observed and the varia-
tion of the observation. The mean and standard deviations 
were then, respectively, plotted against the sampling depth, 
so as to quantitatively model their interaction. To quanti-
tatively determine whether the cumulative DI (cumDI) of 
an SCRS pool at each time point was saturated at a certain 
sampling depth, we defined the “rate of cumDI”:

where N: sample depth;  cumDIN: cumDI at the sampling 
depth of N cells for a population;  cumDIN−1: cumDI at 
the sampling depth of (N − 1) cells for a population. For 
each of the time points, the relationship between the rate 
of cumDI and sampling depth was thus plotted. We set a 
cutoff of 1% for the rate of cumDI to define the “minimal 
sampling depth”, which means, at this particular sampling 
depth, no more than 1% of gain in cumDI will be gained 
by sampling one more cell.

To assess the influence of sampling depth on the meas-
urement of traits and their respective among-cell het-
erogeneity, cumulative mean (cumMean) was proposed 
as the average of the quantitative traits (e.g., contents 

Rate of cumDI (N ) =

cumDIN − cumDIN−1

cumDIN−1

,
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of starch, protein or TAG) modeled via SCRS based on 
a number of individual cells, and cumulative heteroge-
neity index (cumHI) as the degree of heterogeneity for 
each of the quantitative traits among the cells sampled, 
in a series of SCRS collections sampled at a particular 
depth for a particular state of the population. To perform 
saturation analysis at each time point, an SCRS collec-
tion was acquired (and mean and HI of the quantitative 
traits calculated) by randomly sampling the population 
for SCRS at a particular sampling depth that ranged from 
one to all cells, and such trials were performed 1000 
times at each sampling depth. At each sampling depth, 
the cumMean and cumHI were calculated to estimate the 
observed values of quantitative traits and the variation 
of such observations. The cumMean and cumHI were 
then, respectively, plotted against the sampling depth, 
so as to quantitatively assess how the choice of sampling 
depth affects the accuracy and reliability of measuring 
the traits. To quantitatively assess the effect of sampling 
depth on the cumMean and cumHI, the relationship 
between standard deviation (from 1000 trials) and the 
sampling depth per population was plotted for each time 
point. The minimal sampling depth for computing mean 
contents and mean HI (of starch, protein or TAG) was 
determined based on a threshold of 5% in the standard 
deviation of the 1000 permutations, which corresponds 
to a deviation of no more than 5% from the true means 
of metabolite contents or their HI in each measurement.
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