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Abstract 

Background:  The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from 
biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of 
chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, 
could not use xylose (a key pentose derived from hydrolysis of lignocellulosic biomass) for cell growth and power 
generation, which limited greatly its practical applications.

Results:  Herein, to enable S. oneidensis to directly utilize xylose as the sole carbon source for bioelectricity produc-
tion in MFCs, we used synthetic biology strategies to successfully construct four genetically engineered S. oneidensis 
(namely XE, GE, XS, and GS) by assembling one of the xylose transporters (from Candida intermedia and Clostridium 
acetobutylicum) with one of intracellular xylose metabolic pathways (the isomerase pathway from Escherichia coli and 
the oxidoreductase pathway from Scheffersomyces stipites), respectively. We found that among these engineered S. 
oneidensis strains, the strain GS (i.e. harbouring Gxf1 gene encoding the xylose facilitator from C. intermedi, and XYL1, 
XYL2, and XKS1 genes encoding the xylose oxidoreductase pathway from S. stipites) was able to generate the highest 
power density, enabling a maximum electricity power density of 2.1 ± 0.1 mW/m2.

Conclusion:  To the best of our knowledge, this was the first report on the rationally designed Shewanella that could 
use xylose as the sole carbon source and electron donor to produce electricity. The synthetic biology strategies devel-
oped in this study could be further extended to rationally engineer other exoelectrogens for lignocellulosic biomass 
utilization to generate electricity power.
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Background
Bio-electrochemical systems enabled many practical 
applications in environments and energy fields [1–7], 
including microbial fuel cell (MFC) for simultaneous 
organic wastes treatment and electricity harvest [8–12], 
microbial electrolysis cells for hydrogen production 
[13–16], and microbial electrosynthesis for production 
of valuable chemicals from CO2 bioreduction [17–22]. 
Many mono-, di-saccharides as well as complex carbohy-
drates like starch and organics in wastewater and marine 

sediment have been used in MFCs for the production of 
electricity [8, 23, 24]. Xylose, one of primary ingredients 
from hydrolysis of lignocellulosic biomass, is the second 
most abundant carbohydrate after glucose in nature [25–
27]. Conversion of xylose to electricity energy using MFC 
would thus provide a sustainable and green energy, which 
received increased attention in recent few years [24, 28–
30]. However, xylose is hard to be effectively utilized by 
many microorganisms due to slow utilization rate and 
inefficient metabolic pathways of xylose [26, 31–35].

Shewanella oneidensis, one of the most well established 
metal-reducing exoelectrogens [36, 37], is capable of con-
ducting extracellular electrons transfer (EET) through 
its metal-reducing (Mtr) pathway [38–42], being exten-
sively studied for the optimization of MFC performance 
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[40, 41, 43–47], MFC-based logic gate [48–50], bioreme-
diation of toxic metals [51], etc., in recent decade. How-
ever, the wild-type (WT) S. oneidensis could only use 
three- (or two-) carbon substrates (e.g. lactate, pyruvate 
and acetate) as their carbon and energy sources, with an 
exception of N-acetyl-glucosamine (NAG) as a high-car-
bon carbohydrate [45, 52, 53], while common pentoses 
or hexoses (e.g. xylose and glucose), the most abundant 
composition of biomass, could not be utilized by the WT 
S. oneidensis owing to its incomplete sugar utilization 
pathways [36, 54, 55]. Such defect enormously restricted 
the wide applications of S. oneidensis.

Recently, several strategies were developed to use 
xylose for electricity generation in Shewanella-inoculated 
MFCs. Firstly, an adaptive evolution approach was devel-
oped to activate an otherwise silent xylose metabolic 
pathway, i.e. oxidoreductase pathway in the WT S. onei-
densis, thus generating a S. oneidensis mutant XM1 that 
could metabolize xylose as the sole carbon and energy 
source [56]. Secondly, microbial consortia including fer-
menters and exoelectrogens were developed to accom-
plish xylose-powered MFCs, in which the engineered 
Escherichia coli played as a fermenter to metabolize 
xylose for the synthesis of metabolites such as lactate and 
formate to feed the S. oneidensis as the carbon source and 
electron donor, thus enabling an indirect utilization of 
xylose by S. oneidensis for bioelectricity production [24].

Herein, we used synthetic biology strategy to rationally 
engineer S. oneidensis that could use xylose as the sole 
carbon source and electron donor for electricity genera-
tion in MFCs. To enable S. oneidensis to be able to use 
xylose, the xylose transporters (i.e. glucose/xylose facilita-
tor encoded by gene Gxf1 from Candida intermedia [57, 
58] and d-xylose-proton symporter encoded by gene xylT 
from Clostridium acetobutylicum [59]), synthetic isomer-
ase pathway (including the genes xylA and xylB from E. 
coli [60]), and oxidoreductase (including from Scheffer-
somyces stipites [61]) pathway for xylose metabolism were 
heterologously expressed in S. oneidensis in a combinato-
rial way. Thus, four recombinant S. oneidensis strains were 
synthesized (see Fig.  1). Xylose-fed MFCs experiments 
proved that these engineered S. oneidensis MR-1 strains 
were conferred with the ability of utilizing xylose to pro-
duce electricity, and the engineered S. oneidensis strain 
GS provided the highest electricity generation. Compared 
with the S. oneidensis strain XM1 previously evolved by an 
adaptive evolution strategy [56], our rationally engineered 
S. oneidensis strains GS and XS (bearing the oxidoreduc-
tase pathway from S. stipites) showed a higher xylose con-
sumption rate and a superior growth rate. In addition, the 
relative higher electricity generation by the GS strain than 
other engineered strains can be attributed to the higher 
intracellular riboflavin level and reducing equivalents in 

the GS. To the best of our knowledge, this was the first 
report on the rationally designed Shewanella that gained 
the expanded metabolic capability of using xylose as sole 
carbon source and electron donor to produce electricity.

Results and discussion
Engineered xylose‑utilizing S. oneidensis strain 
via synthetic biology strategies
A few xylose metabolic pathways in microorganisms 
were found, including the oxidoreductase, isomerase, and 
Weimberg–Dahms pathways [56]. For example, E. coli is a 
robust and well-studied xylose scavenger [56, 62], which 
could metabolize xylose by the isomerase pathway; how-
ever, S. stipites [56, 61] could utilize oxidoreductase path-
way for the metabolism of xylose. In the xylose isomerase 
pathway of E. coli [56, 60, 63], xylose isomerase encoded 
by the gene xylA converts xylose to xylulose, which is then 
phosphorylated by xylulokinase encoded by the gene xylB 
to xylulose 5-phosphate (X-5-P), and then enters the pen-
tose phosphate pathway (see Fig. 1). In the oxidoreductase 
pathway of S. stipites [26], NAD(P)H-dependent xylose 
reductase encoded by the gene XYL1 converts intracellu-
lar xylose to xylitol, which is then oxidized to xylulose by 
xylitol dehydrogenase (XDH) encoded by the gene XYL2. 
Xylulose is then phosphorylated by xylulokinase encoded 
by the gene XKS1 to xylulose 5-phosphate (X-5-P), which 
enters the pentose phosphate pathway, similar to the 
isomerase pathway (see Fig. 1).

To facilitate convenient and fast multigene assembly in 
S. oneidensis, a Biobrick compatible vector named pYYDT 
including an IPTG-inducible promoter PlacIq-lacIq-Ptac 
was well developed in our laboratory (Additional file  1: 
Figure S1B) [64]. Furthermore, to avoid the codon usage 
bias and prevent blocked translation due to shortage of 
tRNAs for rare codons between S. oneidensis and other 
bacteria, in vitro chemical synthesis of codon-optimized 
genes instead of direct cloning from other bacteria was 
used. The xylose metabolic pathway was then assembled 
by several routines of Biobrick ligation steps of the rel-
evant genes. With the combinations of the two xylose 
transporters and the two xylose-utilizing metabolic path-
ways (the isomerase and the oxidoreductase pathways), 
four recombinant S. oneidensis strains harbouring engi-
neered gene assembly (plasmid) for enhanced xylose 
transport and metabolism were synthesized, respectively, 
which were XE (including the gene xylT for xylose sym-
porter, xylA and xylB for the xylose isomerase pathway), 
GE (including Gxf1 for the xylose facilitator, xylA and 
xylB for the xylose isomerase pathway), XS (including 
xylT for xylose symporter, and XYL1, XYL2, and XKS1 for 
the xylose oxidoreductase pathway), and GS (including 
Gxf1 for the xylose facilitator, and XYL1, XYL2, and XKS1 
for the xylose oxidoreductase pathway).



Page 3 of 10Li et al. Biotechnol Biofuels  (2017) 10:196 

Evaluation of xylose utilization and cell growth of the 
recombinant S. oneidensis
The cell growth and xylose consumption by the wild-type 
(WT, harbouring the pYYDT empty vector) and four 
genetically engineered S. oneidensis strains (i.e. harbour-
ing XE, GE, XS, and GS, respectively) were evaluated in 
SBM supplemented with 5 mM xylose as the sole carbon 
source.

Under aerobic conditions, the WT S. oneidensis strain 
showed almost no growth and xylose consumption, while 
the four engineered S. oneidensis strains showed a supe-
rior growth over the WT S. oneidensis strain. In addi-
tion, the growth rate of the engineered strains XS and GS 
(harbouring the oxidoreductase pathway) was faster than 
that of the strains XE and GE (harbouring the isomerase 
pathway) (Fig. 2a). The engineered strain XS and GS con-
sumed xylose at a rate of ~28.1 and ~35.2 μM/h, which 
was faster than that of the engineered strains XE and GE 
(~11.2 and ~20.3 μM/h) (Fig. 2b). Thus, the rate of xylose 

consumption of these engineered strains was in good 
agreement with that of the growth rate, respectively.

The anaerobic respiratory capabilities of the WT and 
the recombinant S. oneidensis were also determined 
under anaerobic conditions with xylose as the sole elec-
tron donor and fumarate as the electron acceptor. Similar 
to the aerobic conditions, the four genetically engineered 
strains grew faster than that of the WT strain. The 
recombinant strains XS and GS (harbouring the oxidore-
ductase pathway) consumed xylose at a rate of  ~14.8, 
and  ~17.2  μM/h, respectively, which had a faster xylose 
consumption rate than that of the strains XE and GE 
(harbouring the isomerase pathway, ~6.3 and ~9.7 μM/h, 
respectively) (Fig.  2c, d). Furthermore, the engineered 
strain GS could intake xylose faster than XS, which indi-
cated that the glucose/xylose facilitator Gxf1 enabled a 
higher xylose transportation than that of the D-xylose-
proton symporter XylT. It was revealed that sugar uptake 
via facilitated diffusion by Gxf1 required less energy 

Fig. 1  Synthetic biology strategies for the construction of four recombinant S. oneidensis strains (namely XE, GE, XS, and GS) to enable xylose utiliza-
tion and electricity generation of S. oneidensis. Xylose transporter genes included xylT (the gene encoding d-xylose-proton symporter) from Clostrid-
ium acetobutylicum and Gxf1 (the gene encoding glucose/xylose facilitator 1) from Candida intermedia. The xylose isomerase pathway included xylA 
(the gene encoding xylose isomerase) and xylB (the gene encoding xylulokinase) from E. coli. The oxidoreductase pathway included XYL1 (the gene 
encoding d-xylose reductase), XYL2 (the gene encoding xylitol dehydrogenase), and XKS1 (the gene encoding d-xylulokinase) from Scheffersomyces 
stipites. Four gene assemblies (plasmids), namely XE, GE, XS, and GS (as shown in the green-dash square) were synthesized for the enhanced xylose 
transport and metabolism, which transformed into S. oneidensis, respectively, to construct four recombinant S. oneidensis strains
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(ATP) than proton symport XylT, and thus the facilita-
tor protein would probably be more efficient with higher 
substrate affinity under oxygen-limited or anaerobic con-
ditions where ATP production is restricted in our MFC 
conditions [58, 65]. In addition, all recombinant S. onei-
densis strains were able to utilize lactate as the sole carbon 
source at a rate similar to that of the WT strain, suggest-
ing that the lactate metabolism of S. oneidensis was not 
altered by such engineering efforts (data not shown).

Thus, our results indicated that the introduction of one 
of the synthetic xylose transporters (the d-xylose-proton 
symporter from C. acetobutylicum and the glucose/xylose 
facilitator from C. intermedia) and one of the metabolic 
pathways (i.e. the isomerase pathway from E. coli and the 
oxidoreductase pathways from S. stipites) could success-
fully confer Shewanella strains with the ability of utiliz-
ing xylose as the sole carbon source for the cell growth. 
Especially, our rationally designed S. oneidensis strains 
XS and GS (bearing the oxidoreductase pathway from 
S. stipites) showed a higher consumption of xylose and a 
superior growth rate than that of the S. oneidensis strain 
XM1 (that was recently developed through an adaptive 
evolution strategy) [56]. Escherichia coli (the BL21 strain) 
harbouring those genes related to xylose transport and 
metabolism exhibited a superior xylose consumption rate 

(~455 μM/h), i.e. ~12 times faster than that of the engi-
neered S. oneidensis GS (~35.2  μM/h) (Additional file 1: 
Figure S2). This result indicated that although the engi-
neered S. oneidensis was enabled the capability of xylose 
utilization, there was much room to further improve its 
xylose consumption rate by synthetic biology endeavours.

MFC performance and bio‑electrochemical analyses
MFC was used to examine the extracellular electron 
transfer and power generation by the engineered S. onei-
densis MR-1 using xylose as the sole carbon source. The 
WT and the engineered S. oneidensis strains were inoc-
ulated into the anodic chamber of MFCs, respectively, 
with a 2  kΩ external resistor, across which the voltage 
output was recorded.

Initially, 18 mM lactate was used (as the favourable car-
bon source of Shewanella) to feed the engineered S. onei-
densis strains in MFCs to verify the capacity of power 
output of each strain (Fig.  3). After the output voltage 
decreased to baseline levels (indicating the depletion of 
lactate), 18 mM xylose was added into the anodic cham-
ber as the carbon source. Obviously, the output voltages 
of these engineered S. oneidensis strains with xylose as the 
carbon source were lower than those of lactate as the car-
bon source, because lactate is the favourable carbon source 

Fig. 2  Growth curves and xylose consumption of the WT and the recombinant S. oneidensis strains. a Aerobic growth curve (OD600 ~ t) in SBM sup-
plemented with 5 mM xylose. b Xylose consumption under aerobic conditions. c Anaerobic growth curve (OD600 ~ t) in SBM supplemented with 
5 mM xylose. d Xylose consumption under anaerobic conditions. The error bars were calculated from triplicate experiments
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for the growth and respiration of Shewanella (Fig.  3). 
When lactate was used as the carbon source, the maxi-
mum output voltages could increase to  ~205 ±  7.2  mV 
(n  =  3) for both the WT and engineered S. oneidensis 
strains. However, the WT S. oneidensis strain could barely 
generate any voltage output when xylose was used as the 
carbon source, which indicated that the WT S. oneidensis 
could not utilize xylose. Upon genetic programming of the 
xylose transporter and metabolic pathway into S. oneiden-
sis, the recombinant S. oneidensis strains, namely XE, GE, 
XS, and GS, could generate a maximum output voltage of 
~40.5 ± 5.1, ~55.5 ± 4.8, ~63.2 ± 6.2, and ~73.4 ± 5.8 mV 
(n =  3), respectively. Furthermore, the multiple cycles of 
voltage output of these genetically engineered S. oneiden-
sis strains showed the stability of power generation in the 
semi-batch xylose-fed MFCs (Fig. 4a). 

We observed that the strains GS and XS harbouring 
the synthetic oxidoreductase xylose metabolic path-
way could generate a higher voltage output than those 
of the XE and GE harbouring the synthetic isomerase 
xylose metabolic pathway (Fig.  4a). Bio-electrochemical 
analyses were further conducted to study the EET effi-
ciency of these rationally engineered strains in MFCs. 
The cyclic voltammetry (CV) at 1  mV/s was applied to 
reveal the redox reaction kinetics at the interfaces of bac-
terial cells and anodes. As shown in Fig.  4b, there were 
typical redox peaks of flavins in the CV curves starting 

from around −0.4  V (vs. Ag/AgCl), which showed that 
flavins-mediated extracellular electron transfer was the 
dominating mechanism for bioelectricity production in 
these strains [64, 66]. The power output curves (output 
voltage vs. current density) and the polarization curves 
(power density vs. current density), which were obtained 
by varying load resistances to show the dependence of 
voltage and power on the current, helped to further 
investigate the bioelectricity generation capability of the 
engineered S. oneidensis strains (Fig.  4c). Notably, the 
dropping slope of the polarization curve obtained from 
the engineered S. oneidensis strain GS (harbouring the 
xylose facilitator and the xylose oxidoreductase pathway) 
was smaller than those obtained from the other three 
engineered S. oneidensis stains (i.e. XE, GE, XS), imply-
ing that the internal charge transfer resistance of the 
MFC inoculated with GS was relatively smaller (Fig. 4c). 
The power density were calculated, which showed that 
the engineered S. oneidensis strain GS obtained a maxi-
mum power density of ~2.1 ± 0.1 mW/m2 (n = 3), which 
was  ~0.3,  ~0.9,  ~1.1  times higher than that of XE, GE, 
and XS, respectively (Fig. 4c). Previous xylose-fed MFCs 
generally used sludge, natural or synthetic microbial con-
sortia, the power generation of which were in the range 
of 6.3–2330 mW/m2 (as shown in Additional file 2: Table 
S1), higher than that of our recombinant S. oneidensis 
strain. Thus, future engineering of Shewanella oneiden-
sis to enable higher output electricity remained of para-
mount importance.

Biochemical characterizations showed that the engi-
neered strains GS and XS had a higher utilization effi-
ciency of xylose and higher growth rate, and a more 
efficient formation of biofilm attached on the anodes 
(Fig.  5a). Meanwhile, the engineered strains GS and XS 
could also generate higher intracellular reducing equiva-
lents (i.e. NADH/NAD+, Fig.  5b). Such a high intracel-
lular releasable electron pool (i.e. NADH) had resulted 
from the oxidative reaction of xylitol to xylulose, medi-
ated by the reduction of NAD+ to NADH in the oxidore-
ductase pathway [65, 67–69]. Both the efficient biofilm 
formation on the anodes [24, 70] and higher intracel-
lular reducing equivalents [71, 72] in the engineered 
S. oneidensis strains GS and XS synergistically enabled 
an enhanced EET efficiency and electricity generation. 
In addition, an increase in the secretion of riboflavin in 
the recombinant strains also enabled an increase in the 
output voltage of MFCs. The increased biosynthesis of 
riboflavin would be attributed to the biosynthesis of xylu-
lose 5-phosphate (X-5-P) owing to the heterologously 
introduced xylose metabolism pathway (i.e. the oxidore-
ductase pathway). X-5-P, as a metabolic product of the 
oxidoreductase pathway, was converted to ribulose-5-P, 
a crucial precursor for the biosynthesis of riboflavin, 

Fig. 3  Output voltage of the WT and four recombinant S. oneiden-
sis strains (XE, GE, XS, and GS) with different carbon sources in the 
anodic chamber of MFCs. The output voltage of the four strains XE, 
GE, XS, and GS, using lactate and xylose as the carbon source, respec-
tively. 18 mM lactate (the favourable carbon source of Shewanella) 
was added at the initiation of MFC operations (as indicated by the 
black arrow). Upon the depletion of lactate and vanishing of electric-
ity output, 18 mM xylose was added at ~260 h as the carbon source 
(as indicated by the blue arrow) to illustrate the power generation 
capability of these S. oneidensis strains using xylose as the sole carbon 
source. The error bars were calculated from triplicate experiments
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by ribulose-phosphate 3-epimerase encoded by the rpe 
gene in the pentose phosphate pathway. Subsequently, 
ribulose-5-P and guanosine triphosphate (GTP) were 
converted to riboflavin via the riboflavin biosynthesis 
pathway (Additional file 1: Figure S3) [24, 36, 53].

Conclusions
To the best of our knowledge, this research is the first to 
use synthetic biology strategy to rationally engineer S. onei-
densis MR-1 to enable direct utilization of xylose as the sole 
carbon source and electron donor for bioelectricity pro-
duction in MFCs. The efficient xylose metabolic pathways 
(the isomerase pathway or the oxidoreductase pathway) 
combined with two different xylose transporters were het-
erologously expressed in S. oneidensis MR-1 to construct 
four engineered S. oneidensis strains (namely XE, GE, XS, 
and GS), which could successfully utilize xylose under 
anaerobic and aerobic conditions. These recombinant S. 
oneidensis strains could generate bioelectricity in MFCs 
with xylose as the sole carbon source and electron donor. 
The maximum power density of the MFC inoculated with 
the engineered S. oneidensis strain GS (harbouring the 
xylose facilitator and the xylose oxidoreductase pathway) 
could reach ~2.1 ± 0.1 mW/m2. This rationally engineered 
xylose transport and metabolic pathway significantly 
expanded the spectrum of carbon source that could be 
used by S. oneidensis. In the foreseeable future, with contin-
uous development of synthetic biology strategies [73–75] 
to engineer exoelectrogens, a diverse array of organics such 
as lignocellulosic biomass and recalcitrant wastes may be 
more efficiently converted to electricity power.

Methods
In vitro gene synthesis
The information and coding sequences of the genes 
(Additional file 2: Tables S2 and S3) were extracted from 
the NCBI database and adapted for optimal expression in 
S. oneidensis MR-1 by a Java codon adaption tool (JCAT) 
in order to prevent blocked translation due to shortage 
of tRNAs for rare codons [49]. Each gene component 
was synthesized as a Biobrick [76, 77], and restriction 
enzyme sites of EcoRI, XbaI, SpeI, and SbfI were avoided 
in the codon-optimized sequences. The optimized gene 
sequence was flanked by an upstream prefix (containing 
EcoRI and XbaI), a RBS site (BBa_B0034, iGEM) located 
at 6 bp ahead of the start codon, and a downstream suffix 
(containing SpeI and SbfI) (Additional file 1: Figure S1A). 
The designed gene sequences were synthesized in  vitro, 
verified by Sanger sequencing (AuGCT, China).

Plasmid construction, transformation, and culture 
conditions
All plasmid constructions were performed in E. coli 
Trans T1. The E. coli strains were cultured in the LB 
(Luria–Bertani) medium at 37 °C with 200 rpm. The plas-
mid to be transformed into S. oneidensis MR-1 (ATCC 
700550) was firstly transformed into the plasmid donor 
strain E. coli WM3064 (auxotroph), and then transferred 
into S. oneidensis by conjugation. Then, 100  μg/ml 2, 

Fig. 4  Bio-electrochemical characterization of the extracellular 
electron transfer (EET) and electricity output capability of the four 
engineered S. oneidensis strains (namely XE, GE, XS, and GS) with 
xylose as the sole carbon source. a Voltage output of the four 
engineered S. oneidensis strains (XE, GE, XS, and GS) in the semi-batch 
xylose-fed multiple operational cycles of MFCs. Upon vanishing of 
electricity output and depletion of xylose at each MFC cycle, 18 mM 
xylose was added to maintain the multiple MFC operation cycles. 
b Cyclic voltammetry (CV) at the scan rate of 1 mV/s. c Polarization 
curves and power density output curves of the MFCs inoculated with 
the four recombinant S. oneidensis strains, respectively. The error bars 
were calculated from triplicate experiments
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6-diaminopimelic acid (DAP) was added for the growth 
of E. coli WM3064. Whenever needed, 50 μg/ml kanamy-
cin was added in the culture medium for plasmid mainte-
nance. All the strains and plasmids used in this study are 
listed in Table (Additional file 2: Table S4).

Determination of cell growth and xylose utilization
To determine cell growth and xylose utilization under 
both aerobic and anaerobic conditions, 0.5  ml of the 
wild-type (WT) or engineered xylose-utilizing S. onei-
densis strain culture suspension was inoculated into 
15 ml Shewanella basal medium (SBM) [53] (Additional 
file 2: Table S5), supplemented with 5 mM xylose as the 
electron donor and carbon source in the test tube. When 
needed, 10  mM sodium fumarate was supplemented as 
the electron acceptor, which was stoichiometrically suffi-
cient from both theoretical calculations and experimental 
validations (Additional file 1: Figure S4). The cell cultures 
were incubated at 30  °C, and samples were withdrawn 
periodically for the determination of cell density (optical 
density at 600  nm, i.e. OD600) and xylose consumption. 
The OD600 was measured by an ultraviolet and visible 
spectrophotometer (TU-1810, Beijing, China).

BES setup
To evaluate the efficiency of extracellular electron trans-
fer (EET), the overnight Shewanella culture suspen-
sion (1.5 ml) was inoculated into 150 ml fresh LB broth 
at 30  °C with shaking (200  rpm) till the OD600 reached 
0.6–0.8. Then, the cells were harvested by centrifuga-
tion and washed 3 times with fresh M9 buffer (Additional 
file  2: Table S6). The cell pellets were subsequently re-
suspended in 140  ml electrolyte (5% LB broth plus 95% 
M9 buffer supplemented with 18 mM lactate or xylose). 
50  μg/ml kanamycin was added to ensure consistent 
culture condition. The medium was supplemented with 
0.1  mM IPTG as the inducer of the tac promoter. Our 

previous experiments proved that IPTG had no effect 
on the cell physiology and EET of Shewanella [70]. The 
dual-chamber MFCs were used in this study, namely 
the anodic and cathodic chambers (140 ml working vol-
ume) separated by the nafion 117 membrane (DuPont 
Inc., USA), were the same as those used in the previous 
study. Carbon cloth was used as the electrodes for both 
the anode (2.5  cm ×  2.5  cm, i.e. the geometric area is 
6.25 cm2) and the cathode (2.5 cm × 3 cm). The cathodic 
electrolyte consisted of 50  mM  K3[Fe(CN)6] in 50  mM 
K2HPO4 and 50  mM KH2PO4 solution. To measure the 
voltage generation, a 2  kΩ external resistor was con-
nected into the external circuit of MFCs, and the output 
voltage (V) across the external loading resistor (R) was 
measured by a digital multimeter (DT9205A).

Electrochemical analyses
Cyclic voltammetry (CV) was performed in a three-elec-
trode configuration with an Ag/AgCl reference electrode 
on a CHI 1000C multichannel potentiostat (CH Instru-
ment, Shanghai, China). At the pseudo-steady state of 
MFCs, the polarization curves were obtained by varying 
the external resistor. Current density (I) was calculated as 
I = V (output voltage)/R (external resistance), and power 
density (P) was calculated as P = V × I. Then, the I and P 
were normalized to the projected geometric area of the 
anode to obtain the current density and power density, 
respectively [78].

Quantification of metabolites
For the quantification of riboflavin, the samples in the 
MFC supernatant were firstly centrifuged (35,000  rpm 
for 20  min) and filtered (0.22  µm), and then, the eluted 
media were detected by a liquid chromatograph-tandem 
mass spectrometer (LC–MS) (Agilent LCMS-1290-6460) 
in a positive ion mode using a Waters XBridge C8 col-
umn (2.1 × 100 mm; particle size: 3.5 µm). Xylose in the 

Fig. 5  Biochemical analyses of the four engineered S. oneidensis strains harbouring either the synthetic isomerase pathway (XE and GE) or the 
oxidoreductase pathway (XS and GS), respectively. a Riboflavin concentration in the anolytes of MFCs, and the attached biomass of each strain 
on anode surfaces. b Quantitative measurements of the ratio of NADH/NAD+ in these engineered S. oneidensis strains in MFCs. All error bars were 
calculated from triplicate experiments
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anolytes were analysed using a high-performance liquid 
chromatography (HPLC) system equipped with a diode 
array detector. Sulphuric acid (5  mM) was used as the 
mobile phase flowing at 0.6 ml/min through the Aminex 
HPX-87H column (Bio-Rad, USA), which was incubated 
at 50 °C. Signals at 190 nm were used to quantify xylose.

Quantification of intracellular NADH/NAD+

Cells (10 ml) were collected by centrifugation (10,000 rpm 
at 4 °C for 5 min) and immediately re-suspended in 300 μl 
of 0.2 M HCl (for NAD+) or 0.2 M NaOH (for NADH). The 
suspensions were boiled for 7 min, rapidly quenched in an 
ice bath, and added with 300 μl of 0.1 M NaOH (for NAD+) 
or 0.1 M HCl (for NADH). Cell debris was removed by cen-
trifugation at 10,000 rpm for 10 min, and the supernatant 
was used in a cycling assay to determine the amounts of 
NAD+ and NADH [79, 80]. Meanwhile, the cell concentra-
tion for the detection of NAD+ and NADH concentration 
was detected by plate counts on LB agar.

Measurement of electrode‑attached biomass
The electrode was placed in a 50-ml tube containing 5 ml 
of 0.2  mol/l NaOH, then vortexed for 2  min, and incu-
bated in a water bath to lyse cells at 96 °C for 30 min. The 
extracts were tested by bicinchoninic acid protein assay kit 
(Solarbio, China) after being cooled to room temperature.

Additional files

Additional file 1: Figure S1. Construction of synthetic xylose metabolic 
pathways in Shewanella oneidensis MR-1. (A) Schematic of the plasmid 
with a synthesized functional fragment of genes. The restriction sites 
EcoRI and XbaI with the ribosome binding site (RBS) are located upstream 
of each codon-optimized gene sequence, while the restrictions SpeI and 
PstI are located downstream of the gene. (B) Four plasmid constructs with 
xylose utilization pathways. To construct the multigene assembly in S. 
oneidensis, a Biobrick compatible expression vector pYYDT was adopted, 
which was previously constructed in our laboratory. Layout of the four 
plasmid constructs containing gene components in the xylose pathway 
examined in this study. Figure S2. Xylose consumption rate by E. coil 
(BL21) and by the recombinant S. oneidensis strain. The error bars were 
calculated from triplicate experiments. Figure S3. Metabolic pathway of 
riboflavin synthesis from xylose fermentation in S. oneidensis. A synthetic 
intracellular xylose metabolic pathway, i.e. the oxidoreductase pathway 
including genes XYL1, XYL2 and XKS1 from S. stipites, is incorporated into S. 
oneidensis MR-1 to enable the direct utilization of xylose. Xylulose 5-phos-
phate, as a metabolite in the oxidoreductase pathway, was converted 
to ribulose-5-P by ribulose-phosphate 3-epimerase (encoded by the rpe 
gene) in the pentose phosphate pathway, which was a crucial precur-
sor for the biosynthesis of riboflavin via the riboflavin synthesis pathway. 
Figure S4. Xylose consumption under anaerobic conditions with 10 
mM and 50 mM fumarate. The error bars were calculated from triplicate 
experiments.

Additional file 2: Table S1. Summary of the reported energy output of 
Xylose-Fed MFCs. Table S2. Genes used in this study. Table S3. Synthe-
sized sequences of genes in this study. Table S4. Strains and plasmids 
used in this study. Table S5. Main constituents for S. oneidensis basal 
medium (SBM). Table S6. Main constituents for M9 buffer.
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