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Abstract

Background: Complexity and high cost are the main limitations for high-throughput screening methods for the
estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that
we improve our understanding of the mechanisms by which different chemical components are affecting the
degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS)
was combined with advanced chemometrics to develop calibration models predicting the amount of sugars
released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the
spectra were analysed to identify components associated with recalcitrance.

Results: A total of 1122 wheat straw samples from nine different locations in Denmark and one location in the
United Kingdom, spanning a large variation in genetic material and environmental conditions during growth,
were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar
release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least
square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation
of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily
hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, a negative correlation
with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis, was observed.

Conclusions: FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol
production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while
the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to
contribute significantly to the released amounts of glucose and xylose, respectively.

Keywords: Bioethanol production, FTIR-photoacoustic spectroscopy, Sugar release, Prediction, High-throughput
assay, Pretreatment, Enzymatic hydrolysis, Advanced chemometrics
Background
Production systems for second generation biofuels pro-
duced from lignocellulosic biomass have been evolving
in the last few decades in an attempt to reduce the en-
vironmental impact and sustainability issues arising from
the wide-scale production and use of conventional bio-
fuels [1]. Lignocellulosic biomass constitutes about 50 %
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of the world’s biomass [2], while it has been estimated that
more than 442*109 L of bioethanol can be produced per
year from the lignocellulosic biomass left in the fields [3].
One of the challenges for the use of lignocellulosic bio-
mass for bioethanol production is to develop cheap and
efficient pretreatment methods that disrupt the lignocellu-
losic complex making the cellulose more amorphous as
well as removing or degrading lignin [4]. The degradation
of lignin makes plant biomass more susceptible to quick
hydrolysis and increases the yields of monomeric sugars
necessary for bioethanol production [5]. This increase in
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the yields of monomeric sugars results in the produc-
tion of larger amounts of bioethanol.
However, even after pretreatment, differences in

straw from different varieties or cultivars produced
under different environmental conditions are still likely
to prevail [6]. To select the best cultivars, it is desirable
to assess the potential for sugar release after pretreat-
ment and hydrolysis of a large number of cultivars. For
this purpose, high-throughput screening methods have
been developed [7–9]. The complexity of the required
pretreatment and enzymatic hydrolysis of the biomass,
as well as the cost per sample, are the main limitations
of these techniques [10]. Near infrared spectroscopy
(NIRS) has been adopted as a rapid analysis method
that can predict the sugar release upon pretreatment
and hydrolysis of groups of plant biomass [11–13].
Good prediction accuracy can be achieved using this
technique, but it provides limited information about
the chemical components that are associated with the
propensity to release sugars. The reason for this is that
the near infrared (NIR) spectra mostly reflect overtones
and the combination bands of the chemical bonds,
which are highly overlapping [14].
A large number of literature studies have provided in-

sights on Fourier transform infrared (FTIR) spectra in-
terpretation [15–17]. Attenuated total reflection FTIR
(ATR-FTIR) spectroscopy has been adopted in the past
to determine the changes that take place during the
pretreatment of wheat straw [18], as well as the trans-
formation of cellulose during the enzymatic hydrolysis
for bioethanol production [19]. ATR-FTIR has also
been used, in combination with advanced chemo-
metrics, to predict the composition of pretreated soft-
wood [20] as well as the glucan, xylan and other
polysaccharide content of straw [21]. Only a limited
number of attempts have been made to apply mid-
infrared spectroscopy in the prediction of fermentable
sugars from pretreated biomass [16, 22, 23]; there have
been no previous attempts to correlate the FTIR or
Fourier transform infrared photoacoustic (FTIR-PA)
spectra of non-pretreated biomass with their potential
sugar release. FTIR-PAS arises from combining trad-
itional FTIR and a photoacoustic detector (PA). The
measurement of the absorbed radiation is directly pro-
portional to the heat wave produced after the inter-
action of the sample with the IR radiation. In this way,
the measurement remains unaffected by the redistribu-
tion of the light due to scattering effects or diffraction
processes [24–26].
Therefore, the aim of the present study was to use

FTIR-PAS for the characterisation of winter wheat
straw and identification of chemical structures related
to sugar release and to develop calibrations predicting
potential sugar release from FTIR-PA spectra.
Results and discussion
Spectroscopic analysis
The averaged spectra of each site and variety were char-
acterised by common peaks with slightly different ab-
sorption intensities (Fig. 1a, b). The different peaks
correspond to fundamental molecular stretching and
bending vibrations of different chemical groups in the
samples (Table 1). The broad peak centred at 3380 cm−1

(peak 1) can be assigned to water or lignin from wood
samples, while the peak at 2920 cm−1 (peak 2) and the
shoulder at 2850 cm−1 (peak 3) correspond to aliphatics.
Ciolacu et al. [27] observed a shift in this peak from
2900 cm−1 for pure cellulose to 2920 cm−1 for the
amorphous cellulose. In the fingerprint region (1800–
600 cm−1) of the spectrum, strong absorption was
observed at 1735 cm−1 (peak 4), which, as the shoulder
at 1460 cm−1 (peak 8), correspond to xylans. The peak
at 1650 cm−1 (peak 5), which revealed a diversification
in the absorption intensity, corresponds either to car-
boxylates or the absorbed water; therefore, the difference
in the absorption intensity probably indicated different
contents of carboxylates, as all samples were dried fol-
lowing the same procedure. The peaks at 1600 (peak 6)
and 1510 cm−1 (peak 7) are associated with lignin. The
IR absorption at 1429 cm−1 (peak 9) corresponds to lig-
nin or crystalline cellulose, while the peak at 1370 cm−1

(peak 10) can be assigned to cellulose and hemicellulose.
Ciolacu et al. [27] observed a positive correlation of crys-
talline cellulose with both regions (1429 and 1370 cm−1)
for various materials, while both of them seem to be
absent in amorphous cellulose or replaced by a strong
peak shifted at 1400 cm−1. The relatively strong peak
that was visible at 1320 cm−1 (peak 11) could be part of
either the peak at 1335 cm−1 observed by Pandey and
Pitman [28] corresponding to the C-H vibration of cel-
lulose, hemicellulose, lignin, or the peak at 1310 cm−1

observed by Sills and Gossett [16] corresponding to the
CH2 wagging in cellulose and hemicellulose. The relatively
broad peak at 1240 cm−1 (peak 12) could be assigned to
xylans, while the peak at 1160 cm−1 (peak 13) corresponds
to cellulose and hemicellulose. According to Ciolacu et al.
[27], while this peak is observed in the FTIR spectra of
original cellulose, it is absent in the spectra of the amorph-
ous form of cellulose. Both peaks at 1111 cm−1 (peak 14)
and 1053 cm−1 (peak 15) correspond to crystalline cellu-
lose, while the peak at 898 cm−1 (peak 16) can be assigned
to amorphous cellulose.

Sugar release
The high-throughput pretreatment and enzymatic hy-
drolysis (HTPH) measurements of the samples shown
in Table 2 revealed a range in the sugar yield from 0.28
to 0.59 g g−1 of dry matter (dm) for total sugars, 0.14 to
0.50 g g−1 dm for glucose and 0.06 to 0.29 g g−1 dm for



Fig. 1 FTIR-PA spectra of winter wheat straw. a Spectra averaged across different locations (nine spectra). b Spectra averaged across different wheat straw
varieties (203 spectra)
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xylose release (mean values of 0.42, 0.23 and 0.19 g g−1

dm for total sugar, glucose and xylose release, re-
spectively). The high-yielding straw samples released
approximately double the amount of total sugar in
comparison to the low-yielding samples, indicating a
substantial span in bioethanol potential. The low stan-
dard deviation of the laboratory method (SDL) of
0.024 g g−1 dm for total sugar, 0.016 g g−1 dm for glu-
cose and 0.010 g g−1 dm for xylose indicated that the re-
producibility of the HTPH assay was high. Explaining the
causes for variability of the ethanol potential, as under-
taken by Lindedam et al. [6], was beyond of the scope of
this study, but generally speaking, annual variation and
the effect of cultivar, site and environment are highly
influential.

Prediction of sugar release
The different transformation methods of the spectra did
not considerably improve the accuracy of the predictions
of sugar release (Table 3) and only the first derivative trans-
formation resulted in slightly better predictions than the
smoothed and normalised spectra. Both first and second
derivative transformations needed a lower number of com-
ponents (factors) for the predictions, which indicated that
the transformation reduced some information that was of
little predictive value (Table 3). In all cases, a fair prediction
of the potential total sugar, glucose and xylose release was
obtained, and the R2 (coefficient of determination) values
of the predictions for the external validation (EV) data set
using the smoothing/normalisation transformation were
0.69 for total sugar, 0.63 for glucose and 0.65 for xylose.
The root-mean-square error (RMSE) for the same predic-
tions were 0.030, 0.019 and 0.015 g g−1 dm, respectively
(Table 3, Fig. 2), while the ratio of RMSEEV to SDL was
1.25, 1.18 and 1.45. In addition to the low RMSE, the dif-
ferences between cross-validation and the external valid-
ation results were quite small, which indicated that the
calibrations were robust. These results proved the poten-
tial use of calibrations based on FTIR-PAS for the predic-
tion of sugar release from wheat straw. Considering the
wide variation in genetic material and environmental con-
ditions during growth, it is reasonable to assume that the
model may be applied to other winter wheat straw mate-
rials. Applicability of these calibrations in other types of



Table 1 Most important absorption bands of the mid-infrared spectra of winter wheat straw

Peak no. in Fig. 1 Wavenumber (cm−1) Vibration Assignment

1 3380 O-H stretching of bonded and non-bonded hydroxyl groups Included water i; lignin e

2 2920 Asymmetric C-H stretching Aliphatic methylene b, e, g, k

3 2850 Symmetric C-H stretching

4 1735 Un-conjugated C = O stretching Xylan (hemicellulose) a–c, e, f, i, j

5 1650 O-H bending Absorbed water a, i

Conjugated C-O stretching Carboxylates a, i

6 1600 Aromatic ring vibration Lignin a, c, g, j

C = C skeletal vibration

C = O stretching

7 1510 Aromatic ring vibration Lignin a, c, d, g, j

8 1460 C-H deformation Lignin a, c; xylan j

9 1429 C-H deformation Lignin a, g, I, j

CH2 scissoring Crystalline cellulose b

10 1370 Symmetric C-H deformation Crystalline cellulose k; hemicellulose a, i

11 1320 C-H vibration Cellulose, hemicellulose, lignin a

CH2 wagging Cellulose, hemicellulose c

12 1240 C-O stretching Xylan (hemicellulose) a, i

13 1160 C-O-C asymmetric stretching Crystalline cellulose b, j, k; hemicellulose a, h

14 1111 In-plane ring stretching Crystalline cellulose b, h, j

15 1053 C-O stretching Crystalline cellulose; hemicellulose a, b, h, k

16 898 C-O-C stretching Amorphous cellulose k

aPandey and Pitman [28]
bGwon et al. [36]
cSills, Gossett [16]
dGollapalli et al. [22]
eXu et al. [15]
fKristensen et al. [18]
gMerk et al. [42]
hCorgie et al. [19]
iCui et al. [43]
jChen et al. [44]
kCiolacu et al. [27]

Bekiaris et al. Biotechnology for Biofuels  (2015) 8:85 Page 4 of 12
plant biomass have not been tested, but it could be feas-
ible since the right regions of the spectrum, corresponding
to compounds relevant to the sugars, were taken into ac-
count in the calibrations (see section Analysis of regres-
sion coefficients).
A number of other studies have used mid-infrared spec-

troscopy to predict potential ethanol production from bio-
mass. Gollapalli et al. [22] obtained correlations between
glucose yield and the diffuse reflectance infrared Fourier
transform (DRIFT) spectra, with R2 values ranging be-
tween 0.65 and 0.71 for the different hydrolysis time
points of initial rice straw, while the R2 values of xylose
concentration ranged between 0.47 and 0.50. Sills and
Gossett [16] were able to explain a larger fraction of the
variation during the prediction of glucose and xylose re-
lease in a sample set of 24 pretreated and hydrolysed bio-
mass samples (six different plant materials, four different
pretreatments with NaOH) using the fingerprint region
(1800–800 cm−1) of the ATR-FTIR spectra obtained.
The obtained R2 values of 0.86 and 0.84 for the glucose
and xylose content, respectively, were higher than this
study’s values of 0.63 and 0.65. However, the RMSE
values they obtained were 0.078 g g−1 dm for glucose
and 0.093 g g−1 dm for xylose release, which are higher
than the 0.019 and 0.015 g g−1 dm, respectively, that were
obtained in the present study. The high uniformity in this
study’s sample set (all the straw samples being wheat straw
from a relatively small geographical region) meant that the
variation in the sample set was small and supported the
lower RMSE values. In addition, the use of an external
validation data set in the present study can provide more
certainty about the predictive power of the model and
eliminate the possibility of an overestimation of R2 values.
Martin et al. [23] developed a model predicting the cell wall
digestibility of Sorghum bicolor biomass using the finger-
print region (1800–850 cm−1) of the obtained ATR-FTIR



Table 2 Experiments from which straw samples has been collected

Experiment Year Locations Treatments Field
replicates

Number of
samples

Variety testing 2006 Abed 106 modern Northern European varieties 1 206

Sejet

Variety testing 2006 Abed 20 modern Northern European varieties 1 79

Holstebro

Sejet

Tystofte

Variety testing 2007 Abed 20 modern Northern European varieties 4 317

Holstebro

Sejet

Tystofte

Old varieties 2007 Taastrup 102 old varieties released to the market in the period from 1902 to 1990 2 167

Old varieties 2008 Taastrup 102 old varieties released to the market in the period from 1902 to 1990 2 201

Fertilisation
experiment

2008 Rothamsted 1 variety with 19 different fertiliser applications of organic and inorganic
fertilisers

3 57

Variety testing 2008 Holstebro 10 modern Northern European varieties 4 80

Søtoften

Full scale 2008 Fyn 5 varieties 1 10

Holstebro

Maturity degree 2008 Hornsherred 2 varieties at 3 harvests (3 weeks before maturity, maturity stage, 3 weeks
after maturity)

1 5

Total 1122
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spectra, with a high R2 value of 0.94 and an RMSE
of 0.64 μg mg−1 dry weight h−1. In their study, the
samples were collected at different developmental
stages, resulting in high variable digestibility between
the samples. This could explain the high predictive
power of their model. The model developed in the
present study predicting the total sugar release re-
sulted in a lower R2 value, but the samples were also
Table 3 Different spectral transformations. Effect of the different prepro
glucose release during bioethanol production (R2 coefficient of determ
EV external validation data set, F number of factors used in calibration)

Preprocessing Total sugar

R2 F RMSE
(g g−

CV EV CV

Savitzky-Golay smoothing (seven points) 0.70 0.69 5 0.029

Normalisation by mean

Savitzky-Golay first derivative 0.71 0.70 4 0.029

(second order polynomial, seven smoothing points)

Savitzky-Golay second derivative 0.71 0.63 4 0.029

(second order polynomial, seven smoothing points)

Savitzky-Golay smoothing (seven points) 0.71 0.69 5 0.029

Standard normal variate (SNV)
displaying less variability with all samples stemming
from mature wheat straw. Castillo et al. [29] applied
PLSR to develop a model predicting the ethanol pro-
duction from Eucalyptus globulus pulp using mid-
infrared spectroscopy. They obtained an R2 value of
0.92 with an RMSE of 1.9 g L−1 for the calibration
sample set, while the validation of the model by an
external validation set gave an R2 value of 0.60. The
cessing of the spectra on the prediction of total sugar, xylose and
ination, RMSE root-mean-square error, CV cross-validation data set,

Glucose Xylose

1 dm)
R2 F RMSE

(g g−1 dm)
R2 F RMSE

(g g−1 dm)

EV CV EV CV EV CV EV CV EV

0.030 0.65 0.63 5 0.019 0.019 0.67 0.65 5 0.015 0.015

0.030 0.65 0.64 4 0.019 0.019 0.68 0.66 4 0.014 0.015

0.030 0.66 0.55 4 0.018 0.021 0.70 0.60 5 0.014 0.016

0.030 0.66 0.63 5 0.018 0.019 0.67 0.65 5 0.015 0.015



Fig. 2 Measured vs. predicted values of sugar release. Correlation
between reference (measured) and predicted sugar release (in g g−1 dm)
in terms of total sugar (glucose plus xylose), glucose and xylose
(cross-validation results; black dots, solid regression line, external
validation results: white dots, dashed regression line). (R2 coefficient
of determination, RMSE root-mean-square value, CV cross-validation
data set, EV external validation data set, F number of factors used
in calibration)
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big difference in the R2 values between calibration and
external validation sample sets may indicate the overesti-
mation in the calibration.
NIR spectroscopy has also been used on a number of

occasions to predict sugar release or digestibility of bio-
mass samples. Lindedam et al. [12] predicted the sugar
release of untreated air-dried wheat straw and achieved
R2 values of 0.56 for the total sugar release, 0.44 for the
glucose and 0.69 for the xylose release with RMSE values
of 0.014, 0.010 and 0.005 g g−1 dm, respectively. Bruun
et al. [30] performed partial least squares (PLS) calibra-
tion in order to predict the degradability of wheat straw
obtaining an R2 value of 0.72 and an RMSE of 1.4 % using
untreated wheat straw from two different sites. These
values are difficult to compare with ours because of differ-
ent reference methods and sample variability, but they
seem to be in the same range and thus indicate that the
predictive power of NIR is similar to FTIR-PAS.
A few studies have also been using spectroscopic

methods to predict the results of biomass compositional
analysis. Tucker et al. [20] applied PLS analysis to de-
velop a model predicting the glucan and xylan content
from 35 ATR-FTIR spectra of forest thinning and soft-
wood sawdust (hemlock, Sitka spruce and red cedar).
Tamaki and Mazza [21] developed models predicting the
glucan and xylan content of wheat and triticale using
ATR-FTIR spectra. These studies generally obtained very
high predictive power and precision. This may reflect the
fact that predictions of the total amount of the specific
sugars are easier than predicting the digestible parts. This
may be explained by the fact that total cellulose and xylan
appears in the spectra as specific bands whereas the
digestible amount of the same components depends on a
range of other chemical components that may impede the
enzymatic hydrolysis of cellulose and xylan.

Analysis of regression coefficients
Regression coefficients of total sugar prediction
Positive regression coefficients (Fig. 3) were obtained in
the region of 3597–3440 cm−1 of the spectrum domi-
nated by the stretching vibration of the O-H bond in
various compounds, making an interpretation of this
region difficult. Nevertheless, Ciolacu et al. [27] suggest
that this broad peak is observed in both crystalline and
amorphous forms of cellulose, but with a shift towards



Fig. 3 Regression coefficients from the prediction of total sugar release. Spectral regions with a significant contribution in the prediction of total
sugar release after the pretreatment and enzymatic hydrolysis of wheat straw and during bioethanol production
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higher wavenumbers (around 3440 instead of 3350 cm−1)
for amorphous cellulose. The strong positive association
with fermentable sugars, which was observed at 2920 and
2850 cm−1, corresponds to the aliphatic methylene and is
present in the spectrum of amorphous cellulose. The
regions at 1730 and 1660 cm−1 are attributed to hemicel-
luloses and carboxylates. Additionally, a positive associ-
ation with the sugar release was observed in the regions at
1442 and 1352 cm−1. According to Liang, Marchessault
[31, 32], these regions correspond to the O-H bending
in-plane vibration (1442 cm−1) and the C-H bending vi-
bration (1352 cm−1) of cellulose and hemicellulose. The
positively associated region, centred around 1295 cm−1,
can be attributed to CH2 wagging [16] in cellulose and
hemicellulose or the C-H deformation in hemicelluloses
[33]. Finally, both regions at 977 and 890 cm−1 are associ-
ated with C-O-C stretching at the β-(1 → 4)-glycosidic
linkages of amorphous cellulose [27]. The interpretation
of the positive regression coefficients in this study revealed
a strong correlation of sugar release with amorphous cel-
lulose and hemicellulose.
The broad negative associated regions between 3259

and 2989 cm−1 correspond to the O-H stretching vibra-
tion of various compounds and, as mentioned earlier,
their interpretation is difficult. Fengel [34] asserts that
the region of the IR spectrum between 3200 and 3700
cm−1 arises from the intra- and inter-molecular O-H
vibrations of crystalline cellulose. The crystalline forms
of cellulose appear to be more resistant to enzymatic hy-
drolysis [35]; therefore, it was expected to be negatively
associated with the sugar release. The strongly negatively
associated regions at 1592 and 1505 cm−1 are attributed
to lignin, which has been found to play an inhibitory role in
the hydrolysis of cellulose and hemicellulose into ferment-
able sugars [36]. Additionally, the region at 1220 cm−1 can
be assigned either to the C-C/C-O stretching vibration in
lignin [37] or the C-O-H in-plane bending vibration in
crystalline cellulose [38]. Finally, the regions at 1190,
1130 and 1067 cm−1 are associated with crystalline cel-
lulose, while there is not as much information related
to the regions under 830 cm−1. Liang and Marchessault
[31] suggested that the regions near 740 and 800 cm−1

are assigned to the CH2-rocking vibration of crystalline
cellulose. The interpretation of the negative regression
coefficients in this study revealed a negative correlation
of sugar release with regions related to lignin and crys-
talline cellulose. This is not surprising as lignin plays
an inhibitory role in the hydrolysis of celluloses and
hemicelluloses. Furthermore, the hydrolysis of crystal-
line cellulose is much slower than amorphous cellulose,
as the adsorption of the enzymes necessary for hydroly-
sis declines with increasing cellulose crystallinity [39].

Regression coefficients of xylose and glucose prediction
The high correlation (r = 0.82) of the measured glucose
and xylose yields could mean that the developed calibra-
tion model for each sugar monomer might be built on
regions of the spectrum determining the other variable.
This fact could explain why the same regions of the
spectrum were used for the prediction of total sugar,
glucose and xylose release (Additional file 1: Figure S1).
The division of the calibration set into three smaller sub-
sets led to a decrease in the correlation between the
measured glucose and xylose yields from 0.82 in the full
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calibration set to 0.37, 0.08 and 0.32 in each of the three
subsets, respectively (Fig. 4). The partial least square re-
gression (PLSR) analysis, which was performed on each
subset, revealed the spectral regions that were associated
with the release of each sugar monomer (Fig. 5).
The differences in the regression coefficients obtained

for the prediction of glucose release between the three
sample subsets (Fig. 5a) were more obvious than those of
xylose (Fig. 5b). Positive regression coefficients at the re-
gions around 2920 and 2850 cm−1 (aliphatics/amorphous
cellulose) appeared in all subsets (Fig. 5a), while a positive
association with the region at 1670 cm−1 (carboxylates)
was present in two of the subsets. The region between
1200 and 1100 cm−1, which is associated with crystalline
cellulose, displayed negative regression coefficients in all
subsets, indicating that this region contributed to glucose
prediction to a limited extent. Additionally, the region
between 1600 and 1500 cm−1 (associated with lignin) dis-
played negative regression coefficients in two of the sub-
sets. Both regions are therefore related to the restriction
of cellulose hydrolysis and consequently, the release of
glucose.
In contrast, the regression coefficients obtained for xy-

lose prediction were fairly similar, regardless of which of
the three sample subsets was used (Fig. 5b). Xylose release
was found to be positively associated with the region
around 1740 cm−1 in all subsets and the region around
1250 cm−1 in two of the subsets. Both of them are
assigned to the xylans of hemicelluloses, which are built
up by xylose monomers and are easily hydrolysable [36].
Fig. 4 Xylose vs. glucose release after the pretreatment and
enzymatic hydrolysis. Correlation coefficients (r) of the measured
glucose and xylose yields (in g g−1 dm) in the full calibration set
(713 samples) and the three smaller subsets (of 237 samples each).
Triangles subset 1, circles subset 2, squares subset 3
Negative regression coefficients were obtained in the re-
gion between 1500 and 1600 cm−1, which are assigned to
lignin. This was expected in all subsets as lignin inhibits
the hydrolysis of hemicelluloses.
The regions at 1730 (hemicelluloses) and 970 cm−1

(amorphous cellulose), which were present in the re-
gression coefficients for glucose and xylose prediction,
respectively, revealed that some correlation between
the two sugar monomers remained, even after subdiv-
ision of the calibration set.

Conclusions
This study established that FTIR-PAS can be used to
predict the bioethanol potential from wheat straw and in
addition provide structural information on the chemical
compounds involved in saccharification. The predictions
of total sugar, glucose and xylose release after pretreat-
ment and enzymatic hydrolysis of wheat straw can be
characterised as fair (coefficient of determination ranging
between 0.64 and 0.70) and accurate (RMSE value ranging
between 0.015 and 0.030 g g−1 dm and RMSE to SDL ratio
between 1.18 and 1.45), especially considering the low
variability of the sample set in this study caused by the fact
that all samples stemmed from mature wheat straw.
The interpretation of the regression coefficients used

for the predictions allowed the detection of compounds
that contribute to the release of sugars and compounds
that do not contribute or even inhibit hydrolysis. As
expected, lignin was found to inhibit the hydrolysis of
polysaccharides into monomers, while the crystallinity of
cellulose might delay its hydrolysis into glucose. On the
other hand, amorphous cellulose and xylans were found
to contribute significantly to the released amounts of
glucose and xylose, respectively.

Materials and methods
Sample collection and preparation
A total of 1122 wheat straw samples were collected from
nine different locations in Denmark and one location in
the United Kingdom (Table 4) from 2006 to 2010. The
samples were collected from ongoing experiments with
different wheat varieties, fertiliser treatments and har-
vesting times. The experiments included a total of 203
different wheat varieties. An overview of the origin of
samples in terms of experiments, sites and treatments is
given in Table 2.
From all but one experiment in Denmark, mature air-

dried straw (approximately 7 % moisture) was sampled
from the experimental pots after the grain had been har-
vested by a combine harvester cutting the straw and leav-
ing it in the field. Approximately 80 g of straw was
collected representatively from each plot, as described by
Lindedam et al. [12] and stored at ambient temperature.
Material from the experiment with different harvest times



Fig. 5 Regression coefficients from the prediction of glucose and xylose release. Spectral regions with a significant contribution in the prediction of
glucose (a) and xylose (b) release during bioethanol production based on each of three subsets; top (subset 1), middle (subset 2), bottom (subset 3)

Table 4 Experiment locations where wheat straw samples has
been collected

Site name Country Coordinates

Abed Denmark 54° 49' 40" N, 9° 55' 22" E

Sejet Denmark 55° 49' 12" N, 11°19' 31" E

Holstebro Denmark 56° 24' 5" N, 8° 38' 22" E

Tystofte Denmark 55° 15' 9" N, 11° 20' 14 E

Taastrup Denmark 55° 40' 36" N, 12° 18' 10" E

Rothamsted United Kingdom 51° 48' 24" N, 0° 21' 49" W

Søtoften Denmark 56° 14' 49" N, 10° 6' 1" E

Fyn Denmark 55° 18' 29" N, 10° 22' 36" E

Hornsherred Denmark 55° 78' 49" N, 11° 96' 59" E
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was collected by hand three weeks before maturity, at ma-
turity and three weeks after. The plants were cut 5–7 cm
from the soil, and the grain was removed from the samples
before being stored at ambient temperature. Material from
the UK was collected as described by Murozuka et al. [40].
Subsequently, all straw samples were ground on a cyclone
mill (President, Holbaek, Denmark) mounted with a 1-mm
screen.

Determination of sugar release
Determination of potential sugar release was carried out
at the National Renewable Energy Laboratory (NREL) in
Denver, Colorado using a slightly modified method [41]
compared to the one described by Selig et al. [9]. Briefly,



Bekiaris et al. Biotechnology for Biofuels  (2015) 8:85 Page 10 of 12
2 % dm solids (5.0 ± 0.3 mg in 250 μL of de-ionised H2O)
were pretreated in triplicate in a 96-well plate in a
steam chamber for 17.5 min at 180 °C, with heat-up
and cool-down phases of approximately 52 sec and 1.5
min (to reach 120 °C), respectively [9]. Hydrolysis was
started by loading total enzyme protein on dry biomass at
70 mg g−1 dm of Cellic® CTec2 (Novozymes, Bagsværd,
Denmark). After enzymatic hydrolysis at 50 °C for 70 h, re-
lease of glucose and xylose was measured by a glucose oxi-
dase/peroxidase assay and a xylose dehydrogenase assay,
respectively (Megazyme International Ireland, Wicklow,
Ireland). Total sugars were the calculated values of glucose
plus xylose in each sample. Any sugars added with the en-
zyme mix were accounted for with enzyme-only blanks in
every plate.

Fourier transform infrared photoacoustic spectroscopy
(FTIR-PAS)
No pretreatment of the ground samples was performed
prior to the spectroscopic analysis, apart from oven dry-
ing at 70 °C for 48 hours. The FTIR-PAS spectra were
recorded using a Nicolet 6700 (ThermoScientific, USA)
spectrometer equipped with a PA-301 photoacoustic de-
tector (Gasera Ltd, Finland). During the measurement,
there was a purging flow with helium gas to reduce the
noise caused by moisture evaporating from the samples.
The samples were packed in small ring cups of 10-mm
diameter and inserted into the PA detector. For each sam-
ple, 32 scans in the mid-infrared region between 4000 and
600 cm−1 at a resolution of 4 cm−1 were recorded and aver-
aged. Subsequently, the spectra were smoothed by the
Savitzky-Golay algorithm [42] using three points on each
side (total window of seven smoothing points) and a zero
polynomial, and normalised by the mean using The Un-
scrambler v.10.3 software (CAMO software, Oslo, Norway).

Multivariate analysis
PLSR was used to calibrate models predicting glucose
and xylose release from the FTIR-PA spectra. Different
preprocessing of the spectra were performed in an at-
tempt to obtain better predictions (Table 3). Prior to the
PLSR analysis, 54 outliers were removed to increase the
model’s stability. The selection of the outliers was based
on the observation of the Residual vs. Hotelling-T2 dis-
tribution implemented in the software. In order to avoid
a possible overestimation, the sample set was divided
into a calibration set that contained two thirds of the
samples (713 samples) and a smaller external validation
set with randomly selected samples from all varieties
and sites (355 samples). The calibration set was used to de-
velop calibration models in which the optimal number of
components was chosen based on a leave-one segment-out
cross-validation using 10 segments of 71 samples. More
stable and robust models were achieved by the variable
selection method, known as Martens’ uncertainty test [43].
Subsequently, the samples of the external validation set
were used to evaluate the robustness of the developed
model. The Unscrambler v.10.3 software (CAMO, Oslo,
Norway) was used for all calibrations.
After the models had been developed, the regression

coefficients were interpreted in order to understand
which chemical components were correlated with xylose
and glucose release respectively. However, glucose and
xylose turned out to be highly correlated (r = 0.82). This
essentially meant that the regions of the spectrum were
not uniquely related to the monomeric sugar that the
model was predicting. For example, a model predicting
glucose may have high regression coefficients in a region
that is related to xylose because xylose is correlated with
glucose. In order to be able to identify regions that are
uniquely responsible for predicting glucose and not de-
rived from the correlation with xylose, three datasets were
produced to reduce the correlation between glucose and
xylose. Calibration models were subsequently made pre-
dicting glucose and xylose for the data in each of these
datasets, and the regression coefficients for these datasets
were inspected and interpreted.
The performance of the PLSR-calibrations was deter-

mined by the coefficient of determination (R2):

R2 ¼
X

i
yi−f ið Þ2X

i
yi−�yð Þ2

where yi represents the observed values and fi the predicted
values.
The closer the R2 is to 1, the better the fit of the reference

values (yi) to the regression line.
The accuracy of the calibrations was determined by the

root-mean-square error (RMSE) (in g g−1 dm):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

f i−yið Þ2=n
s

In addition, the standard deviation of the laboratory
method (SDL) was calculated:

SDL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xm

j¼1
yij−�yj

� �2

m � n−1

vuut

where i is the laboratory replicate out of m replicates
and j is the individual sample out of n samples.
The closer the ratio of RMSEEV over SDL is to 1, the

better the predictive power of the model to the reference
measurements.
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Additional file

Additional file 1: Regression coefficients from the prediction of
glucose and xylose release before the division of the calibration set
into three smaller subsets. Spectral regions with a significant contribution
in the prediction of glucose (A) and xylose (B) release during bioethanol
production.
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