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Abstract

Background: New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions
present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free
water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under
these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to
the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction.
Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions
and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities
enriched on rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify
lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression
across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional
category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have
overlapping functions even if they share no specific genes.

Results: Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding
module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the
thermophilic community. Overexpression of these protein families in the thermophilic community resulted from
expression of a small number of genes not currently represented in any protein database. Genes in overexpressed
protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora.

Conclusions: Coupling measurements of deconstructive activity with comparative analyses to identify overexpressed
enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more
efficient biomass deconstruction. Glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33
polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of
lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.

Keywords: Lignocellulose deconstruction, Solid-state culture, Microbial communities, Biofuels, Cellulase, Glycoside
hydrolase family 48, Carbohydrate binding module family 2, Carbohydrate binding module family 33
* Correspondence: jsvander@ucdavis.edu
1Joint BioEnergy Institute, Emeryville, CA 94608, USA
3Department of Biological and Agricultural Engineering, University of
California, One Shields Ave, Davis, CA 95616, USA
Full list of author information is available at the end of the article

© 2014 Simmons et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:jsvander@ucdavis.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Table 1 Metatranscriptome sequencing and processing
metrics

Mesophilic
community

Thermophilic
community

Total reads generated 68,754,440 50,014,968

mRNA reads 43,825,869 24,348,655

Mapped mRNA reads 3,916,829 2,153,529

Lignocellulolytic transcriptome reads 6,167 3,481
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Background
Bioconversion of lignocellulosic biomass into liquid fuels
is a potential strategy for offsetting the use of fossil fuels
and reducing carbon emissions [1]. Such bioconversion
requires that polysaccharides within lignocellulose be
digested into fermentable monosaccharides. While en-
zymatic hydrolysis using lignocellulolytic enzymes is a
standard approach for digestion, enzymes must be toler-
ant to several potentially inhibitory conditions including
high temperatures associated with biomass pretreatment
or heating to decrease the viscosity and required mixing
energy of the biomass suspension [2,3] and high-solids
environments necessary for minimizing water use [4].
Moreover, inhibitors derived from the biomass itself
present additional challenges for deconstructive enzymes
[5]. Given these constraints and the costs of enzymes,
using enzymes optimized for industrial deconstruction
processes that maintain activity under harsh industrial
conditions is economically important [6].
Prior work has considered deconstructive microbial

communities enriched on biofuel feedstocks as a source
of useful enzymes for hydrolyzing lignocellulose [7]. In
particular, metagenomic analysis of enriched communi-
ties has identified genes that potentially encode robust
cellulases that are active in a high-temperature, high-
solids environment [8]. While the representation of
certain glycoside hydrolases in enriched deconstruct-
ive microbial communities provides promising gene
targets, it offers no insight into whether communities
actually express these genes. Metatranscriptomic ana-
lysis of these communities may refine the array of tar-
get genes identified via metagenomics by highlighting
deconstructive enzymes expressed within the commu-
nity. This is particularly important for deconstructive
microbial communities, where digestion of the various
components of lignocellulose may result from en-
zymes spanning different species, some of which may
not be abundant within the community and thus not
readily identified through metagenome analysis.
In this study, microbial communities from green waste

compost were enriched on rice straw as a sole carbon
source under high-solids loading conditions to select for
target deconstructive microorganisms. Rice straw is an
appealing biofuels feedstock since it is rich in lignocellu-
lose and is generated in great quantities as a byproduct
of rice production [9]. Green waste compost was se-
lected as the inoculum for enrichment cultures, as it is
generated under conditions similar to those that may be
used in industrial bioconversion processes. These condi-
tions include high temperatures, limited moisture, and
the use of lignocellulose as the primary substrate. As a
result, compost microbial communities are likely sources
of deconstructive microorganisms and enzymes that
may perform well under industrial conditions. High-
solids enrichment cultures were conducted on un-
pretreated rice straw under mesophilic or thermophilic
conditions to select for microorganisms capable of
degrading rice straw lignocellulose in its most recalcitrant
form under industrially relevant conditions. Metatran-
scriptomes were sequenced from communities enriched
under each temperature treatment. To determine specific
thermo- and high-solids-tolerant lignocellulolytic enzymes
potentially responsible for increased deconstruction in the
thermophilic community, comparative metatranscriptomic
analyses were performed to identify genes significantly
overexpressed in the thermophilic community relative to
the mesophilic community. Previous comparative meta-
transcriptomic studies have been performed to investigate
lignocellulose degradation; however, they have focused on
termite gut [10,11] and soil microbiota [12]. No work to
date has utilized metatranscriptomics to identify new lig-
nocellulolytic enzymes specifically active on biofuel feed-
stocks under industrial conditions. Furthermore, there is
not yet a standard approach for determining statistical sig-
nificance in differential expression results for microbial
communities with largely differing structures. Such com-
munities lack common genes, eliminating the ability to
use transcript fold change as a metric to determine differ-
ential expression, gene by gene, across treatments. To
address this issue, this study pooled gene expression by
functional category, as indicated by Pfam annotations,
since microbial communities performing similar tasks
(such as biomass deconstruction) are likely to have over-
lapping functions even if they share no specific genes. The
data analysis approaches presented in this study facilitated
the discovery of glycoside hydrolases overexpressed under
thermophilic conditions that may be useful for improving
industrial enzymatic biomass deconstruction processes.

Results
Metatranscriptome metrics
Sequencing generated 68,754,440 reads for the mesophi-
lic community and 50,014,968 reads for the thermophilic
community (Table 1). Of these reads, 36.3% and 51.3%
were filtered out as rRNA sequences from the mesophilic
and thermophilic data sets, respectively. The remaining fil-
tered reads were mapped to previously sequenced meta-
genomes from the same microbial communities [8]. 8.9%



Table 2 Protein families containing glycoside hydrolase
(GH) or carbohydrate binding module (CBM) domains
relevant to lignocellulose deconstruction that were
targeted during metatranscriptome analysis

Protein
family

Type Family Dominant types

Pfam00150 GH 5 β-mannosidase, endo-β-1,4-glucanase,
endo-β-1,4-mannosidase, endo-β-1,4-xylanase,
β-1,4-cellobiosidase, β-1,3-mannanase,
xyloglucan-specific endo-β-1,4-glucanase,
exo-β-1,4-glucanase

Pfam00232 GH 1 β-glucosidase

Pfam00331 GH 10 Endo-β-1,4-xylanase, endo-β-1,3-xylanase

Pfam00457 GH 11 Xylanase

Pfam00722 GH 16 Endo-β-1,3-glucanase, endo-β-1,3(4)-gluca-
nase, xyloglucanase

Pfam00759 GH 9 Endoglucanase, cellobiohydrolase,
β-glucosidase

Pfam00840 GH 7 Endo-1,4-β-glucanase, cellobiohydrolase

Pfam00933 GH 3 β-glucosidase, 1,4-β-xylosidase, exo-1,3-1,4-
glucanase, α-L-arabinofuranosidase

Pfam01270 GH 8 Cellulase, endo-β-1,4-xylanase, reducing-
end xylose-releasing exo-oligoxylanase

Pfam01341 GH 6 Endoglucanase, cellobiohydrolase

Pfam01670 GH 12 Endoglucanase, xyloglucan hydrolase,
β-1,3-1,4-glucanase

Pfam01915 GH 3C β-glucosidase, β-1,4-xylosidase, exo-1,3-1,4-
glucanase, α-L-arabinofuranosidase

Pfam02011 GH 48 Reducing end-acting cellobiohydrolase,
endo-β-1,4-glucanase

Pfam02015 GH 45 Endoglucanase

Pfam02156 GH 26 β-mannanase, β-1,3-xylanase

Pfam03443 GH 61 Lytic polysaccharide monooxygenase

Pfam03648 GH 67 N α-glucuronidase xylan, α-1,2-glucuronidase

Pfam03664 GH 62 α-L-arabinofuranosidase

Pfam04616 GH 43 β-xylosidase, α-L-arabinofuranosidase,
arabinanase, xylanase

Pfam07477 GH 67C α-glucuronidase, xylan, α-1,2-glucuronidase

Pfam07488 GH 67 M α-glucuronidase, xylan, α-1,2-glucuronidase

Pfam00553 CBM 2 n/a

Pfam00734 CBM 1 n/a

Pfam00942 CBM 3 n/a

Pfam02013 CBM 10 n/a

Pfam02018 CBM 4, 9 n/a

Pfam03067 CBM 33 n/a

Pfam03422 CBM 6 n/a

Pfam03424 CBM 17, 28 n/a

Pfam03425 CBM 11 n/a

Pfam03426 CBM 15 n/a

Pfam09212 CBM 27 n/a

Pfam09478 CBM 49 n/a
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of mesophilic community reads were mapped to genes in
the corresponding metagenome while 8.8% of reads were
mapped to genes for the thermophilic community, indicat-
ing that many reads did not contain sufficiently unique
sequence information to permit mapping to a single gene
with confidence. Reads that mapped to intergenic or non-
coding DNA were not included when determining these
mapping percentages. 22.9% and 16.2% of genes were de-
tected as expressed in the mesophilic and thermophilic
communities, respectively, based on the fraction of genes
in each metagenome that had at least one read mapped to
them from the corresponding metatranscriptome. The
total read count for genes within the lignocellulolytic
glycoside hydrolase Pfams listed in Table 2 represented
the size of the lignocellulolytic metatranscriptome for each
community. Based on these values, expression of decon-
structive glycoside hydrolases was estimated to constitute
0.16% of all gene expression in both the mesophilic and
thermophilic communities. Rarefaction analysis showed
clear asymptotes for both communities, suggesting that
there was sufficient sequence coverage to detect most
expressed genes (Figure 1). Size factors were calculated as
0.48 and 2.08 for the thermophilic and mesophilic com-
munities, respectively, indicating approximately four times
greater coverage of the mesophilic metatranscriptome.

Composition of lignocellulolytic metatranscriptomes
Abundance data for sequences annotated with lignocel-
lulolytic glycoside hydrolase (GH) Pfams (Table 2) show
differing profiles in the GHs produced by enriched
thermophilic and mesophilic communities (Table 3).
The majority of cellulase expression in the thermophilic
community corresponded to GH families 6, 9, and 48.
Expression of these three GH families constituted 30%
of the community’s lignocellulolytic metatranscriptome.
Hemicellulase transcripts were observed from enzymes
primarily in the GH families 10, 11, and 43 for the
thermophilic community, with these GH families com-
prising 34.5% of the lignocellulolytic metatranscriptome.
Expression of oligosaccharide-active enzymes from GH
families 1 and 3 accounted for 23.2% of the thermophilic
lignocellulolytic transcriptome.
Expression of GH families that primarily have pre-

dicted cellulase activity (families 6, 7, 9, 45, and 48) and
hemicellulase activity (families 10, 11, and 26) by the
mesophilic community totaled 5.1% and 11.2% of the
lignocellulolytic metatranscriptome, respectively. Expres-
sion of oligosaccharide-active GH family 3 enzymes
accounted for 28.8% of the lignocellulolytic transcriptome.
The remaining lignocellulolytic GH expression was pri-
marily observed in GH families that span multiple activ-
ities. Expression of GH family 5 and 16 enzymes, which
can have cellulase or hemicellulase activity, constituted
18.9% of the lignocellulolytic transcriptome, while GH



Figure 1 Rarefaction curves describing number of expressed
genes detected versus number of reads sampled for the
mesophilic community (dashed line) and thermophilic
community (solid line).

Table 3 Expression of lignocellulolytic glycoside
hydrolase families in enriched mesophilic and
thermophilic microbial communities

% of lignocellulolytic GH transcriptome*

GH family Thermophilic community Mesophilic community

1 10.9 3.9

3 12.3 28.8

5 1.8 9.6

6 16.1 1.4

7 1.4 0.0

8 0.7 1.4

9 4.4 3.0

10 12.3 4.6

11 13.8 4.4

12 1.3 0.2

16 2.2 9.4

26 0.1 2.1

43 8.4 24.4

45 0.0 0.1

48 9.6 0.5

61 2.8 0.1

62 0.9 0.3

67 1.2 5.8

*Values are given as percentages of the total number of normalized read
counts mapped to lignocellulolytic glycoside hydrolase Pfams in the
corresponding metagenome.
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family 43, which contains enzymes that act on hemicellu-
lose and hemicellulose-derived oligosaccharides, accounted
for 24.4% of the lignocellulolytic metatranscriptome.

Phylogenetic classification of expressed lignocellulolytic
enzymes
Mapped metatranscriptome reads were coupled with
phylogenetic binning data for corresponding metagen-
omes to determine the taxonomy of all mapped reads.
Additional analysis focused solely on expressed enzymes
with lignocellulolytic GH Pfam annotations. At the
phylum level, total gene expression in both the thermo-
philic and mesophilic communities was predominantly
by Proteobacteria and Bacteroidetes (Figure 2). Expres-
sion of the lignocellulolytic metatranscriptome was simi-
larly dominated by Proteobacteria and Bacteroidetes in
the mesophilic community. In contrast, the majority of
the lignocellulolytic metatranscriptome was expressed by
Actinobacteria in the thermophilic community (Figure 2).
Bacteroidetes contributed to lignocellulolytic GH expres-
sion in both communities, although they played a more
prominent role in the mesophilic community. For both
communities, Firmicutes expressed a similar yet minor
fraction of the total lignocellulolytic metatranscriptome.
Fungi from the Ascomycota phylum contributed to lig-
nocellulolytic GH expression in the thermophilic com-
munity, while fungal expression was not detected in the
mesophilic community.
At the genus level, the prominence of Actinobacteria-

expressed lignocellulolytic GH enzymes in the thermo-
philic community was primarily attributed to a single
genus, Micromonospora. Expression of lignocellulolytic
GH enzymes by Micromonospora spanned several activ-
ities, including endo- and exo-glucanases, hemicellulases,
and oligosaccharide-active enzymes (Table 4). However,
the majority of GH family 26, 43, and 67 expression, cor-
responding to hemicellulases, was from the Niabella and
Niastella genera from phylum Bacteroidetes. Fungi from
the genus Chaetomium expressed GH family 7, 16, and 61
enzymes. Pseudoxanthomonas from the Proteobacteria
phylum expressed the predominate fraction of the GH
family 8 enzymes in the thermophilic community. Alter-
nately, Pseudoxanthomonas played a more prominent role
in expression of the lignocellulolytic metatranscriptome of
the mesophilic community. In particular, Pseudoxantho-
monas was responsible for the majority of expression of
GH family 8, 9, 10, 11, 43, and 67 enzymes. Similar to
the thermophilic community, the Bacteroidetes genus
Niastella contributed to expression of GH family 16
and 26 hemicellulose-active enzymes in the mesophilic
community. However, in the mesophilic community
Niastella also contributed to expression of GH family
5, 10, and 11 enzymes. Another Bacteroidetes genus,
Chryseobacterium, uniquely featured in the mesophilic
metatranscriptome as the most prominent source of
GH family 3 enzyme expression.

Differential expression of lignocellulolytic enzymes
between thermophilic and mesophilic communities
The two methods utilized for determining differential
expression of lignocellulolytic Pfams indicated that
several GH and carbohydrate binding module (CBM)



Figure 2 Total gene expression and expression of glycoside hydrolase families relevant to lignocellulose deconstruction by phylum
in thermophilic and mesophilic enriched communities. TM - total metatranscriptome, all reads in metatranscriptome considered; DM - deconstructive
metatranscriptome, only reads for deconstructive glycoside hydrolase Pfams considered.
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families relevant to lignocellulose deconstruction were
significantly overexpressed in the thermophilic com-
munity (Table 5). Both methods concluded that there
is evidence of significant overexpression of enzymes
with GH family 48, CBM family 2, and CBM family 33
domains in the thermophilic community. Genes within
these overexpressed Pfams were selected for further
analysis. Examination of individual gene expression
levels within each of these Pfams in the thermophilic
community showed that Pfam overexpression in the
thermophilic community can be attributed to the expres-
sion of a small number of genes (Figure 3). For genes an-
notated as GH family 48 (Pfam02011), 7 genes out of 12
total genes detected in the thermophilic metagenome were
expressed (that is, had a read count ≥1), all of which
belonged to genus Micromonospora. However, it was ex-
pression of a single Micromonospora GH family 48 gene
(Joint Genome Institute Integrated Microbial Genomes
with Microbiomes (IMG/M) gene ID 2200387045) in the
thermophilic community that resulted in overexpression
over the mesophilic community (Figure 3A). Similarly, 8
out of 17 genes with CBM family 33 (Pfam03067) annota-
tion were expressed in the thermophilic community and
all expressed genes were housed by Micromonospora.
Likewise, expression of a single CBM family 33 gene
(IMG/M gene ID 2200500718) was primarily responsible
for elevated expression of the Pfam relative to the
mesophilic community (Figure 3B). Both of these highly
expressed genes also contained carbohydrate binding
module family 2 domains (Pfam00553) (Figure 3C). As
a result, expression of both of these genes contributed
to the overexpression of genes encoding the CBM family
2 domain in the thermophilic community. However,
additional enzymes containing the CBM family 2 domain
were also highly expressed. These enzymes spanned other
GH families, including families 6, 9, 10, and 11. Alignment
of the amino acid sequence of the highly expressed
GH family 48 enzyme against the National Center
for Biotechnology Information (NCBI) non-redundant
protein sequences database using the protein Basic
Local Alignment Search Tool (BLAST) algorithm with
the BLOSUM62 pair-score matrix [13] showed that
the best match yielded only 76% identity with a GH
family 48 enzyme from an uncultured bacterium
[GenBank:AEM44250.1]. Alignment against GH family
48 enzymes from sequenced Micromonospora sp. yielded
a maximum identity match of 63% (NCBI reference
sequences YP_004083796.1 and YP_003837256.1). Both
Micromonospora best matches corresponded to proteins
predicted to be cellobiohydrolases. The GH family 48 gene
discovered in the thermophilic community constitutes an
open reading frame, and the length of the enzyme (970
amino acids) is similar to the length of the two most simi-
lar Micromonospora GH family 48 genes in the NCBI
database (968 amino acids), suggesting that the sequence
represents a complete gene. Similar alignment analysis of
the CBM family 33 enzyme overexpressed in the thermo-
philic community showed a best match with 73% identity
to a CBM family 33 protein (NCBI reference sequence
YP_004406840.1) from Verrucosispora maris, a bacterium
from the same family as Micromonospora. The best align-
ment to a sequenced Micromonospora CBM family 33
protein (NCBI reference sequence WP_007071991.1) re-
sulted in 70% identity. The discovered gene encompasses
an open reading frame, and its length of 363 amino acids
is comparable to the 358 amino acid length of the most
similar Micromonospora gene in the database, suggesting
that the discovered sequence captures an intact gene.



Table 4 Genera that express >50% of lignocellulolytic glycoside hydrolases in enriched thermophilic and mesophilic
communities

Thermophilic community Mesophilic community

GH family Genus (Phylum) % of transcripts for GH family Genus (Phylum) % of transcripts for GH family

1 Micromonospora (A) 83.4 Leifsonia (A) 23.7

Cupriavidus (P) 12.1

Bordetella (P) 11.4

Pseudoxanthomonas (P) 8.9

3 Micromonospora (A) 36.1 Chyseobacterium (B) 35.2

Pseudoxanthomonas (P) 21.0 Pseudoxanthomonas (P) 23.9

5 Micromonospora (A) 57.7 Niastella (B) 16.8

Pseudoxanthomonas (P) 16.5

Brevibacillus (F) 15.8

Bordetella (P) 10.9

6 Micromonospora (A) 93.8 Planctomyces (Pl) 35.3

Sphingobium (P) 33.9

7 Chaetomium (As) 70.2 n/a

8 Pseudoxanthomonas (P) 44.7 Pseudoxanthomonas (P) 69.3

Thermobacillus (F) 40.0

9 Micromonospora (A) 79.8 Pseudoxanthomonas (P) 45.8

Bordetella (P) 20.8

10 Micromonospora (A) 65.5 Pseudoxanthomonas (P) 25.1

Niastella (B) 20.1

Paenibacillus (F) 17.4

11 Micromonospora (A) 94.7 Pseudoxanthomonas (P) 47.7

Niastella (B) 25.1

12 Micromonospora (A) 86.7 Leifsonia (A) 73.6

16 Chaeotomium (As) 27.1 Bordetella (P) 29.2

Micromonospora (A) 18.5 Niastella (B) 18.7

Niastella (B) 17.8 Chryseobacterium (B) 17.0

26 Niastella (B) 65.2 Leifsonia (A) 24.9

Niastella (B) 21.1

Brevibacillus (F) 15.3

43 Niabella (B) 38.9 Pseudoxanthomonas (P) 34.3

Thermobacillus (F) 23.9 Bordetella (P) 18.7

45 n/a Brevibacillus (F) 100

48 Micromonospora (A) 100 Bordetella (P) 43.1

Sphingopyxis (P) 22.1

61 Chaetomium (As) 49.0 Pseudoxanthomons (P) 100

43.2Candidatus Solibacter (Ac)

62 Micromonospora (A) 46.0 Niastella (B) 100

Mycobacterium (A) 40.5

67 Niabella (B) 39.5 Pseudoxanthomonas (P) 50.7

Micromonospora (A) 26.9

Phyla are indicated as A, Actinobacteria; Ac, Acidobacteria; As, Ascomycota; B, Bacteroidetes; F, Firmicutes; P, Proteobacteria; Pl, Planctomycetes.
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Table 5 Differential expression of protein families associated with lignocellulolytic activity in enriched thermophilic
and mesophilic communities

Pfam Name Overexpressed in1 Fold change over
other community

P-value, pseudo-Pfam
comparison method4,5

Adjusted P-value,
DESEQ method5

Pfam00150 GH5 M 2.73 0.960 1.000

Pfam00232 GH1 T 9.33 0.333 0.331

Pfam00331 GH10 T 6.90 0.540 0.369

Pfam00457 GH11 T 7.53 0.109 0.369

Pfam00722 GH16 M 2.57 0.769 1.000

Pfam00759 GH9 T 4.79 0.542 0.569

Pfam00840 GH7 T n/a2 0.291 0.256

Pfam00933 GH3 M 1.26 0.970 1.000

Pfam01270 GH8 T 1.28 0.975 1.000

Pfam01341 GH6 T 59.68 0.152 0.018

Pfam01670 GH12 T 20.49 0.623 0.466

Pfam01915 GH3C M 1.39 0.864 1.000

Pfam02011 GH48 T 129.95 0.105 0.012

Pfam02015 GH45 M n/a2 0.751 1.000

Pfam02156 GH26 M 7.94 0.890 0.878

Pfam03443 GH61 T 113.00 0.364 0.323

Pfam03648 GH67N M 1.10 0.859 1.000

Pfam03664 GH62 T 42.87 0.282 0.093

Pfam04616 GH43 M 1.16 0.946 1.000

Pfam07477 GH67C M 1.06 0.840 1.000

Pfam07488 GH67M M 1.15 0.667 1.000

Pfam00553 CBM2 T 30.07 0.097 0.012

Pfam00734 CBM1 n/a3 n/a3 n/a3 n/a3

Pfam00942 CBM3 T 29.40 0.179 0.221

Pfam02013 CBM10 M n/a2 0.485 0.093

Pfam02018 CBM4,9 M 1.47 0.247 1.000

Pfam03067 CBM33 T 49.61 0.028 0.016

Pfam03422 CBM6 M 2.31 0.930 1.000

Pfam03424 CBM17,28 M n/a2 0.956 1.000

Pfam03425 CBM11 M 1.27 0.988 1.000

Pfam03426 CBM15 M n/a2 0.656 1.000

Pfam09212 CBM27 n/a3 n/a3 n/a3 n/a3

Pfam09478 CBM49 n/a3 n/a3 n/a3 n/a3

1T, thermophilic community; M, mesophilic community.
2Fold change cannot be calculated because read count is 0 in one metatranscriptome.
3Pfam expression not detected in either metatranscriptome.
4P-value is the mean from running the algorithm three times.
5Bold values indicate P-values ≤ to the critical value of 0.1.
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Discussion
Comparative metatranscriptomic analyses have offered
new insight into how microbial communities respond to
varying environmental conditions at a functional level
[11,14,15]. These studies have demonstrated that commu-
nities with dissimilar gene contents can be compared on
the basis of protein functional categories. For comparison
of metatranscriptomes with low replicate numbers,
random sampling of reads from the metatranscrip-
tome has been used to create sub-metatranscriptomes
that can be repeatedly compared to gauge the probability
of observing differences in expression of functional cat-
egories between communities due to random chance
[14,16]. In this way, one can assign statistical significance



Figure 3 Expression levels in the enriched thermophilic community for individual genes annotated as (A) Pfam02011 (glycoside
hydrolase family 48), (B) Pfam03067 (carbohydrate binding module family 33), and (C) Pfam00553 (carbohydrate binding module
family 2). Genes listed account for ≥90% of all expression within a given Pfam.
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to observed differences in functional category expression
levels. In the present work, a random sampling approach
was used that compares expression of each functional cat-
egory by considering the number of genes annotated to
each functional category within a particular community.
This differs from the prior technique in that statistical
comparisons are made on the basis of randomly assem-
bled groups of genes that mirror the number of genes
within each functional category in the community data set
rather than sampling a fixed number of genes randomly
and relying on chance to capture genes from a functional
category of interest. When comparing functional categor-
ies that have a small number of genes annotated to them
relative to the number of genes in the metatranscriptome,
this technique eliminates the risk of not capturing a
particular functional category. This new approach was
validated by showing that functional categories identified
as differentially expressed between the thermophilic and
mesophilic communities largely agree with those found by
other methods developed for isolate comparative tran-
scriptomics. In this study, only Pfams determined to
have significant differential expression by both tech-
niques were selected for further analysis. Other Pfams
that register as significantly differentially expressed by
only one of the methods should be interpreted with
caution and warrant reevaluation as additional statis-
tical methods are developed.
Previous researchers have coupled metatranscriptomic

analysis with analysis of the corresponding metagenomes
to complement expression data with additional informa-
tion regarding gene content and taxa abundance in
order to increase understanding of the microbial com-
munities [15]. For the metatranscriptomes considered in
the present work, previous metagenome studies have
demonstrated that bacteria from genus Micromonospora
are heavily enriched from a complex initial community
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following solid-state culture on rice straw under thermo-
philic conditions [8]. Moreover, metagenomic analysis of
these enriched communities revealed that Micromonos-
pora bacteria contain an array of genes coding lignocellulo-
lytic enzymes, many containing CBM family 2 domains
[8]. The metatranscriptomic data presented here suggest
that the prominence of Micromonospora in the enriched
thermophilic community is reflected in the active lignocel-
lulose deconstructing community. Prior work has proposed
Micromonospora species as potential lignocellulose de-
graders in the termite gut [17] and in rice straw compost
[18], both high-solids environments. Additionally, several
Micromonospora species have previously been observed in
thermophilic compost [19]. The results presented here indi-
cate that Micromonospora-derived deconstructive enzymes
may also be active at high temperatures under high-solids
conditions. Previous research has shown that the enriched
thermophilic community was more active on rice straw
compared to the enriched mesophilic community, as indi-
cated by higher respiration rates during solid-state culture,
suggesting that the thermophilic community had higher
rates of polymer deconstruction and sugar utilization
from the lignocellulosic biomass [8]. Moreover, measure-
ments of endoglucanase and xylanase activities for en-
zymes extracted from enriched communities revealed that
the thermophilic community exhibited increased levels of
both activities compared to the mesophilic community [8].
These observations, combined with metatranscriptome
data showing that Micromonospora dominates expression
of lignocellulolytic enzymes in the thermophilic commu-
nity, make this genus a promising source of lignocelluloly-
tic enzymes for industrial high-solids deconstruction
processes.
Specific Micromonospora genes within the Pfams over-

expressed in the thermophilic community potentially
code for novel enzymes, based on their similarity to
existing genes in protein databases. These genes include
an enzyme containing both GH family 48 and CBM fam-
ily 2 domains. While exhibiting minimal cellulolytic ac-
tivity on their own, enzymes from this GH family are
known to enhance deconstruction of cellulose when
combined with endoglucanases [20,21]. The presence of
GH family 48 enzymes, some with CBM family 2 do-
mains, has been noted previously in other cellulolytic
Actinobacteria [21,22]. Furthermore, thermophilic mi-
crobial communities from compost have been shown to
be rich in GH family 48 genes [23]. Prior study of the
thermophilic community’s metagenome revealed that
Micromonospora bacteria within the community har-
bored many putative cellobiohydrolases with CBM fam-
ily 2 domains [8]. That only one of these genes is highly
expressed in the thermophilic community may suggest it
is particularly well suited to the particular feedstock,
temperature, and moisture level used for enrichment.
The second overexpressed Micromonospora gene coded
for an enzyme with CBM family 33 and family 2 domains.
CBM family 33 enzymes have increasingly garnered inter-
est due to their recently discovered lytic polysaccharide
monooxygenase activity. Although the exact mechanism is
not completely understood, certain CBM family 33 en-
zymes are able to cleave cellulose chains in their crystal-
line form, increasing the amount of cellulose chain ends
[24]. It is thought that this action synergistically enhances
cellulose deconstruction by making cellulose more ac-
cessible to other cellulases. Research has shown that
combining CBM family 33 enzymes with other cellu-
lases increases cellulolytic activity [25]. Like the over-
expressed GH family 48 enzymes, the prominence of
the overexpressed Micromonospora CBM family 33 in
the thermophilic community indicates that it is active
under industrial deconstruction conditions. Further-
more, as both overexpressed genes contain CBM
family 2 domains, this CBM may be effective at binding
cellulose under thermophilic, high-solids conditions and
may be useful for engineering other cellulolytic enzymes
tolerant to these conditions. Notably, past work has shown
that GH family 48 and CBM family 33 enzymes containing
CBM family 2 were also prominent in the secretomes of
Streptomyces grown aerobically on cellulose or switchgrass
[26]. These enzymes may represent a lignocellulolytic
mechanism unique to aerobic Actinobacteria. Considering
the overexpression of these genes and the enhanced de-
constructive activity of the thermophilic community over
the mesophilic community, these enzymes warrant
additional study to better characterize their activity
and determine their benefit to industrial lignocellulose
deconstruction for biofuel production.

Conclusions
Analyzing metatranscriptomes from microbial com-
munities enriched under conditions relevant to indus-
trial deconstruction of lignocellulosic feedstocks for
biofuel production is a powerful technique for discov-
ering potentially robust lignocellulolytic enzymes.
While the enrichment culture strategy may lead to
communities that differ drastically in composition
based on treatment, with few shared genes between
them, differential expression analyses can still be per-
formed by considering expression of gene functional
categories, such as Pfams. Using this approach in con-
junction with metagenomic data, candidate cellulase
and polysaccharide monooxygenase genes from sig-
nificantly overexpressed Pfams in the thermophilic
community were identified. Their unique presence
and high expression level in the thermophilic commu-
nity make them promising candidates for improving
deconstruction processes under high-temperature and
high-solids conditions.
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Materials and Methods
Enrichment cultures
Rice straw (Oryza sativa L., California rice M206) was
collected, dried, milled, and stored as previously de-
scribed [27]. High-solids enrichment cultures under
mesophilic and thermophilic conditions were performed
as previously described [8]. In brief, rice straw was inoc-
ulated with green waste compost to achieve 0.1 g com-
post/g mixture (dry weight basis) and then wetted to
0.8 g water/g mixture (fresh weight basis) with carbon-
free minimal media [7]. The wetted biomass was allowed
to equilibrate overnight at 4°C. Solid-state culture biore-
actors with a 200-ml capacity [28] were loaded with 5 to
10 g (dry weight) of wetted material and aerated at
10 ml/min. For the mesophilic enrichment, one reactor
was incubated at 35°C. For the thermophilic enrichment,
one reactor underwent an initial temperature ramp from
35°C to 55°C by increasing the temperature by 5°C every
6 hours. The temperature was then held at 55°C for the
remainder of the incubation. Water was added to the
reactors twice weekly to maintain a constant moisture
content during incubation. Cultures were passaged
weekly by inoculating freshly wetted rice straw with
cultured biomass to achieve 0.1 g cultured biomass/g
mixture (dry weight basis). The cultured biomass
underwent RNA extraction four weeks after the initial
inoculation.

RNA preparation
Samples were stabilized by adding an excess of Life-
Guard Soil Preservation Solution (MoBio Laboratories,
Inc., Carlsbad, CA) to 2-g aliquots of biomass. RNA was
extracted from stabilized samples using an RNA Power-
Soil total RNA isolation kit (MoBio Laboratories, Inc.)
according to the manufacturer’s instructions with 25 μl
of 2-mercaptoethanol added to each sample during
the bead solution addition step. Eluates with isolated
RNA were processed using an RNeasy mini kit (Qiagen,
Venlo, Netherlands). For each sample, 100 μl of eluate
was combined with 350 μl of buffer RLT from the kit
and 3.5 μl of 2-mercaptoethanol, mixed vigorously,
and combined with 250 μl of 100% ethanol. The entire
volume of solution was loaded onto an RNeasy col-
umn and centrifuged for 30 s at ≥8,000 × g. In lieu of
the wash step, digestion of genomic DNA in samples was
performed using RNase-free DNase (Qiagen), as described
in the manufacturer’s protocol for the RNeasy kit. Fol-
lowing DNA digestion, samples were processed as de-
scribed in the RNA cleanup portion of the manufacturer’s
instructions. An additional digestion was performed using
a TURBO DNA-free kit (Applied Biosystems, Carlsbad,
CA) to remove residual genomic DNA. Digestions were
performed in a 200-μl reaction volume with 20 to 30 μg
RNA according to the manufacturer’s protocol with the
following exceptions: DNase loading was increased to
0.3 μl DNase solution/μg RNA and the final centrifuga-
tion step to remove DNase inactivation reagent was in-
creased to 10 min. The treated RNA was concentrated
by adding 3× volume of 100% ethanol, incubating at -20°C
for at least 2 hours, washing with 70% ethanol, and resus-
pending the dried pelleted RNA in diethylpyrocarbonate
(DEPC)-treated water. The processed RNA was stored
at -80°C.
A MICROBExpress Bacterial mRNA Enrichment Kit

(Ambion, Carlsbad, CA) was used to enrich mRNA
from 10 μg of extracted RNA. Ambion Fragmentation
Reagents were used to fragment mRNA. cDNA was gener-
ated from fragmented mRNA using a SuperScript Double
Stranded cDNA Synthesis Kit (Invitrogen, Carlsbad, CA)
according to the manufacturer’s guidelines. Random hex-
amers were used as primers during strand synthesis.
dNTP mix with dTTP substituted with dUTP was
used during second strand synthesis. The resultant
double-stranded cDNA was processed using a TruSeq
DNA Sample Prep Kit (Illumina, San Diego, CA) to
polish fragment ends, add A-tails, and ligate TruSeq
adapters. Second strands were removed from processed
cDNA through digestion of dUTP with AmpErase Urasil
N-glycosylase (Applied Biosystems, Carlsbad, CA). cDNA
was then enriched via 10 cycles of PCR with Illumina
TruSeq primers.

cDNA sequencing
cDNA sequencing was conducted using the Joint Genome
Institute’s standard cDNA sequencing pipeline for the
Genome Analyzer platform (Illumina). In brief, frag-
mented cDNA was fixed to a flow cell, and clusters
were generated using a Paired-End Cluster Generation
Kit v4 (Illumina). The first set of reads was generated
from clusters using the Illumina Genome Analyzer and
36-cycle Sequencing Kit v4 (Illumina) according to the
manufacturer’s instructions. Following the first run,
clusters were resynthesized with the Paired-End Cluster
Generation Kit v4, and paired-end reads were obtained
using a second Genome Analyzer run. A read length of
151 bp was used for both runs.

Data analysis
Metatranscriptome reads were filtered to identify rRNA
sequences by using the HMMsearch command in
HMMER [29] to align the reads against the Rfam [30],
RDP [31], and NCBI [32] databases. For a read to be
called as an rRNA sequence, a threshold of ≥30% iden-
tity between the read and the reference sequence was
used and at least 70% of the read must have aligned to
the reference sequence. Reads with alignment to rRNA
sequences were removed from the data set to isolate
mRNA sequences. Filtered reads were mapped to their
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corresponding metagenomes using a custom program
developed by the US Department of Energy’s Joint
Genome Institute that uses the Burrows-Wheeler
Aligner [33] to align reads against metagenomic con-
tigs and log the number of reads within each anno-
tated gene. A read was considered to align with a gene
if the midpoint of the read fell within the gene boundaries.
The metagenomes used for mapping were sequenced,
annotated, and phylogenetically binned previously [8] and
are accessible through the Joint Genome Institute’s
Integrated Microbial Genomes with Microbiomes (IMG/
M) portal (https://img.jgi.doe.gov/cgi-bin/m/main.cgi) under
taxon object IDs 2162886009 and 2162886010 for the
mesophilic and thermophilic community metagen-
omes, respectively. PAST software [34] was used to
perform rarefaction analysis on mapped read counts
to determine the adequacy of sequence coverage for
capturing expressed genes.
The metatranscriptomes were compared to determine

differential expression of genes between microbial com-
munities. Prior to comparison, the read count mapped
to each gene was normalized by dividing by the gene
length. Since the phylogenetic composition of each com-
munity was known to be different with few genes in
common [8], differential expression analysis was per-
formed on the basis of expression of Pfam functional
categories [35]. For a comparison of two metatranscrip-
tomes, A and B, each with a corresponding metagenome,
normalized read counts for all genes were collated by
Pfam annotation such that

Pi;A ¼ pi;A
SA

¼
Xni;A

j¼1
gj;i;A=lj;i;A

� �
SA

ð1Þ

where Pi,A is the sum of all normalized read counts for
genes with annotation to Pfam i in metatranscriptome
A, pi,A is the sum of length-normalized read counts for
all genes with annotation to Pfam i in metatranscrip-
tome A, ni,A is the number of genes in metatranscrip-
tome A with annotation to Pfam i, gj,i,A is the read count
for the jth gene with annotation to Pfam i in metatran-
scriptome A, lj,i,A is the length of the jth gene with anno-
tation to Pfam i in metatranscriptome A, and SA is a size
factor related to the sequencing depth of metatranscrip-
tome A meant to normalize for differences in sequence
coverage between metatranscriptomes A and B. Size
factors were calculated using the method described by
Anders and Huber [36]:

SA ¼ median
pi;A

pi;Api;B
� �1=2
 !

ð2Þ

where for each metatranscriptome, the ratio of each
Pfam’s length-normalized read count, pi,A to the geometric
mean of length-normalized read counts across all meta-
transcriptomes sampled is calculated and the median value
is taken as the size factor for that metatranscriptome. Pi,B
can be similarly calculated for Pfams in metatranscriptome
B. Genes with multiple Pfam annotations were represented
separately for each Pfam category. Genes lacking a Pfam
annotation were discarded prior to collation.
For a given Pfam, the differential expression between

metatranscriptomes A and B, Di, is described by Di = Pi,A-
Pi,B. The statistical significance of any observed Di value
was determined by evaluating the probability of observing
a difference value ≥Di for two groups of randomly selected
genes of sizes ni,A and ni,B. To generate these random gene
groupings for a given Pfam, referred to as pseudo-Pfams
from here onward, a Matlab (version 7.4.0.739, Math-
Works, Natick, MA) script was used to randomly se-
lect ni,A genes with a Pfam annotation and non-zero
read count from metratranscriptome A and sum their
normalized read counts. Similarly, normalized read
counts of ni,B random genes were chosen and summed
for metatranscriptome B. The difference in normalized
read counts for the two pseudo-Pfams, Di,pseudo, was
then calculated. This process of generating Di,pseudo

values was repeated 10,000 times for each Pfam to cre-
ate a probability distribution of difference values that
arise due to chance. The observed values of Di were
compared to corresponding probability distributions
to determine the probability of obtaining the observed
result by chance (the P-value). This approach was used
to specifically analyze Pfams relevant to lignocellulose
deconstruction (Table 2). Since multiple comparisons
were conducted, the P-values for individual compari-
sons would normally be adjusted to yield a target
family-wise error rate for false positives. However,
given the goal of this study - to discover new enzymes
for high-solids, high-temperature lignocellulose de-
construction - false negatives were deemed more un-
desirable than false positives, as false positives can be
filtered out via later experimentation to measure en-
zyme activity in isolation while false negatives would
be lost prior to further study. As a result, the family-
wise error rate was determined to be less critical than
that for individual hypotheses.
The method developed by Anders and Huber [36] for

analyzing isolate transcriptomes was adapted and used
as an additional technique to determine differentially
expressed Pfams between communities. The method was
performed using the DESEQ program implemented in R
(version 2.15.3, The R Foundation for Statistical Com-
puting, Vienna, Austria). In brief, read counts for each
Pfam listed in Table 2 were used to estimate the mean
and variance of a negative binomial distribution, which
were then used to test the null hypothesis that read
counts for a given Pfam do not differ between the two

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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communities. As only one metatranscriptome was ob-
tained from each community, the Pfam read counts from
both communities were temporarily pooled and treated
as duplicate samples in order to estimate the read count
variance. This approach assumed that most Pfams were
not differentially expressed between the communities. If
this assumption is invalid, variance values will be overes-
timated and the probability of obtaining false negatives
will increase, limiting detection of differential expression
to Pfams with drastic differences in expression between
the communities [36]. P-values from DESEQ analysis
were adjusted using the Benjamini-Hochberg method
[37] to account for multiple comparisons and provide a
more stringent determination of differentially expressed
Pfams compared to the previously described method. A
false discovery rate of 0.10 was used to determine signifi-
cance for both techniques.

Data archiving
Metatranscriptome raw reads and mapped read counts
are archived on IMG/M. These data can be accessed via
the Joint Genome Institute portal under their corre-
sponding metagenomes on IMG/M, which are listed as
taxon object IDs 2162886009 and 2162886010 for the
mesophilic and thermophilic communities, respectively.
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