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Abstract 

We disclose a novel boron trifluoride induced C–H activation and difluoroboronation at room temperature, thus 
providing a straightforward gateway to a series of N,O-bidentate organic BF2 complexes. The scope of the method is 
demonstrated with 24 examples. All the synthesized compounds exhibit fluorescence and some of them have large 
Stokes shifts.
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Graphical Abstract

Introduction
Small organic fluorescent dyes are popular and have 
been attracting attention owing to their remarkable 
optical properties. Due to the characteristics associated 
with high fluorescence intensity and quantum yields, 
sharp absorption and fluorescence emission spectra, 
high photo- and chemical stability, organic difluorobo-
ron (BF2) complexes have played increasingly important 
roles in many fields involving biological fluorophores, 
fluorescent indicators, photosensitizers, light-emitting 
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materials, photodynamic therapy, laser dye and solar cells 
as well. Fluorescent materials with large Stokes shift play 
an important role in biological field [1–8]. Besides, fluo-
rescence properties of organic difluoroboron complexes 
can be managed by changing the structure of the organic 
ligand. Since these advantages make organic difluorobo-
ron complexes becomes a research hotspot.

At present, these organic difluoroboron complexes are 
classified into three categories: N,N-bidentate (Fig.  1a), 
O,O-bidentate (Fig. 1b) and N,O-bidentate (Fig. 1c) com-
plexes [9]. After years of research, the synthetic strategies.
for access to N,N-bidentate and O,O-bidentate organic 
difluoroboron complexes are gradually mature. Borad-
ipyrromethene (BODIPY) (Fig. 1a), a typical fluorescent 
dye of N,N-bidentate complexes, as well as its derivatives 
are continuously explored [10–21]. Meanwhile, exten-
sive research has also been carried on difluoroboron 
β-diketonate (Fig.  1b) [22–24]. However, N,O-bidentate 
organic BF2 complexes are seldom investigated [25–28], 
especially for the synthesis of such compounds.

In recent year, a new class of N,O-bidentate organic 
BF2 complexes are prepared by 2-phenylpyridine deriva-
tives (Scheme 1a) [28]. The reaction involves a Cu(OAc)2 
catalyzed bimetallic system for the efficient C-H activa-
tion of 2-phenylpyridines, but restricted substrates limit 
the structural diversity of N,O-bidentate organic BF2 
complexes. Besides, other published approaches to build 
the N,O-bidentate organic BF2 motifs suffer from their 
disadvantages. For example, substrates of the reaction 
in Scheme  1b are limited to a few of non-commercial 
available compounds endowed with specific structures 
[29]. Another adverse factor is that noble metal cata-
lysts are required for the complete transformation of 
substrates (Scheme 1c) [30]. Moreover, characterized by 
tedious experimental operations and high energy con-
sumption, multi-step methods usually have their limi-
tations (Scheme  1d) [31]. In addition, harsh conditions 
and low yield are drawbacks for further industrial pro-
duction and commercial application (Scheme  1e) [26]. 
From the perspective of foundation and application, 
more effective and convenient strategies are required for 

the development of the N,O-bidentate organic BF2 com-
plexes synthetic chemistry.

In this paper, we report the synthesis and fluorescence 
properties of a novel pyrazineboron complex. Boron tri-
fluoride and potassium t-butoxide induce regioselective 
C–H activation and difluoroboronation at room tem-
perature. N,O-bidentate complexes are obtained by the 
reaction and excellent fluorescence properties of the 
products are shown in further results. In comparison to 
what described in the literatures, our synthesis method 
is superior in catalyst-free system, low-cost process and 
step economy.

Results and discussions
Acetophenone 1a and 2-cyanopyrazine 2 were selected 
as model substrates to produce compound 4a (Figure 
of Table 1). A mixture of acetophenone 1a (0.20 mmol), 
2-cyanopyrazine 2 (0.30  mmol), potassium t-butox-
ide (0.60  mmol) and boron trifluoride tetrahydrofuran 
(0.60  mmol) in THF (2.0  mL) was stirred in nitrogen 
atmosphere at room temperature for 24 h, at last provid-
ing compound 4a in 73% yield based on acetophenone 
(Table  1, entry 1). The structure of 4a was determined 
by X-ray crystallography (Scheme 2, 4a). The crystal data 
of compounds 4a, 4aa, 4ab and 5 are included in addi-
tional file 1, 2. Other alkali salts and/or organic base such 
as K2CO3, KOH and Et3N afforded the product in lower 
yields or no yield (entries 2–4). Higher temperature was 
a disadvantage to the reaction (entries 1, 5–7). If the tem-
perature exceeds 100 ℃, no product will be obtained. The 
effect of solvent was found to be essential for the genera-
tion of the product (entries 1, 8–10).

With the best conditions in hand, we sought to investi-
gate the generality of the reaction (Scheme 2). The yields 
was discussed in terms of electronic effect and the steric 
effect of functional groups on the substrates. Firstly, 
experimental results showed that the electronic effect on 
the phenyl rings of 1 will affect the production of com-
pound 4. Substitution of the electron-donating groups or 
weak electron-withdrawing groups at the para-position 
of the phenyl group would bring about products in yields 
of 50–70% (4a-4k). Substitution of electron-donating 
groups at the para-position of the phenyl group had lit-
tle influence on the reaction yield. The strong electron-
donating group -OMe substituted product (4b) could 
be obtained in good yield. When the para-position of 
the phenyl group was electron withdrawing group, the 
situation was just the opposite. Substrates bearing weak 
electron-withdrawing groups could still react to give 
products 4h-4k while the yield decreased in succession. Fig. 1  Three types of organic difluoroboron BF2 complexes
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However, the reaction was totally suppressed when 
strong electron-withdrawing groups such as −  CF3, 
−  NO2 and group -COOEt were introduced to the sub-
strates. Secondly, the steric effect of substituents on the 
substrates was studied by employing methoxy- (4b, 4l, 
4m) at the para, meta, and ortho positions of the phe-
nyl group respectively. With the shift of the functional 
groups from the para to ortho positions, there was no 

obvious change in reaction yield. Moreover, substrates 
with two substituents at the 3,5 positions of phenyl (4o) 
or three substituents at the 2,4,6 positions of phenyl (4p) 
had little effect on the yield of the reaction. Some fused-
ring and heterocyclic substrates were also tested, most of 
them providing corresponding compounds in good yields 
(45%-58%) (4q-4u). However, the yield of 4t decreased 
significantly (45%). In addition, the synthetic utility of 

Scheme 1  Different strategies to synthesize N,O-bidentate organic BF2 complexes
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our reaction was also examined by running the experi-
ments on gram scale. The reactions of acetophenone 1a 
(9.0  mmol) with 2-cyanopyrazine 2 (13.5  mmol) in our 
system afforded the product 4a in 46% yield (Additional 
file 3: Section 2.2).

With the progress of building the N,O-bidentate organic 
BF2 motifs, several experiments were carried out for the 
investigation of the reaction mechanism (Scheme  3). In 
experiment shown in Scheme 3a, compound 5 was isolated 
instead of compound 3 or 3’ (Scheme 4) without the addi-
tion of boron trifluoride, indicating that C-H activation 
process was relevant to the use of boron trifluoride. When 
extra five equivalent free radical trapping agent (TEMPO) 
was added in standard conditions, the reaction proceeded 
effectively to afford 4a in 66% yield (Scheme  3b), so we 
thought no free radical process was involved in the reaction 
pathways.

Based on the experimental results presented above, a 
possible reaction mechanism is proposed (Scheme  4). In 
the presence of base, acetophenone 1a is deprotonated to 
form intermediate (a). Reaction of 2-cyanopyrazine 2 with 
one equivalent boron trifluoride produces the intermediate 

(b). After nucleophilic attack, intermediate (a) reacts with 
intermediate (b) to generate intermediate (c). Intermediate 
(c) loses one molecule of HBF3

− by intermolecular elec-
tron transfer, then affording intermediate 3. In solution, 3 
is transformed into enol 3’ via keto-enol tautomerization. 
Finally, it 3’ immediately picks up another molecule of 
boron trifluoride to give target product 4a in the presence 
of alkaline.

Compounds with D − π − A structure usually possess 
excellent luminescence property. Boron heterocycle 
is highly electron-deficient while -OMe at para posi-
tion of phenyl in compound 4b is an electron-donat-
ing group, which is favorable for the formation of the 
D − π − A system. The introduction of strong elec-
tron-donating group -OMe makes the compound 4b 
exhibit excellent fluorescence performance. Fluores-
cence quantum yield of the compound 4b was tested 
to be 79%. The fluorescent lifetime of it is 4.3 ns. Data 
of other compounds can be found in Additional file 3: 
Section 9.

The extension of conjugation system in the fluorescent 
compound can reduce the energy gap between the high-
est occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO), which leads to the 
red shift of emission wavelength. With that in mind, struc-
tural modification methods are discussed in order to obtain 
compounds with larger red shift. Fluorescence proper-
ties of compounds are usually enhanced by introducing 
fluorene. On the other hand, thiophene has distinctive 
electronic transmission capability [32, 33]. Therefore, it is 
common to introduce fluorene or thiophene ring to extend 
the conjugation system and improve the optical proper-
ties of compounds. Long-chain alkoxy group not only has 
stronger electron donating ability, but also can increase 
the solubility of compounds. According to the analysis, we 
designed and synthesized compounds 4aa, 4ab and 4ac. 
The structures of 4aa and 4ab were determined by X-ray 
crystallography (Fig. 2).

As shown in Fig. 3, the UV–vis and fluorescence spectra 
of representative N,O-bidentate organic BF2 complexes in 
dichloromethane were tested. The absorption and emis-
sion maxima of these BF2 complexes vary from 433 to 
510 nm, and 472 nm to 615 nm respectively. Compounds 
4a and 4ac exhibit good fluorescence properties (Table 2). 

Table 1  Optimization of the formation of 4aa

a Reaction conditions: 1a (0.20 mmol), 2 (0.30 mmol), base, solvent, BF3∙THF 
(0.60 mmol), N2. bYields were determined by 1H NMR analysis of the crude 
product using 1,3,5-trimethoxybenzene as the internal standard. Temp, 
Temperature

 

Entry Base Temp (oC) Solvent Yieldsb

1 tBuOK rt THF 73%
2 K2CO3 rt THF None

3 KOH rt THF None

4 Et3N rt THF None

5 tBuOK 60 THF 31%

6 tBuOK 80 THF 10%

7 tBuOK 100 THF trace

8 tBuOK rt DCM 10%

9 tBuOK rt 1,4-Dioxane trace

10 tBuOK rt DMF None

Scheme 2  The scope of acetophenone derivatives used for the synthesis of compounds 4a,b. aReaction conditions: 1 (0.20 mmol), 2 (0.30 mmol), 
KTB (0.60 mmol), THF (2.0 mL), BF3∙THF (0.60 mmol), N2, rt, 24 h. bIsolated yields

(See figure on next page.)
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Scheme 2  (See legend on previous page.)
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Scheme 3  Control Experiments

Scheme 4  Proposed reaction mechanism for the generation of compound 4a 
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Data of other compounds can be found in Additional file 3: 
Section 9.

The extension of conjugation system in the fluorescent 
compound effectively makes compounds 4aa and 4ab red 
shifts. The solution-state fluorescence spectra of 4aa and 
4ab exhibited larger Stokes shifts. The large Stokes shifts of 
fluorescent materials has the advantages of low background 
interference, small light damage to biological samples, 
strong sample penetrability and high detection sensitivity 
[34–36]. These compounds have potential for biological 
imaging.

Conclusions
In summary, we have developed the diversity-oriented effi-
cient one-pot synthesis of a series of a novel pyrazinebo-
ron complexes. Boron trifluoride and potassium t-butoxide 
induce C–H activation and difluoroboronation at room 

temperature. These compounds show excellent photophys-
ical properties, including high fluorescence quantum yields 
in solution, large Stokes shifts and excellent stability. Fur-
ther structural modification was carried out to improve the 
fluorescent properties of the products.

Experimental
A mixture of acetophenone 1a (0.20 mmol), 2-cyanopyra-
zine 2 (0.30  mmol), potassium t-butoxide (0.60  mmol) 
and boron trifluoride tetrahydrofuran (0.60  mmol) in 
THF (2.0  mL) was stirred in nitrogen atmosphere at 
room temperature for 24 h. After reaction, 10 mL water 
was added and the reaction mixture was exacted with 
dichloromethane (3×40  mL). Filtered through a pad of 
silica gel, and concentrated under reduced pressure. The 
crude product was purified on a silica gel column eluted 
with petroleum ether/dichloromethane (10:3 to absolute 

Fig. 2  Crystal structures of compounds 4aa and 4ab with all non-hydrogen atoms shown as 50% probability ellipsoids
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dichloromethane v/v) to afford the products 4a-4u. 4aa, 
4ab and 4ac were obtained by the same method.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13065-​023-​00974-7.

Additional file 1. Checkcifs of the compounds 4a, 4aa, 4ab and 5.

Additional file 2. Cifs of the compounds 4a, 4aa, 4ab and 5.

Additional file 3. Supporting document showing the 1H NMR, 13C NMR, 
IR spectra and photophysical data of each compound studied in this 
paper.
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