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Abstract 

The 3C-like protease (3CLpro), known as the main protease of SARS-COV, plays a vital role in the viral replication cycle 
and is a critical target for the development of SARS inhibitor. Comparative sequence analysis has shown that the 
3CLpro of two coronaviruses, SARS-CoV-2 and SARS-CoV, show high structural similarity, and several common fea-
tures are shared among the substrates of 3CLpro in different coronaviruses. The goal of this study is the development 
of validated QSAR models by CORAL software and Monte Carlo optimization to predict the inhibitory activity of 81 
isatin and indole-based compounds against SARS CoV 3CLpro. The models were built using a newer objective func-
tion optimization of this software, known as the index of ideality correlation (IIC), which provides favorable results. The 
entire set of molecules was randomly divided into four sets including: active training, passive training, calibration and 
validation sets. The optimal descriptors were selected from the hybrid model by combining SMILES and hydrogen 
suppressed graph (HSG) based on the objective function. According to the model interpretation results, eight synthe-
sized compounds were extracted and introduced from the ChEMBL database as good SARS CoV 3CLpro inhibitor. Also, 
the activity of the introduced molecules further was supported by docking studies using 3CLpro of both SARS-COV-1 
and SARS-COV-2. Based on the results of ADMET and OPE study, compounds CHEMBL4458417 and CHEMBL4565907 
both containing an indole scaffold with the positive values of drug-likeness and the highest drug-score can be intro-
duced as selected leads.

Keywords  QSAR, Molecular docking, Isatin derivatives, Indole derivatives, SARS CoV 3CLpro inhibitor, Index of ideality 
of correlation

Introduction
In the end of February 2003, a novel human coronavi-
rus was detected as the causative agent of the first major 
pandemic of the twenty-first century, severe acute res-
piratory syndrome (SARS). The first case of "atypical 
pneumonia" was declared in China and quickly and unex-
pectedly spread to 29 countries, especially in Asia and 
North America, alarming the World Health Organization 
(WHO). Within several months of the outbreak in 2003, 
the WHO reported that it had caused 916 deaths out of 
8422 cases worldwide (10–15% case fatality rate) [1]. In 
early 2003, a new human coronavirus known as SARS 
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coronavirus (SARS CoV) was recognized as the causative 
agent of SARS [2].

COVID-19 is the active pandemic which was first 
reported in late 2019 in Wuhan, China. In February 2020, 
SARS-COV-2 was announced as the causative agent. 
As of October 24th 2021, 243 million cases and over 4.9 
million deaths have been reported. The 3C-like protease 
(3CLpro) enzyme or major protease (Mpro), is essential 
for the process of viral replication and infection, thereby 
making it an ideal target for antiviral therapy [1]. The 
coronavirus 3CLpro is a cysteine protease consisting of 
about 300 amino acids and containing three domains. 
Domains I (amino acids 8 to 99) and II (amino acids 100 
to 183) consist of beta barrels that simulate the chymo-
trypsin and 3C proteinases. The binding site is located 
between the mentioned domains, and about 16 resi-
dues join domains I and II to residues 200 to 300 as the 
C-terminal domain III. The proteolytic activity of 3CLpro 
has been performed by this third five helices domain [3]. 
The 3CLpro enzymes show a  highly conserved  struc-
ture  among known coronavirus species, and several 
common characteristics are shared among different cor-
onavirus 3CLpro substrates [4]. Comparative sequence 
analysis has shown that the 3CLpros of the three coro-
naviruses of SARS-CoV-2, SARS-CoV, and MERS-CoV 
are very similar in structure and conservatism [5]. These 
findings indicate that 3CLpro could be used as a homol-
ogous target for the development of anti-coronavirus 
drugs that can inhibit the proliferation of various coro-
naviruses [4].

Based on various studies, a combination of nucleoside 
analogues such as ribavirin can be used for the treatment 
of SARS along with corticosteroids such as methylpred-
nisolone and hydrocortisone [6–9]. Since the beginning 
of the COVID-19 pandemic different options for the 
treatment of this disease have been used including mon-
oclonal antibodies, protease inhibitors, corticosteroids, 
convalescent plasma and so on. However, the definitive 
efficacy of these drugs has not been proven.

Previous research has revealed that isatin and its 
derivatives have a broad range of anti-bacterial and anti-
viral activities such as anti-HIV [10, 11], anti-rhinovirus 
[12] and against mycobacterium tuberculosis [13]. The 
derivatized isatin scaffold may be a good candidate for 
the SARS CoV 3CLpro inhibitor because both proteases 
(human SARS CoV and rhinovirus) are cysteine proteases 
and are structurally similar in the active site [14].

In 2005, Chen et  al. investigate that N-substituted 
isatin derivatives with anti-rhinovirus activity may also 
have anti-SARS activity. Therefore, based on these com-
pounds, they synthesized new isatin derivatives and 
evaluated their inhibition activities against SARS CoV 
3CLpro. The IC50 values showed that the mentioned 

isatin derivatives could inhibit SARS CoV 3CLpro in the 
low micro molar range (0.95–17.50 µM) [15]. Using the 
results of the previous study, Zhou et  al. designed and 
synthesized a series of N-substituted 5-carboxamide-
isatin compounds and evaluated their activities. They 
introduced some compounds as SARS CoV 3CLpro inhib-
itors which the most potent compound showed an IC50 
of 0.37 µM [2]. In 2014 Liu et al. in order to improve the 
inhibitory activity of isatin derivatives against SARS CoV 
3CLpro, investigated a replacement of the carboxamide 
group using a series of substituted sulfonamide groups 
in isatin. Optimization of 5-sulfonyl isatin derivatives led 
to the discovery of a new compound with the strongest 
potency (IC50 = 1.04 µM) [16].

Quantitative structure–activity relationship (QSAR) is 
one of the critical computational techniques for ligand-
based drug design, which can statistically show the corre-
lation between the structural and bioactive properties of 
compounds [17]. Molecular docking is a computational 
technique for predicting the optimal interaction of two 
molecules that creates a binding model, typically a small 
ligand with a protein receptor [18], most commonly used 
in drug discovery [19]. CORAL is a new software for 
developing the reliable and predictive QSAR/QSPR mod-
els based on SMILES or quasi-SMILES of materials and 
Monte Carlo optimization [17, 20].

The main goal of this study is to create the simple 
and reliable QSAR models by CORAL software to pre-
dict the inhibitory activity of 81 isatin and indole-based 
compounds against SARS CoV 3CLpro. In addition, the 
effect of using the index of ideality correlation (IIC) as 
the objective function for modeling in CORAL software 
has been investigated [21]. Moreover, the results from 
Monte Carlo optimization-based QSAR modeling with 
the further addition of molecular docking studies applied 
for pharmacologically important endpoints. SMILES 
notation-based optimal descriptors, defined as molecu-
lar fragments, identified as main contributors to the 
increase/decrease of biological activity, which are used 
further to search compounds from the ChEMBL data-
base with targeted activity based on computer calcula-
tion, are presented. Here, molecular docking was applied 
as an additional method to validate the calculated activ-
ity of proposed compounds as novel SARS CoV 3CLpro 
inhibitors.

Data and methods
Dataset
In this study 81 isatin and indole-based SARS 3CLpro 
inhibitors were gathered from literature [2, 15, 16, 
22–25]. The number isatin based compounds were 41 
and the rest were indole-based compounds. The IC50 
(µM) values for inhibitors were converted into their 
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pIC50 (−  logIC50). Table  1 shows the structure of the 
molecules along with their pIC50 (range between 4.08 
and 7.77). BIOVIA Draw 2020 was used to draw the 
molecular structures of the compounds and convert 

them into SMILES symbols. The dataset divided the 
active training (≈25%), passive training (≈20%), cali-
bration (≈20%), and validation (≈35%) sets randomly. 
To construct the QSAR models based on Monte Carlo 

Table 1  Molecular structures of isatin and indole derivatives along with their pIC50

R1

R2

No. R1 R2
IC50 

(µM)
pIC50 Ref.

1 n-C4H9 I 66 4.18 [2]

2 β-C10H7CH2 I 1.1 5.96 [2]

3 CH3 CONH2 71 4.15 [2]

4 CH3CH2CH2 CONH2 25 4.60 [2]

5 n-C4H9 CONH2 19 4.72 [2]

6 PhCH2 CONH2 12.5 4.90 [2]

R4

R2

R3

R1

No. R1 R2 R3 R4
IC50 

(µM)
pIC50 Ref.

7 H CN H 7.2 5.14 [15]

8 H I H 9.4 5.03 [15]

9 H I H 13.5 4.87 [15]

10 H H H 13.11 4.88 [15]

11 H H NO2 2 5.7 [15]

12 H H Br 0.98 6.01 [15]

13 H F H 4.82 5.32 [15]

14 Cl H H 11.2 4.95 [15]

15 H I H 23.5 4.63 [15]
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Table 1  (continued)

16 H I H 12.57 4.90 [15]

17 H I H 17.5 4.76 [15]

R2

No. R2 IC50 (µM) pIC50 Ref.

18 76.74 4.11 [16]

19 31.71 4.5

[16]

20 32.08 4.5

[16]

21 34.91 4.46

[16]

22 10.07 5

[16]

23 51.33 4.3

[16]

24 4.45 5.35

[16]

25 12.66 4.90

[16]

26 1.18 5.93

[16]

27 2.25 5.65

[16]



Page 5 of 21Soleymani et al. BMC Chemistry           (2023) 17:32 	

Table 1  (continued)

28 4.3 5.37

[16]

R2

R3

No. R2 R3 IC50 

(µM)
pIC50 Ref.

29 CH3 11.83 4.93

[16]

30 PhCH2 67.2 4.17

[16]

31 β-C10H7CH2 82.91 4.08

[16]

32 β-C10H7CH2 13.86 4.86

[16]

33 β-C10H7CH2 5.52 5.26

[16]

34 CH3 9.91 5

[16]

35 PhCH2 13.86 4.86

[16]

36 β-C10H7CH2 39.87 4.4

[16]

37 PhCH2 1.04 5.98

[16]

38 β-C10H7CH2 1.69 5.77

[16]

39 CH3 17.82 4.75

[16]

40 PhCH2 2.82 5.55

[16]
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Table 1  (continued)

41 β-C10H7CH2 4.7 5.33

[16]

R

No. R IC50 (µM) pIC50 Ref.

42 CH3 0.22 6.66 [22]

43 0.18 6.74 [22]

44 0.23 6.64 [22]

45 0.09 7.07 [22]

46 0.08 7.1 [22]

47 0.09 7.06 [22]

48 0.05 7.28 [22]

49 0.08 7.09 [22]

50 0.1 7.01 [22]

51 0.07 7.13 [22]
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Table 1  (continued)

52 0.21 6.69 [22]

53 0.02 7.77 [22]

R2

R1

No. R1 R2 IC50 (µM) pIC50 Ref.

54 CH3 0.08 7.08 [22]

55 H 0.02 7.7 [22]

56 H 0.03 7.47 [22]

57 H 0.04 7.36 [22]

58 H 0.10 6.99 [22]

R1 R3

R2

No. R1 R2 R3
IC50 

(µM)
pIC50 Ref.

59 CH3 0.04 7.46 [22]

60 H 0.02 7.7 [22]

61 CH3 0.11 6.98 [22]
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Table 1  (continued)

62 C2H5 0.11 6.95 [22]

63 CH3 0.05 7.28 [22]

64 H 0.04 7.42 [22]

65 CH3 0.13 6.88 [22]

66 0.07 7.19 [23]

67 0.2 6.7 [24]

68 0.31 6.51 [24]

69 0.4 6.4 [24]

70 0.37 6.43 [24]

71 0.09 7.05 [24]

72 0.23 6.64 [24]
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Table 1  (continued)

73 0.03 7.52 [24]

74 1.08 5.97 [24]

75 0.08 7.1 [24]

76 1.5 5.82 [25]

77 4.6 5.34 [25]

78 4.8 5.32 [25]

79 0.74 6.13 [25]

80 5.2 5.28 [25]

81 1.5 5.82 [25]
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optimization, four separate random partitions were 
performed.

Descriptors
There are three categories of optimal descriptors in 
CORAL software, including SMILES-based, graph-based 
and a combination of SMILES with molecular graph 
descriptors as hybrid descriptors. The optimal descrip-
tors used in this research to construct the QSAR model 
are a combination of hydrogen suppression graph (HSG) 
and SMILES descriptors. The below equation indicates 
the optimal type of molecular descriptors for QSAR 
modeling for pIC50 of isatin and indole-based compounds 
as SARS 3CLpro inhibitors:

where, Sk, SSk and SSk are one, two and three-charac-
ter SMILES features, respectively. BOND represents a 
global SMILES descriptor that demonstrate the presence/
absence of various bonds including double ( =), triple 
(#), and stereochemical (@) bonds. The NOSE indicates 
the presence/absence of nitrogen, oxygen, sulfur, and 
phosphorus atoms in the SMILES symbol of molecules. 
HALO is the presence/absence of halogen in the struc-
ture of molecules. HARD is the combination of BOND, 
NOSP, and HALO in the structure of compounds. Cmax, 
Nmax, and O max show the maximum number of rings 
(the range 0–9), the maximum number of nitrogen 
atoms, and the maximum number of oxygen atoms in the 
molecular structure, respectively. In addition, C5 and C6 
indicate the presence of five- and six-membered rings in 
the molecular structures, respectively. The CW(x) rep-
resents the correlation weight of a SMILES feature or an 
HSG invariant.

The following equation indicates the correlation 
between the sum of correlation weights (DCW) of the 
optimal descriptors and pIC50 of the compounds:

a is the intercept point and b is the slope of the line 
obtained by the least-squares method. DCW (Descrip-
tors of Correlation Weights) is the sum of correlation 
weights for the optimal descriptor derived from HSG and 
SMILES and calculated by Monte Carlo optimization. 

(1)

DCW(T, N) =
∑

CW(Sk)+
∑

CW(SSk)

+

∑

CW(SSSk)+ CW(BOND)

+ CW(NOSP)+ CW(HALO)

+ CW(HARD)+ CW(PAIR)

+ CW(Cmax)+ CW(Nmax)

+ CW(Omax)+ CW(Smax)

+ CW(C5)+ CW(C6)

(2)pIC50 = a+ b× DCW(T∗, N∗)

The T* and N* indicate the optimal threshold value 
and the number of Monte Carlo optimization cycles, 
respectively.

A flowchart of a Monte Carlo optimization cycle is pre-
sented by Sokolovic et al. [26]. At first cycle, the CW(x) of 
features is randomly generated and then optimized based 
on the proposed objective function. There are different 
objective functions to obtain a reliable QSAR model in 
CORAL software. TF0, TF1 are two objective functions 
that we used here to obtain correlation weights for attrib-
utes and compare the extracted models based on each of 
them [27, 28].

The RATRN and RPTRN denote the correlation coeffi-
cients between the experimental and predicted pIC50 for 
the active training and passive training sets, respectively 
and, c and c’ represent empirical values which are gener-
ally constant.

The IICCAL for calibration (CAL) set is obtained 
according to the following equation:

The RCAL indicates the correlation coefficient for the 
calibration set. MAECAL (Mean Absolute Error for cali-
bration set) is calculated based on Eqs 6 to 8:

The ‘k’ is the index (1, 2... N) and the experimental k 
and predicted k are related to the pIC50. The CWs for 
each attribute of Split 1 is provided as an example in 
Additional file  1: Table  S1, total number of attributes is 
383.

QSAR model Validation
There are various criteria for evaluating the predictive 
ability of QSAR models, such as internal validation, 

(3)TF0 = RTRN + RiTRN − |RTRN − RiTRN| × c

(4)TF1 = TF0 + IIC× c
′

(5)IIC = RCAL ×
min

(

−MAECAL,
+MAECAL,

)

min
(

−MAECAL,
+MAECAL,

)

(6)
−
MAECAL =−

1

N

N
∑

K=1

|�K|�K < 0,N
−

is the number of �k < 0

(7)
+
MAECAL =+

1

N

N
∑

K=1

|�K|�K ≥ 0,N
+

is the number of �k ≥ 0

(8)�k = Exerimentalk − predictedk
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external validation, and Y-scrambling. In this study, some 
standard statistical criteria were used to check the valid-
ity of the QSAR models, such as coefficient of determina-
tion (R2), concordance correlation coefficient (CCC), Q2, 
Q2

F1, Q2
F2, Q2

F3, standard error of estimation (s), mean 
absolute error (MAE), r2

m and new Y-scrambling criteria 
( CR2

P
 ) [29–32]. In addition, the IIC of models was used to 

improve the predictability of the models [33, 34].

Applicability domain
The range of compounds for which a QSAR model can 
make reliable predictions is defined based on the applica-
bility domain (AD) of model as the Organization of Eco-
nomic Co-operation and Development (OECD) principle 
3. Here, the AD is calculated based on the distribution of 
SMILES features in the training and calibration sets and 
is defined as “ DefectAK

”[17].

where PTRN(Fk) and PCAL(Fk) represent the probabilities 
of kth feature (Fk) in the training and calibration set, 
respectively; NTRN(Fk) and NCAL(Fk) denote the frequency 
of kth feature (Fk) in the training and calibration set, 
respectively.

According to the SMILES of molecules, the molecule is 
included in AD if:

where DefectTRN is the average Defectmolecule in the train-
ing set.

The interpretation of QSAR models
CORAL software provides a simple approach to inter-
pret QSAR models. Three categories of features can be 
extracted with numerical data of correlation weights in 
several Monte Carlo optimization cycles: (I) features with 
a positive correlation weight in all runs that increase the 
endpoint; (II) features with a negative correlation weight 
in all runs that decrease the endpoint; and also (III) fea-
tures with both negative and positive correlation weight 
in different optimization runs, these features have an 
undefined role and not be classified as an increasing/
decreasing promoters of the endpoint [35].

(9)DefectFK =

∣

∣PTRN(AK)− PCAL(FK)
∣

∣

NTRN(AK)+NCAL(FK)

(10)DefectMolecule =

FK
∑

i=1

DefectFK

(11)DefectMolecule < 2× DefectTRN

Molecular docking study
Molecular docking method as a common virtual 
screening technique can help to find the most favora-
ble ligand binding mode in protein for computer-aided 
drug discovery [36–38]. The X-ray crystallographic 
structures of SARS-COV-2 3CLpro were obtained from 
the Protein Data Bank (PDB: 6XHO) based on a good 
experimental resolution (1.45  Å), R-value free (0.239), 
and R-value work (0.211). The native ligand in active 
site of this protein was ethyl (4R)-4-({N-[(4-methoxy-
1H-indol-2-yl)carbonyl]-L-leucyl}amino)-5-[(3S)-
2-oxopyrrolidin-3-yl]pentanoate (Query on V34), thus 
we use this pdb code for molecular docking of indole 
derivatives. The selected receptor for molecular dock-
ing simulation was the x-ray structure of SARS-COV-1 
(PDB ID: 1UK4) based on a good experimental reso-
lution (2.5  Å), R-value free (0.231), and R-value work 
(0.213). The native ligand in active site of this protein 
was 5-mer peptide. 6XHO and1 UK4 structures con-
sist of a dimer composed of two identical sequences. 
The side chain A was chosen for molecular docking and 
the side chain B was removed. The protein structure 
was prepared using adding hydrogens removing water 
molecules and native ligands. Then, the Kollmann 
charges were assigned to the receptor. All compounds 
were sketched using the by ChemOffice15 (PerkinElmer 
Inc.), and assigned gasteiger charges and energy opti-
mization of ligands using the steepest descent algo-
rithm carried out by Open Babel [39]. The docking 
studies were done with the Smina program. Smina is 
a version of AutoDock Vina with a modified scoring 
function that is particularly optimized to offer high-
throughput scoring (http://​smina.​sf.​net) [40].

The grid parameter file is according to the grid box 
that comprised 20 × 20 × 20 points with 1 Å space and 
was centered on the active site of SARS-COV-2 3CLpro 
(x = 9.412, y = 1.383, and z = 8.836). The grid param-
eter file is according to the grid box that comprised 
14 × 14 × 14 points with 1 Å space and was centered on 
the active site of SARS-COV-1 (x = 66.036, y = 3.288, 
and z = 5.254).

The X-ray crystallographic structures of SARS-
COV-1, SARS-COV-2 3CLpro were obtained from the 
Protein Data Bank (PDB: 1UK and 6XHO). The struc-
tures of compounds were drawn by BIOVIA Discov-
ery Studio Visualizer 2021. The calculation of energy 
optimization was done using the steepest descent 
method. Smina was performed with default settings 
for three proteins and 9 best conformations of ligand 

http://smina.sf.net
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were introduced (Additional file 1: Table S4). The com-
putational docking approach was evaluated based on 
the root-mean-square deviation (RMSD) value from re-
docking the co-crystalized native ligand back into the 
active pocket site of the receptor [41].

Results and discussion
QSAR models
To build the reliable QSAR models, two objective func-
tions were used: objective function without IIC (TF0) 
and with IIC (TF1). The range of finding the optimal 
threshold value (T) and the number of epochs (N) were 
1–3 and 1–15, respectively. The QSAR models to predict 
the inhibitory activity against SARS 3CLpro for four splits 
were built based on TF1 are given below:

Split 1:

Split 2:

(12)
pIC50 = 2.4816(±0.0328)+ 0.0572(±0.0005)× DCW(1,14)

R
2
ATRN = 0.94, nTRN = 25;

R
2
PTRN = 0.95, nPTRN = 20;

R
2
CAL = 0.92, nCAL = 16;

R
2
VAL = 0.88, nVAL = 20

(13)

pIC50 =− 0.0804(±0.0679)+ 0.0972(±0.0010)

× DCW(1,12)

Table 2  Statistical parameters of QSAR models for prediction of pIC50

Split Target function Set n R2 CCC​ IIC Q2
Q2
F1

Q2
F2

Q2
F3

s MAE r
2
m

C
R2
P

1 TF0 ATRN 25 0.9992 0.9996 0.9225 0.9990 0.030 0.017 0.9663

PTRN 20 0.9991 0.9855 0.5687 0.9989 0.195 0.159 0.9761

CAL 16 0.7308 0.8293 0.6755 0.6265 0.6274 0.6027 0.5712 0.762 0.571 0.6807 0.6995

VAL 20 0.6200 0.7652 0.5845 0.5353 0.7476 0.5390 0.6173

TF1 ATRN 25 0.9419 0.9701 0.6470 0.9330 0.253 0.211 0.9317

PTRN 20 0.9470 0.9322 0.5838 0.9343 0.414 0.342 0.9174

CAL 16 0.9229 0.9173 0.9606 0.9015 0.8788 0.8708 0.8605 0.435 0.364 0.5968 0.9043

VAL 20 0.8804 0.9235 0.8546 0.8603 0.3770 0.3123 0.8545

2 TF0 ATRN 24 0.9995 0.9997 0.8459 0.9994 0.026 0.018 0.9767

PTRN 19 0.9995 0.9678 0.9998 0.9994 0.299 0.262 0.9646

CAL 16 0.6102 0.6710 0.2277 0.5350 0.3128 0.2694 0.4007 0.908 0.656 0.3894 0.5836

VAL 22 0.7387 0.8535 0.7343 0.6710 0.6126 0.4913 0.7166

TF1 ATRN 24 0.9407 0.9694 0.6928 0.9300 0.280 0.225 0.9214

PTRN 19 0.9405 0.9245 0.2175 0.9192 0.423 0.334 0.9240

CAL 16 0.9044 0.9487 0.9509 0.8773 0.9090 0.9033 0.9206 0.330 0.260 0.7991 0.8963

VAL 22 0.8258 0.9055 0.6769 0.7964 0.4563 0.3460 0.7153

3 TF0 ATRN 23 0.9995 0.9998 0.9167 0.9994 0.024 0.016 0.9861

PTRN 20 0.9979 0.9847 0.9990 0.9976 0.209 0.193 0.9506

CAL 16 0.7578 0.8256 0.7414 0.6978 0.5360 0.5276 0.6404 0.705 0.546 0.6655 0.7177

VAL 22 0.7342 0.7536 0.4182 0.6885 1.0149 0.7729 0.5618

TF1 ATRN 23 0.9581 0.9786 0.7529 0.9514 0.221 0.170 0.9430

PTRN 20 0.9283 0.9419 0.9607 0.9131 0.383 0.316 0.8977

CAL 16 0.8668 0.9126 0.9310 0.8226 0.7897 0.7858 0.8370 0.475 0.361 0.7721 0.8214

VAL 22 0.9170 0.9172 0.4932 0.8975 0.5134 0.3963 0.7490

4 TF0 ATRN 24 0.9992 0.9996 0.5998 0.9990 0.030 0.019 0.9765

PTRN 21 0.9990 0.9679 0.3260 0.9988 0.265 0.193 0.9816

CAL 16 0.6548 0.7855 0.5333 0.5865 0.6178 0.5361 0.5700 0.747 0.605 0.5882 0.6127

VAL 20 0.6223 0.7862 0.4861 0.5550 0.7126 0.4863 0.5345

TF1 ATRN 24 0.9580 0.9786 0.8282 0.9494 0.217 0.168 0.9414

PTRN 21 0.9569 0.9651 0.4967 0.9447 0.292 0.227 0.9414

CAL 16 0.8786 0.9322 0.9373 0.8404 0.8795 0.8538 0.8644 0.420 0.343 0.8631 0.8476

VAL 20 0.8090 0.8887 0.3711 0.7787 0.5356 0.3886 0.7850
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Split 3:

Split 4:

R
2
ATRN = 0.94, nATRN = 24;

R
2
PTRN = 0.94, nPTRN = 19;

R
2
CAL = 0.90, nCAL = 16;

R
2
VAL = 0.83, nVAL = 22

(14)

pIC50 =− 0.1674(±0.0477)

+ 0.1226(±0.0010)

× DCW(1,6)

R
2
ATRN = 0.96, nATRN = 23;

R
2
PTRN = 0.93, nPTRN = 20;

R
2
CAL = 0.87, nCAL = 16;

R
2
VAL = 0.92, nVAL = 22

(15)
pIC50 = 0.3203(±0.0545)+ 0.1004(±0.0011)

× DCW(1,10)

where R2
ATRN , R2

PTRN R2
CAL, and R2

VAL are coeffi-
cient of determination for active training, passive 
training, calibration, and validation set, respectively. 
nATRN, nPTRN, nCAL , and nVAL indicate the number of 
molecules in the training, calibration, and validation set, 
respectively.

Table  2 indicates the statistical criteria of QSAR 
models for predicting of pIC50 isatin and indole deriva-
tives based on TF0 and TF1 for each split. Regarding 
the QSAR models, the models developed based on IIC 
(TF1) are more predictive than the models developed 
using TF1. Therefore, it can be stated that the QSAR 
models built with the modified objective function TF1 
using IIC are more reliable and robust than the mod-
els built by the objective function TF0. Thus, the QSAR 
model built for split 3 with TF1 was selected as the best 

R
2
ATRN = 0.96, nATRN = 24;

R
2
PTRN = 0.96, nPTRN = 21;

R
2
CAL = 0.88, nCAL = 16;

R
2
VAL = 0.81, nVAL = 20
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Fig. 1  The graphical representation of the observed versus prediccted pIC50 for split 1 to 4



Page 14 of 21Soleymani et al. BMC Chemistry           (2023) 17:32 

model because the coefficient of determination (R2) was 
the highest for the validation set of this model.

Y-randomization test (Y-test) was done by CORAL 
software to confirm the non-chance correlation of 
developed QSAR models. After ten repetitions of new 
random models were developed and the values of 
average value of R2 were found below 0.1 (see Addi-
tional file  1: Table  S2). These values confirm that the 
correlation between pIC50 and molecular attributes 
is not based on chance correlation. Moreover, for the 

Y-randomization test, the value of CR2p for all models 
was more than 0.8 (Table 2).

Additional file  1: Table  S3 shows the SMILES sym-
bol of isatin and indole derivatives, the set of each 
compound, the observed and calculated pIC50 of four 
models, and AD in four splits using TF1. The average 
DefectTRN for Split 1 to 4 of constructed models based 
of TF0 are 5.91, 3.19, 5.18, and 5.05, respectively. So, 
compounds fall into AD if DefectSMILES < 11.82, 6.38, 
10.36, and 10.10, for split 1 to 4 respectively. The per-
centages of data set in the AD of models were 82, 82, 

Table 3  The list of structural attributes increases or decrease the pIC50 of isatin and indole derivatives based on the Split 3 model for 
three independent probes

SAK Cws Probe
1

CWs Probe
2

CWs Probe
3

NSs NSc NSv Defect [SAk] Comments

 +  +  +  + N–-B2 =  =  0.81977 1.44792 3.3629 23 20 16 0 Presence of nitrogen with double bond

 +  +  +  + N–-O =  =  =  0.55248 1.60119 0.9952 23 20 16 0 Presence of nitrogen with oxygen

 +  +  +  + O–-B2 =  =  3.11773 2.3733 4.25607 23 20 16 0 Presence of oxygen with double bond

1………. 2.69283 0.10613 3.13178 23 20 16 0 Presence of at least one ring

O…(…… 0.4556 0.00742 0.17344 23 20 16 0 Combination of aliphatic oxygen with branching

O… = …… 0.19142 0.11911 0.49273 23 20 16 0 Combination of aliphatic oxygen with double 
bond

3………. 0.32927 0.44463 2.31771 22 19 16 0.0011 Presence of at least three rings

 = …(…… 0.1846 0.14941 0.0791 22 20 16 0.0011 Combination of double bound with branching

O… = …(… 0.15551 0.31959 0.3984 22 20 16 0.0011 Presence of oxygen with double bond and 
branching

c…2…… 1.17117 1.05998 0.02425 22 19 16 0.0011 Presence of aromatic carbon in second ring

c…c…2… 0.18057 0.67353 0.16569 22 19 16 0.0011 Presence of two consecutive aromatic carbon in 
second ring

N…(…… 0.3027 0.16119 0.46805 19 15 14 0.0015 Combination of nitrogen with branching

BOND10000000 0.33172 0.06765 0.32395 18 12 7 0.0138 Presence of double bounds

C…(… = … 1.0509 0.49087 0.32091 16 20 15 0.0078 Presence of aliphatic carbon with branching and 
double bond

c…1…… 0.04992 2.36042 0.34589 14 14 12 0.0054 Presence of aromatic carbon in first ring

 +  +  +  + N–-S =  =  =  − 0.60102 − 0.03774 − 0.7567 13 10 8 0.0031 Presence of nitrogen with sulfur

N…1…… − 1.44414 − 2.57584 − 0.89628 7 2 4 0.0082 Presence of aliphatic nitrogen in firth ring

C…N…(… − 0.13702 − 1.66665 − 1.60758 8 8 6 0.0054 Presence of consecutive aliphatic carbon with 
aliphatic nitrogen with branching

4…c…(… − 0.85897 − 0.24461 − 0.27774 6 6 5 0.0047 Presence of aromatic carbon with branching in 
fourth ring

N…3…C… − 0.85012 − 0.27675 − 0.27575 4 0 1 0.0223 Presence of aliphatic nitrogen and carbon in third 
ring

C…(…4… − 0.7243 − 0.07997 − 0.11114 3 5 0 1 Presence of aliphatic carbon with branching in 
fourth ring

C5…AH.2… − 0.36619 − 0.87409 − 0.56113 3 4 4 0.0171 Presence of two five-member rings with aromatic-
ity and heteroatoms

s…4…… − 0.58556 − 0.70714 − 0.26015 3 3 3 0.0095 Presence of aromatic sulphur in the fourth ring

 +  +  +  + I–-N =  =  =  − 0.95359 − 1.09861 − 0.30426 2 2 1 0.0082 Presence of iodine with nitrogen

C…c…2… − 0.84725 − 0.3365 − 0.29322 2 0 1 0.0082 Prsence of consecutive aliphatic carbon with 
aromatic carbon in second ring

[…C…@… − 0.26604 − 1.1151 − 0.15705 2 3 3 0.0201 Presence of aliphatic carbon with stereo-chemical 
(3D) bond
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83, and 88 for splits 1–4, respectively. This revealed that 
the four prediction models were capable of predict-
ing more than 80% of the new data (Additional file  1: 
Table S3).

Figure  1 displays the plots of the calculated versus 
observed pIC50 of SARS 3CLpro inhibitors for four mod-
els developed based on TF1. It also shows that there is 
good agreement between the observed and experimen-
tal pIC50.

Mechanistic interpretation
Mechanistic interpretation as the fifth OECD principle 
of QSAR modeling states that the molecular features 
responsible for increased or decreased activity should 
be investigated whenever possible. The interpretation of 
the model can help to design and identify new isatin- and 
indole-based derivatives. The list of structural features 
extracted from the best QSAR model (split 3) for three 
independent probes is shown in Table 3. A short descrip-
tion of these descriptors is presented in the comments 

Table 4  The average predicted pIC50, IC50, affinity, based on four models for eight extracted compounds from CHEMBL data search

Structure pIC50 IC50 (µM) Affinity 
(Kcal 
mol−1)

PDB Structure pIC50 IC50 (µM) Affinity 
(Kcal 
mol−1)

PDB

CHEMBL4524939
Indole scaffold

7.99 0.010 -9.7 6XHO

CHEMBL4443007
Indole scaffold

8.30 0.005 -10.1 6XHO

CHEMBL4458417
Indole scaffold

7.36 0.043 -9.6 6XHO

CHEMBL383761
Isatin scaffold

7.69 0.020 -9.1 1UK4

CHEMBL4452760
Indole scaffold

8.11 0.008 -10.1 6XHO

CHEMBL210543
Isatin scaffold

7.99 0.010 -9.4 1UK4

CHEMBL4565907
Indole scaffold

7.6 0.025 -9.7 6XHO

CHEMBL3103276
Isatin scaffold

7.89 0.013 -9.4 1UK4
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column of Table  3 which shows the structural features 
of increasing or decreasing pIC50 of isatin and indole 
derivatives. The identified promotors in the increase of 
pIC50 include the presence of nitrogen with double bond, 
presence of nitrogen with oxygen, presence of oxygen 
with double bond, presence of at least one ring, combi-
nation of aliphatic oxygen with double bond, presence of 
oxygen with double bond and branching and presence of 
aromatic carbon in first ring. The promoters of decrease 
of SARS 3CLpro inhibitory activity of isatin and indole 

derivatives are the presence of nitrogen with sulfur, pres-
ence of consecutive aliphatic carbon with aliphatic nitro-
gen with branching, presence of aromatic carbon with 
branching in fourth ring and presence of aliphatic carbon 
with branching in fourth ring.

Based on the favorable structural features and using 
the most active molecules among the 81 inhibitors which 
were gathered from literature, some compounds synthe-
sized in various studies were extracted from ChEMBL 
database. In the ChEMBL database, newly synthesized 

Fig. 2  V34 interaction patterns with active residues in the SARS-COV-2 3CLpro pocket (A), 5-mer peptide interaction patterns with active residues in 
the SARS-COV-1 pocket (B)
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Fig. 3  Three-dimensional diagram of compound 12(A) and 53(B) into the binding pocket of SARS-COV-1 3CLp

Fig. 4  Two‐dimensional diagram of compound 12 (A) and 53 (B) interactions with binding site residues of SARS-COV-1 3CLpro
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compounds can be extracted with percentage similarity 
with desired compound, so we entered the ligand with the 
highest activity into ChEMBL and extracted some simi-
lar compounds from this database. The inhibitory activ-
ity (pIC50) of selected structures was calculated using 
best QSAR model (Split 3). Finally, eight most active 
compounds (isatin and indole scaffolds with most pIC50) 
were selected and introduced which are listed in Table 4. 
The predicted pIC50 range for the extracted compounds 
based on average prediction of four models was between 
7.35 and 8.30. The AD analysis of these compounds based 
on the Split 3 model (the best model) shows that they fall 
into AD except for CHEMBL3103276.

Molecular docking analysis
First, we perform a re-docking of the V34 ligand with 
the SARS-COV-2 3CLpro and 5-mer peptide with SARS-
COV-1 receptors; this is done to validate the molecular 
docking protocol and also to get insight into the refer-
ence active amino acid residues involved in interac-
tions inside the SARS-COV-2 3CLpro and SARS-COV-1 
protein pocket (PDB code: 6XHO and 1UK4). Figure  2 
displays 3D and 2D visualizations of the re-docking path-
ways of V34 inside the COVID-2 3CLpro and 5-mer pep-
tide inside the SARS-COV-1 protein pockets with − 8.07 
and − 9.4 kcal/mol, respectively. Figures indicate that the 
re-dock V34 located in the active site of SARS-COV-2 
3CLpro interacts with the THR26, HIS41, PHE140, 
CYS145, HIS164, MET165, GLU166, PRO168, HIS172, 
GLN189, THR190, and ALA191. Also, the re-dock 
5-mer peptide located in the active site of SARS-COV-1 
interacts with the HIS41, PHE140, GLY143, SER144, 
and GLU166. These interactions were hydrophobic 
and hydrogen bonds. The root-mean-square deviation 
(RMSD) values were 0.14 and 1.1  Å for native and re-
docked ligands of V34 and 5-mer peptide, respectively; 
which are lower than the tolerable marginal value of 2 Å 
(Additional file 1: Fig. S1).

Figure  3a and b shows that the compound 12 and 53 
were placed into the binding pocket of SARS-COV-1 
3CLpro by representing three-dimensional diagram. Two‐
dimensional diagram of compound 12 and 53 interactions 
was presented in Fig.  4a and b the compounds formed 
some important interactions with binding site residues of 
SARS-COV-1 3CLpro. As the molecular docking results 
are shown in Fig.  3a, the compound 12 formed two 
hydrogen bond interactions with SER144 and CYS145 
the binding site of SARS-COV-1 3CLpro. Also, it has two 
hydrophobic interactions with HIS41 and MET49. More-
over, ALA46, CYS44, THR45, THR25, ASN142, GLY143, 
HIS163, PHE140, LEU141 and GLU166 have van der 
Walls interaction with the protein. Figure 3b shows vari-
ous interactions of compound 57 with HIS41, MET49 
and MET165, along with some hydrophobic interactions. 
In addition, the complex formed hydrogen bond interac-
tions with residues SER144, THR26, CYS145, GLY143 
and GLN189. LEU141, PHE140, HIS163, LEU27, THR25, 
ASN142, GLU166, THR190, ALA191, TYR54, ARG188, 
LEU167 and PRO168 had van der Walls interaction with 
the protein.

Comparing the molecular docking results of re-docked 
native ligands and compounds 12 and 53 as the most 
activist compounds; we can notice that all compounds 
12 and 53 interacted with the majority of active residues 
in the COV-2 3CLpro and SARS-COV-1 pockets with 
which native ligands interacted.

Molecular docking results agree with some promot-
ers regarding the increase in pIC50 in QSAR models; for 
instance, compounds 12 and 53 contain oxygen with dou-
ble bonds, at least one ring, and branching, all of which 
interact with amino acids residues in protein active sites 
via hydrogen bonds and hydrophobic interactions.

Hexachlorophene was used as a SARS 3CLpro standard 
inhibitor (IC50 = 5  µM) according to Liu et  al. [42]. We 
docked Hexachlorophene into the active site of 6XHO. 
The best binding mode of the Hexachlorophene in the 

Table 5  ADMET prediction for eight extracted compounds from CHEMBL

Compound Human intestinal 
absorption

ClogP Ames test Acute oral 
toxicity

Drug likeness Drug score

CHEMBL4524939  + (0.9816) 5.36 No III − 2.47 0.16

CHEMBL4458417  + (0.9816) 4.02 No III 6.12 0.56

CHEMBL4452760  + (0.9792) 3.85 No III 1.76 0.46

CHEMBL4565907  + (0.9774) 4.00 No III 2.59 0.51

CHEMBL4443007  + (0.9816) 4.05 Yes III 6.75 0.48

CHEMBL383761  + (0.9670) 2.67 No III − 3.73 0.34

CHEMBL210543  + (0.9914) 3.10 No III − 4.66 0.32

CHEMBL3103276  + (0.9761) 3.43 No III − 5.60 0.17
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binding site of SARS-COV-1 3CLpro (pdb: 6XHO) was 
− 8.05 kcal/mol.

Eight extracted compounds from CHEMBL based on 
scaffold of isatin or indole were docked into 1UK4 and 
6XHO as well. Two and three‐dimensional diagrams of 
the interaction of the eight ligands from CHEMBLE with 
their receptors are presented in Additional file 1: Fig. S2. 
Molecular docking analysis shows that these ligands with 
the majority of active residues in the COV-2 3CLpro and 
SARS-COV-1 pockets with which native ligands inter-
acted. As before we mentioned it for the activist com-
pounds 12 and 53. It confirmed that indole and isatin are 
important cores in interaction with targets. As can be 
seen in Table 4, all eight compounds had higher binding 
energy compared to the most active compounds in data 
set and hexachlorophene. The results present a very good 
correlation between results obtained from Monte Carlo 
optimization modeling and molecular docking studies.

ADMET results
In silico ADMET (absorption, distribution, metabo-
lism, excretion, and toxicity) screening of compounds 
can reduce the cost and time associated with the in vitro 
assay and/or in vivo experiments [43]. AdmetSAR online 
database was used to predict ADMET properties of 
extracted isatin- and indole-based compounds [44]. As 
ADMET properties are shown in Table 5, all eight com-
pounds showed positive results for human intestinal 
absorption. Furthermore, it is necessary to check whether 
the proposed molecules are non-toxic because it plays an 
important role in the selection of drugs. Ames test was 
negative for all compounds except CHEMBL4443007 and 
based on acute oral toxicity all compounds were classi-
fied as non-toxic.

The Osiris Property Explorer (OPE) tool was used to 
assess the fragment-based drug-likeness of the extracted 
compounds [45, 46]. A positive value (0.1–10) indicates 
that the compound mainly contains fragments that are 
often found in commercial drugs. Also, using this pro-
gram, the overall drug scores were evaluated that com-
bines drug-likeness, ClogP, ClogS, molecular weight, 
and toxicity risk factors in one single value where the 
frequency of occurrence of each fragment is determined 
within the collection of approved drugs and within Fluka 
non-medicinal chemicals.

Finally, based on the results of the OPE study, com-
pounds CHEMBL4458417 and CHEMBL4565907 both 
containing an indole scaffold with the positive values of 
drug-likeness and the highest drug-score can be intro-
duced as selected leads.

Conclusion
Four simple, predictive, and reliable QSAR models were 
developed for the pIC50 values of 81 isatin and indole 
derivatives that inhibit SARS 3CLpro using Monte Carlo 
with the index of ideality of correlation (IIC) as the objec-
tive function. The statistical parameters of the models 
were suitable with high predictive power ( R2

Val
 = 0.81–

0.92, and MAE = 0.31–0.40). The four proposed models 
were satisfactory for predicting new isatin and indole 
derivatives as candidates for SARS 3CLpro inhibitors and 
can be used for pre-synthesis evaluation of new isatin and 
indole derivatives. A mechanistic interpretation of the 
models was done by examining the correlation weights 
of the different extracted molecular features extracted in 
several Monte Carlo optimization runs. These features 
were used to extract eight new and more active isatin and 
indole derivatives from the ChEMBL database. The activ-
ity of new compounds was further verified by molecular 
docking studies. The activity of the new compounds was 
further confirmed by molecular docking studies. The 
binding energy of these molecules with residues of active 
site were in correlation with calculated pIC50. Finally, the 
compounds CHEMBL4458417 and CHEMBL4565907 
both containing an indole scaffold with the positive val-
ues of drug-likeness and the highest drug-score were 
introduced as selected leads.
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