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Abstract 

Quinolone is a privileged scaffold in medicinal chemistry and 4-Quinolone-3-Carboxamides have been reported to 
harbor vast therapeutic potential. However, conversion of N-1 substituted 4-Quinolone 3-Carboxylate to its corre-
sponding carbamates is highly restrictive. This motivated us to adopt a much simpler, scalable and efficient methodol-
ogy for the synthesis of highly pure N-1 substituted 4- Quinolone-3-Carboxamides with excellent yields. Our adopted 
methodology not only provides a robust pathway for the convenient synthesis of N-1 substituted 4- Quinolone-3-Car-
boxamides which can then be explored for their therapeutic potential, this may also be adaptable for the derivatiza-
tion of other such less reactive carboxylate species.
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Introduction
The 4-quinolone scaffold holds significant relevance in 
medicinal chemistry e.g. Flouro-quinolones are among 
the most important fully synthetic antibiotics. The 
quinolone itself is a privileged scaffold in terms of its 
druggability, finding its utility in drugs ranging from anti-
cancer, antibacterial and antiviral to cystic fibrosis and 
cardiotonic. This importance also highlighted by the fact 
that Quinolone and its allied scaffolds are found amongst 
more than 60 FDA approved drugs [1, 2]. Furthermore 
4-quinolones, in appreciable number have been obtained 
from biological sources and reported for their antibacte-
rial, antiplasmodial, and cytotoxic potentials. These iso-
lated 4-quinolones are categorized by an alkyl or alkenyl 

group at C-2, and C-3, they serve as lead structures for 
synthetic anti-microbial agents, some of them with very 
novel mechanisms of action such as quorum sensing 
signaling molecules controlling the population density of 
Pseudomonas spp. [3].

Many specific synthetic methodologies have been 
developed and reported for the production of quinolone 
antibiotics [4, 5]. These methods range from multi-
stepped, one-pot, flow chemistry and metal catalyzed 
reactions resulting in targeted modification at C2, C3 
or N-hydroxylation [6–9]. In terms of C3 substitution 
on the 4-quinolone nucleus, mostly C3 carboxylic acid 
derivatives have been explored with modification ranging 
from N1 to C8 for anti-biotic and antivirals [5, 10–12].

4-Quinolone-3-carboxamides have been explored 
for their anti-tubercular [13], anti-proliferative [14, 
15], tyrosine kinase inhibition [16], and anti-inflam-
matory potential (via Cannabinoid receptor 2 ligand) 
[17, 18]. In-silico studies have also identified promising 
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anti-cancer leads with 4-Quinolone-3-carboxamides 
scaffold [19]. The conversion of 4-Quinolone-3-carbox-
ylate (i) into corresponding 4-Quinolone-3-carboxam-
ides (ii) has been achieved by direct thermal coupling 
of various amines (Scheme 1a). Various such carboxam-
ide derivatives have been reported and tested for their 
anti-neoplastic potential [20]. However, in case of N-1 
substituted 4-oxo-1,4-dihydroquinoline-3-carboxylate 
(iii), the substitution at N-1 leads to a loss of acidity, 
resulting in a loss of reactivity at the 3-Carboxylate end 
and hence the direct coupling with an amine to produce 
the resultant N-1 substituted 4-oxo-1,4-dihydroquin-
oline-3-carboxamide (iv) is not possible (Scheme  1b). 
One way to overcome this loss of reactivity is that the 
N-1 substitution can be done after 3-Carboxamide (iii) 
moiety is synthesized (Scheme  1c) [21–24]. However, 
this is sometimes not viable as the carbamate nitro-
gen in (ii) may also present itself as a competing target 
rather than the intended N-1. However N-1 substituted 
4-oxo-1,4-dihydroquinoline-3-carbohydrazide (v) were 

an exception to this (Scheme  1d) [25]. Alternatively, 
N-1 substituted 4-oxo-1,4-dihydroquinoline-3-carbox-
amide (iv) can also be produced by the use of a pep-
tide coupling agent such as TBTU, HBTU or PyBRoP, 
PS-HOBt under alkaline conditions (Scheme 1e) albeit 
only after converting the N-substituted 4-Quinolone-
3-carboxylate (iii) into the corresponding carboxylic 
acid (vi) [16, 26–29].

These synthetic methods although viable are mul-
tistep, and costly as they require specialized coupling 
agents which can be costly. Moreover, they sometimes 
require elaborate isolation techniques such as column 
chromatography; this makes not only the task labori-
ous but more importantly leads to reduced yields of 
the final product. Here in we report the exploration 
and optimization of an adapted synthetic methodology 
for the synthesis of 1-allyl-6-chloro-4-oxo-N-phenyl-
1,4-dihydroquinoline-3-carboxamides with excellent 
yields and high purity, using a wide range of anilines 
and benzyl amines.
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Scheme 1  Reported methods for the synthesis of Carboxamides (ii & iv) from ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate (i) and N-1 
substituted 4-oxo-1,4-dihydroquinoline-3-carboxylate (iii) respectively
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Results and discussion
We begin with the synthesis of anilinomethylenem-
alonate 1, by refluxing diethyl ethoxymethylenemel-
onate (DEEMM, 1.05 equivalent) with 4-chloroaniline 
(Scheme 2). Both microwave assisted synthesis (Anton 
Paar Monowave 400) and conventional heating were 
employed and the later method was inferred to be 
more efficient (Table  1). The enclosed vessel used for 
the microwave reaction did not allow for the Etha-
nol (EtOH) by-product to escape thus not limiting the 
back reaction, however the open vessel used for con-
ventional heating did allow the escape of high energy 
EtOH molecules thus facilitating the forward reaction. 
The reaction was monitored through TLC, methanol 
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Scheme 2  Optimized synthesis of 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives

Table 1  Reaction conditions for the synthesis of 
Anilinomethylenemalonate (1) 

Entry Solvent Heating method Temperature/Time % Yield

1 MeOH Microwave 120 ℃ for 30 min 56

2 MeOH Conventional Reflux, 4 h 78

3 MeOH Conventional Reflux, 8 h 93

4 EtOH Microwave 140 ℃ for 30 min 32

5 EtOH Conventional Reflux, 4 h 63

6 EtOH Conventional Reflux, 8 h 84

7 DCM Conventional Reflux, 4 h 20

8 DCM Conventional 8 h 32



Page 4 of 9Gill et al. BMC Chemistry          (2022) 16:111 

proved to be the best solvent most probably because 
of the lack of solubility of the product in it. To get the 
best yields with alcoholic solvents, the reaction mixture 
was brought to room temperature, quenched with cold 
water, filtered and dried.

Gould-Jacobs reaction was employed for synthesis of 
ethyl 6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxy-
late (2) (Scheme  2). Again both Conventional heating 
and microwave irradiation were used. In Anton Paar 

Monowave 400 microwave reactor G30 vial 2 gm of 
1 was mixed in 10  mL of diphenyl ether (PhOPh) and 
irradiated to 250 ℃ for 1  h. A dark precipitous solu-
tion formed within the vial on cooling. 10 mL of ethyl 
acetate was added and stirred for an hour. The product 
2 was filtered under vacuum, washed with ethyl acetate 
and dried to obtain product in 53% yield.

Conventional thermal cyclization of enamine to 
yield the 4-Quinolone (2) was also carried out in an 

Table 2  Attempted microwave assisted coupling of ethyl 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate (4) with aniline

Entry Solvent Temperature (℃) Time (minutes) Reaction

1 EtOH 150 30 No-reaction

2 EtOH 150 60 No-reaction

3 Ethylene glycol 200 30 Compound 7 isolated

4 DMSO 180 30 No-reaction

5 DMSO 200 30 •Slight reaction on TLC
•Mostly unreacted
•Not isolatable
•No appreciable change with 
change in reaction conditions

6 DMSO 200 60

7 DMF 200 30

8 DMF 200 60

9 DMF 220 60

10 PhOPh 220 30 No reaction

11 PhOPh 220 60 No reaction
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open conical flask or a beaker. The Anilinomethylen-
emalonate (1) was suspended in diphenyl ether (ratio; 
2gm/10 mL) and the mixture was stirred and heated to 
240–250 ℃ for 1.5  h. The dark mixture was cooled to 
room temperature, diluted with ample amount of ethyl 
acetate and stirred overnight. The residue was filtered 
and dried in air. To remove the residual diphenyl ether, 
the residue was re-suspended in boiling ethyl acetate 
cooled to ambient temperature, filtered under vacuum 
and dried to yield pure 2 in near quantitative yield 95%. 
Conventional method yielded better results and hence 
it was adopted for all the later such reactions.

The Quinolones carboxylate (2) was coupled with 
benzyl amine with slight modification to the reported 
procedure [20]. Anton Paar Monowave 400 microwave 
reactor was employed at 220  ℃ for 1.5  h. The close 
reaction vial allowed for the reaction to be performed 
with milli-molar quantities, providing good yields and 
employing lesser amount of solvent (PhOPh, 4  mL). 

After bringing the reaction mixture to room tempera-
ture 6  mL of EtOH was added to the vial and stirred 
overnight. Precipitate was filtered dried and recrystal-
lized with EtOH to give pure N-benzyl-6-chloro-4-oxo-
1,4-dihydroquinoline-3-carboxamide (3), yield 67%. 
This served as a baseline to establish the C3 reactivity 
of N-1 unsubstituted 4-Quinolone nucleus.

N-allyl substitution of 2 was done by mixing 2 
(11.9  mmol, 3  gm) and anhydrous K2CO3 (18  mmol, 
2.5 gm) in a round bottom flask; dry N,N-Dimethylfor-
mamide (DMF) 50  mL was employed as solvent. Allyl 
bromide (14.3  mmol, 1.24  mL) was added dropwise 
while stirring. Catalytic amount of NaI was added and 
the reaction was than heated in a reflux at 65  ℃ for 
28  h. The reaction was monitored through TLC and 
upon completion, brought to room temperature and 
quenched with ice cold water (500  mL). The precipi-
tate was filtered, dried and recrystallized to give ethyl 
1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carbox-
ylate (4) as white solid. Yield: 93%. m.p. 170–172 ℃.

To perform saponification of 4 (3.83  mmol, 1.19 gm), 
tetrahydrofuran (THF) 10  mL was added and stirred in 
a flask for 10  min. Later, 10  mL of 2.5  N NaOH aque-
ous solution was added to the above mixture and stirred 
at room temperature for 24  h. The reaction progres-
sion monitored via TLC and upon completion THF was 
removed under vacuum and the solution was titrated to 
pH 4–5 using 5 N HCl solution. The precipitate was fil-
tered, washed capaciously with water and dried to give 
1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carbox-
ylic acid (5) as pinkish solid. Yield: 97%. m.p. 233–235 ℃.
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Table 3  Optimization of adapted synthesis as depicted in 
Scheme 2

Note: DMF was selected for further synthesis due to the ease of final aqueous 
extraction

Entry Solvent Triethylamine 
ratio

Ethylchloroformate 
ratio

4-Cl-aniline 
Ratio

% Yield

1 DMF 1.5 1.2 1.2 51

2 DMF 2 1.5 1.5 78

3 DMF 2.5 2 2 90

4 DMSO 2.5 2 2 87
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Finally, 5 (1.2 mmol, 0.32 gm) was dissolved in 10 mL of 
anhydrous DMF in a round bottom flask. Triethylamine 
(3  mmol, 426  µL) was added, the mixture was cooled 
to 0 ℃ and then stirred for 30  min. Ethylchloroformate 
(2.4  mmol, 231  µL) was added dropwise and stirred for 
1 h at 0 ℃ and another hour at room temperature. The 
reaction mixture was again brought to 0 ℃, before the 
addition of amine (Aniline, 2.4 mmol, 222 µL) dropwise, 
the reaction was stirred at 0 ℃ for an hour before being 
brought to room temperature and stirred for 24  h. The 
reaction progression was monitored via TLC. Once com-
plete the reaction was quenched by pouring into 100 mL 
ice cold aqueous 0.5 N NaOH solution and stirred vigor-
ously overnight. The precipitate was filtered and dried to 
yield 1-allyl-6-chloro-4-oxo-N-phenyl-1,4-dihydroqui-
noline-3-carboxamide (6). The product was recrystal-
lized with ethanol. The use of 0.5  N NaOH allowed for 
the removal of any unreacted Quinolone Carboxylic acid 
5 or the amine carbamate which could have formed as a 
byproduct due to the excess use of ethylchloroformate 
and amine. The result was a highly pure product with 
excellent overall yields.

Initially direct coupling of 4 with aniline was also 
attempted to achieve 6 via microwave assisted irra-
diation. However, despite using different solvents and 

reaction conditions, direct synthesis was not achieved 
(Table 2). Interestingly, when ethylene glycol was used as 
solvent the final product isolated was an ester, 2-hydroxy-
ethyl 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-car-
boxylate (7), which can be explored further for chemical 
and biological potential.

One possible explanation for the failure of direct cou-
pling between the aniline and 4 is; when Quinolone 
ring Nitrogen was allylated this led to a loss of acidity 
and resultantly a loss of reactivity at the C-3 carboxylate 
end. This prompted the need for an alternative path [30] 
to be adopted for the synthesis of respective carboxam-
ides (Scheme 2). The N-substituted Quinolone carboxy-
late was 1st converted into the corresponding carboxylic 
acid. Conventionally, the acid can be converted to acid 
chloride and then reacted with amine to yield the Car-
boxamide. This method while viable; is multistep, drastic 
and environmentally non-friendly. We thus, opted for a 
greener approach by converting the N-substituted qui-
nolone carboxylic acid into corresponding anhydride by 
reacting it with acyl chloride and lastly introducing the 
amine into the reaction mixture (Fig. 1).

Moreover, two different acylation agents Acetyl chlo-
ride and Ethylchloroformate were used (Scheme  3). 
Ethylchloroformate was found to be more effective this 

Table 4  Synthesized carboxamide derivatives (8–20) of 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (5) 

 

Compound ID (% 
Yield)

Substituent X Compound ID (% 
Yield)

Substituent X Compound ID (% 
Yield)

Substituent X

8 (93%)

 

9 (90%)

 

10 (90%)
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15 (96%)

 

16 (89%)

 

17 (94%)

 

18 (96%)

 

19 (88%)

 

20 (92%)
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was doubly advantageous as Acetyl chloride is a con-
trolled substance and requires specialized import per-
mission and is transported only via sea freight.

The Ethylchloroformate mediated synthesis of 4-hydroxy 
quinolones carboxamides as shown in Scheme 2 was opti-
mized for the ratio of ethylchloroformate, aniline and tri-
ethylamine as shown in Table 3.

To explore the validity of the synthesis methodology, 
different substituted anilines and corresponding benzyl 
amines were reacted with 5 leading to the synthesis of 
derivatives 8–20 (Table 4). The synthesis of all 8–20 was 
carried out as per the procedure adopted for synthesis of 
6 in Scheme  2. In terms of reactivity unsubstituted and 
para substituted anilines provided high yields (Fig.  2a), 
whereas for benzyl amines the m-substituted benzyl 
amines fared far better when compared with the corre-
sponding m-anilines (Fig. 2b). The fair to excellent yields 
of the synthesized carboxamide derivatives also empha-
sizes the robustness of this adopted methodology.

Conclusions
The N-substituted 4-Quinolone-3-Carboxylate tends to 
have restricted reaction potential at the C-3 carboxylate 
requiring specialized reagents and sometimes drastic 
and complex reaction and extraction methodology. We 
have explored and tuned an adapted methodology for 
the synthesis of N-1 substituted 4-Quinolone-3-Car-
boxamides. The reaction proves to be highly efficient 
and robust with inherent mechanisms to ensure the 
quality of the product, also it is reproducible when 
explored for wide range of functionalized anilines and 
benzyl amines. The near quantitative yields and the 
high purity achieved through this methodology shows 
great potential in organic synthesis. This can pave the 
way for the convenient synthesis of a whole range of 
therapeutically interesting small molecules with privi-
leged scaffold such as 4-Quinolone or other carboxy-
lates by extension.

Fig. 2  Reactivity trend for various substituted a Anilines and b Benzyl amines when reacted in accordance with Scheme-1
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