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Abstract 

Prostate cancer (PC) is the sixth most common cancer type in the world, which causes approximately 10% of total 
cancer fatalities. The detection of protein biomarkers in body fluids is the key topic for the diagnosis and prognosis of 
PC. Highly sensitive screening of PC is the most effective approach for reducing mortality. Thus, there are a growing 
number of literature that recognizes the importance of new technologies for early diagnosis of PC. Graphene is play-
ing an important role in the biosensor field with remarkable physical, optical, electrochemical and magnetic proper-
ties. Many recent studies demonstrated the potential of graphene materials for sensitive detection of protein bio-
markers. In this review, the graphene-based biosensors toward PC analysis are mainly discussed in two groups: Firstly, 
novel biosensor interfaces were constructed through the modification of graphene materials onto sensor surfaces. 
Secondly, ingenious signal amplification strategies were developed using graphene materials as catalysts or carriers. 
Graphene-based biosensors have exhibited remarkable performance with high sensitivities, wide detection ranges, 
and long-term stabilities.
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Introduction
PC is one of the most common cancers in the world 
which causes a fatality of approximately 10% in all can-
cer patients [1–4]. PC is a type of malignant neoplasm of 
the prostate gland which is extremely prevalent among 
men of age 50 and older [5, 6]. The established risk fac-
tors for PC include advancing age, race, positive family 
history of PC and diet [7, 8]. Being asymptomatic, it is 
very difficult to detect PC at early stages [9]. In clinical 
practice, early screening and diagnosis of PC is the most 
effective approach for reducing mortality [9, 10]. Thus, 
there is a growing body of literature that recognizes the 

importance of new technologies for early screening and 
diagnosis of PC [11, 12].

Tumor markers for early clinical screening and rapid 
diagnosis cover a wide range of biochemical entities, 
including, proteins [13, 14], nucleic acids [15–17], small 
metabolites [18, 19], cytogenetic and cytokinetic parame-
ters [20], and entire tumor cells [21, 22] in body fluid [23]. 
So far, protein biomarkers are still recognized as a golden 
standard for PC diagnosis [24]. In the past few decades, 
a variety of promising biosensors have been developed 
based on the specific recognition of PC protein biomark-
ers, aiming at better performance of cancer diagnosis 
such as easy operation, portability, and real-time analy-
sis [25–28]. Among them, the graphene-based biosen-
sors have received considerable critical attention for the 
potential use in point-to-care (POC) testing devices, 
because of the unique properties of graphene such as 
large surface area, high electrical conductivity, excellent 
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biocompatibility and convenient production/functionali-
zation [29–31].

This review highlights recent graphene-based biosen-
sors for PC protein biomarkers detection. As far as we 
know, this is the first review that focuses on specific one 
disease. We reviewed recent progress of graphene-based 
biosensors for PC protein biomarker detection. Our 
manuscript clearly stated the advantages and shortcom-
ings of most of the graphene-based when facing PC diag-
nosis, thus, the manuscript should be valuable for the 
future application of graphene-based biosensors.

Most commonly used protein biomarkers for PC 
detection
Protein biomarkers for cancer diagnosis are usually pro-
duced by either cancer cells or other cells in response 
to cancer [32–34], which have been proved to be prom-
ising targets for early diagnosis, monitoring treatment 
response, detecting recurrence or following up prognosis 
of cancer [35–37]. Protein biomarkers are usually in low 
abundance and unstable in body fluids, and thus, the spe-
cific detection of protein biomarkers is usually affected 
by the crude or complex environment [33, 38]. Thus, sen-
sitivity, specificity, and accuracy are basic requirements 
to consider for protein biosensor fabrication [39–41].

Prostate-specific antigen (PSA) [42], which is also called 
human kallikrein 3 (hK3 or KLK3), has been widely rec-
ognized in clinical application as one of the earliest found, 
serological PC biomarkers [43, 44]. The PSA value above 
4.0  ng/mL is usually considered as abnormal [45], thus, 
4.0 ng/mL of PSA is the internationally recognized thresh-
old value for PC occurrence [46, 47]. However, the specific-
ity of PSA is still limited [48], because higher PSA levels can 
also be found in benign conditions, such as benign prostatic 
hyperplasia (BPH) [49–51], and PSA could be produced by 
normal breast and breast cancer cells [48]. These limita-
tions indicate that PSA alone is not an appropriate surrogate 
marker for the diagnosis and screening of PC. Fortunately, 
several other protein PC biomarkers are developed.

Prostate-specific membrane antigen (PSMA) [52] is a 
type II transmembrane protein, and PSMA expression 
has been reported in benign prostatic hyperplasia and 
increased to higher lever in high-grade prostatic intraepi-
thelial neoplasia and prostatic adenocarcinoma [53]. 
Further, stronger PSMA expression correlates to malig-
nancy [54, 55]. The available research results suggest the 
potential clinical use for PSMA in PC patients. So far, the 
major PSMA clinical application has been in therapeu-
tics and imaging [56–58]. Prostate stem cell antigen [59] 
is another recently discovered PC biomarker [60], which 
is highly expressed by a large number of human prostate 
tumors, such as metastatic and hormone-refractory, but 
barely expressed in normal tissues [60–62]. Engrailed-2 

(EN2) protein is found in the urine sample of prostatic 
cancer patients and showed a specificity of 88.2% and a 
sensitivity of 66% [63, 64]. Therefore, the EN2 in urine is 
widely recognized as a potential biomarker of PC.

Properties of graphene materials in biosensor 
study
Graphene is a two-dimensional (2D) nanomaterial, which 
plays an important role in the biosensor field [64–66]. The 
use of graphene in biosensing platform offers remarkable 
physical, optical, electrochemical and magnetic properties 
[67–70]. Different kinds of graphene materials are researched 
in biosensors including pristine graphene and functionalized 
graphene such as graphene oxide (GO), reduced graphene 
oxide (rGO), and graphene-based quantum dots (GQDs), 
etc. [71–74]. Pristine graphene is identified as the array of 
a 2D hexagonal lattice of sp2-bonded carbon atoms. GO is 
chemically produced by oxidation and exfoliation of gra-
phene, causing extensive oxidative modification of the basal 
plane [31, 75–77]. The rGO is prepared through reductive 
process of GO, for this purpose, different methods have been 
developed to reduce its oxygen content, including thermal, 
chemical, microwave, photochemical, microbial/bacterial, 
and photo-thermal methods [78–80]. GQDs consist of single 
to tens of layers of graphene with a size of a few nanometers 
which exhibit quantum phenomena [81, 82].

Development of protein biosensors based on graphene 
could be classified into two main groups (Fig. 1): Firstly, 
functioned graphene materials including GO, rGO and 
GQDs [72] were assembled onto the biosensor surface 
[electrode, field-effect transistors (FET) channel, etc.] to 
construct novel biosensor interfaces for improved assem-
bling of molecular receptors [83]. In this group, excellent 
biosensor performance was achieved mainly based on the 
increased specific surface area and the unique π–π orbital 
interaction on the interface. Secondly, many recent stud-
ies applied graphene materials as excellent carriers for 
the construction of novel nanocomposites [84], and in 
this group, interesting biosensor signal amplification and 
unique catalytic/chemical activity was realized for sensi-
tive protein biomarker analysis [85].

Biosensor interfaces based on graphene
Graphene and its derivatives are studied for the construc-
tion of novel biosensor interface [67], which is critical 
for interface-based biosensors including electrochemical 
biosensors, electrochemiluminescent (ECL) biosensors 
and FET biosensor [86]. Many recent studies reported 
that nanocomposites based on graphene showed 
improved capability of combining different biomolecules, 
with higher surface area [87] and excellent biocompat-
ibility [88].
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Construction of antibody‑graphene biosensor interface
Traditionally, antibodies are physically adsorbed onto the 
immune-assay surfaces, such as classic 96-well plates and 
colloidal gold test strips. However, one of the main obsta-
cles is the affinity and capacity, because the hydropho-
bic and hydrophilic interaction is relatively weak and the 
orientation of the antibody molecules is random [89]. As 
several recent studies reported, the strong cross-linking 
between carboxylic acid groups on graphene materials 
and the amine groups of antibodies (COOH-NH2) was 
used for the assembling of antibody on novel biosensor 
interfaces [90, 91]. In their work, the application of gra-
phene materials increased the loading amount, orienta-
tion controllability as well as binding capability of the 
antibodies or antibody fragments. For example, Li et  al. 
developed a graphene modified sensor platform with 
increased surface area, and then assembled antibody onto 
the surface through COOH–NH2 combining, with the 
assistant of 1-ethyl-3-(3-dimethylaminopropyl) carbodi-
imide (EDC) and N-hydroxysuccinimide (NHS), and they 
finally achieved a low detection limit of 2 pg/mL [92].

In order to realize better-oriented assembling of anti-
body, Mao et  al. applied chitosan as the dispersant to 
construct an immuno-interface on a glassy carbon 
electrode (Fig. 2A), which provided much more amino 
groups for PSA antibody bonding. They finally devel-
oped a simple, label-free electrochemical immunosen-
sor on graphene-methylene blue composite modified 
electrode [93]. More recently, Jang et  al. developed a 
novel 3D graphene-Au composite (Fig.  2B), toward 
increased accessible surface area for antibody combi-
nation than 2D graphene sheet. More importantly, the 

crumpled graphene could produce higher capacitances, 
which is crucial for the following electrochemical 
immunosensing [94].

A graphene-modified electrode was also reported in 
ECL biosensor [95] for PSA detection. More recently, 
Wu et  al. developed an electrode surface modified with 
Au/Ag–rGO (Fig. 3A), and then, a large amount of ami-
nated GQDs and carboxyl GQDs were combined onto 
the electrode surface. In their work, Au and Ag nanopar-
ticles were used for the adsorption of PSA antibody, and 
meanwhile, GQDs were for the ECL signal amplification. 
Finally, they constructed a label-free PSA ECL biosensor 
with a detection limit as low as 0.29 pg/mL [96].

Graphene materials were also applied in FET biosen-
sors, for the construction of 2D nano-FET biosensors 
[97–101], with unique advantages like more receptor bio-
molecules, low noise, and high sensitivity, compared with 
1D FET biosensors [102–104]. As a successful exam-
ple, Kim and coworkers [105] developed an rGO-based 
FET biosensor for label-free and ultrasensitive analysis 
of PSA/α1-antichymotrypsin (PSA-ACT) (Fig.  3B). The 
FET biosensor was produced by combining rGO onto 
an aminated glass surface, and then, functionalized with 
PSA antibody. When PSA-ACT was captured by the anti-
bodies on FET substrate, a linear shift of the gate voltage 
(ΔVg,min) was achieved, indicating the minimum conduc-
tivity. Finally, they successfully performed detection of 
PSA-ACT of femtomolar level.

Construction of aptamer‑graphene biosensor interface
For interface-based PC biosensors, the DNA cap-
ture probe plays a key role, which could recognize and 

Fig. 1  For prostate cancer detection, graphene materials are applied for the construction of novel interfaces and signal tags, on different analysis 
platforms including electrochemical, FET, fluorescence, colorimetric, ECL biosensors, et al
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Fig. 2  Schematic illustration of Label-free electrochemical immunosensors for PC protein biomarkers based on: A graphene-methylene blue 
nanocomposite, Reprinted with permission from [93], Copyright 2011 Elsevier. B graphene-Au nanocomposite (Reprinted with permission from 
[94]. Copyright 2014 Elsevier)
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capture the target molecules [106]. The very famous 
DNA probe in PC biosensor is DNA aptamer [10, 107–
109], which is a special single-strand DNA (ssDNA) 
isolated from DNA/RNA libraries of random sequence, 
by using an in  vitro selection process called systematic 
evolution of ligands by exponential enrichment (SELEX) 
[110–113].

As the first step toward an aptasensing platform, sci-
entists developed several different strategies to assem-
ble the DNA aptamer onto the electrode as the key 
recognition element [114–117]. In many reported studies, 

graphene-based nanocomposites were firstly prepared 
consisting of graphene and another combing material. 
For example, Bafrooei et  al. modified the electrode with 
rGOmulti-walled carbon nanotube (MWCNT) nanocom-
posite and then produced a layer of gold nanoparticles 
(AuNPs) through electrochemical reduction under − 0.2 V 
in HAuCl4, then SH-labeled DNA aptamer was combined 
to Au on the electrode surface. Finally, their aptasensor 
achieved 1.0  pg/mL limit of detection (LOD) by using 
both DPV and ESI methods. Different chemical reactions 
were applied for the assembling of DNA onto graphene 

Fig. 3  Illustration of PSA immunosensor fabrication process. A An ECL immunosensor on the electrode surface modified with Au/Ag-rGO, 
Reprinted with permission from [96]. B FET immunosensor on an rGO channel (Reprinted with permission from [105]. Copyright 2012 Elsevier)
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materials. Branched polyethylenimine (PEI) was applied 
by Pan et al. to connect thiol-mediated ssDNA onto car-
boxylated GO for PSA detection [118]. Recently, EDC-
NHS coupling was applied by Settu et al. to combine DNA 
probe onto a screen-printed carbon-graphene-modified 
electrode of the detection of EN2 protein [119].

Graphene‑based composites 
for signal‑amplification
Peroxidase‑like activity of GO
In 2010, Qu’s group firstly reported the peroxidase-like 
activity of GO (Fig. 4a) [120]. Before long, Yang and cow-
orkers found GO was capable of catalyzing the oxidation 

Fig. 4  a Schematic illustration of peroxidase-like activity of GO for the colorimetric detection of glucose, Reprinted with permission from [120], 
Copyright 2010, John Wiley and Sons, b schematic representation of the immunoassay procedure (Reprinted with permission from [134]. Copyright 
2010 Elsevier)



Page 7 of 12Xu et al. BMC Chemistry          (2019) 13:112 

of hydroquinone with the assistant of H2O2, producing a 
brown color solution. Thus, they produced an antibody-
functionalized GO as the signal tag and developed a 
sandwich-type colorimetric immunoassay for the detec-
tion of PSA. In their work [121], an immunocomplex 
was established when PSA combined GO with second-
ary anti-PSA (GO-Ab2) and magnetic bead (MB) with 
primary anti-PSA antibody (MB-Ab1). After the sepa-
ration in a magnetic field, the color signal was detected 
corresponding to the concentration of PSA. Their simple 
immunoassay can be detected by naked eyes (Fig. 4b).

Graphene materials being applied as the carrier of signal 
tags
Many recent studies applied graphene-related materials 
as excellent carriers for the construction of novel nano-
composites for biosensor signal amplification [122–124]. 
These graphene-based composites were developed by 
combining graphene or its derivates with metal oxides, 
metal nanoparticles, or conductive polymers, etc., 
and this kind of composites showed unique catalytic/

chemical activity [86], that has been widely applied in PC 
biosensors [125].

Han et al. developed a novel signal tag for PSA and free 
PSA (fPSA) detection, by using onion-like mesoporous 
graphene sheets (O-GS) as the carrier of different AuNP-
based nanohybrids [126]. As the novel O-GS have mul-
tilayer lamellar structure, large surface-to-volume ratio, 
and excellent electronic transport properties, two kinds 
of redox nanocomposites were attached to the surface of 
O-GS, which could accelerate the electron transfer rate 
and enhance the immobilization amount of enzyme and 
detection antibodies. Sun et al. reported a signal label by 
combining bovine serum albumin (BSA)-stabilized silver 
nanoparticles onto ZnO nanorods modified rGO, and 
the AgNPs in the composite showed super catalytic per-
formance toward hydrogen peroxide (H2O2), generating 
a current signal [127]. Feng et al. developed a sandwich-
type electrochemical immunosensor for the detection 
of PSA. In their work, a GO platform (Au@Th/GO) 
was used to immobilize primary antibodies and acceler-
ate the electron transfer on the electrode interface. An 

Fig. 5  Protein capture and detection mediated by Fe3O4@GO sheets. Proteins captured by Fe3O4@GO decorated with detection antibodies. 
Composite with biomarker was then captured on the sensor surfaces coated with graphene and capture antibodies. Amperometric signal was 
generated by injecting 100 μL 5 mM H2O2 (Reprinted with permission from [129]. Copyright 2016 Elsevier)
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rGO-based nanocomposite (PtCu@rGO/g–C3N4) with 
large surface area, good biocompatibility, and excellent 
conductivity were used as labels for combining second-
ary antibodies and amplifying signals. Then secondary 
antibodies were combined onto this platform and signals 
were amplified from H2O2 reduction [128].

Sharafeldin et  al. [129] assembled Fe3O4 nanoparti-
cles together with antibody onto GO sheets to produce 
a multi-function nanocomposite (Fig. 5). When the GO-
antibody-Fe3O4 nanocomposite specifically combined to 
PSA and PSMA proteins, the resulted complex could be 
isolated in a magnetic field and delivered in microfluidic 
channel to an electrochemical detection cell. The Fe3O4–
GO particles subsequently catalyze H2O2 reduction, gen-
erating a current signal. Improved LOD of 15  fg/mL of 
PSA and 4.8  fg/mL of PSMA was achieved, which was 
1000-times better than previously reported PSA biosen-
sors using Fe3O4 only, probably because GO carried more 
Fe3O4 particles and thus dramatically increased the elec-
trochemical signal.

Conclusion and future perspectives
Biosensors for cancer biomarker detection opened a 
new avenue for the POC PC detection. In spite of their 
very short history, graphene-based materials have suc-
cessfully demonstrated their unique advantages in bio-
sensors for PC protein biomarkers. This review has 

summarized recent advances, challenges, and trends 
in the application of graphene-based materials for bio-
sensing of PC protein biomarkers. In this review, the 
commonly used PC protein biomarkers for biosensor, 
the unique properties of graphene and the roles of gra-
phene-based materials for biosensing were introduced. 
Among various PC protein biomarkers, PSA was the 
most frequently selected target for PC detection bio-
sensor construction. Most studies focused on single 
biomarker detection and studies on detection of multi-
ple biomarkers are limited. A variety of graphene-based 
materials such as pristine graphene, functionalized gra-
phene (GO, rGO, GODs) were used in PC biosensor 
development and most of them were combined with 
other nanomaterials like nanoparticles. We have also 
summarized various strategies and approaches which 
can be used for graphene-based biosensor develop-
ment. Graphene-based materials were used not only 
for novel biosensor interfaces construction but also as 
excellent carriers for the construction of novel nano-
composites for signal amplification. In most of the 
cases, graphene-based biosensors have exhibited satis-
factory biocompatibility towards the bioactive species 
and remarkable performance with high sensitivities, 
wide linear detection ranges, low detection limits and 
long-term stabilities (Table  1). As other 2D materi-
als have now been explored, we believe that more 2D 

Table 1  Current generation reports of graphene-based biosensors for PC biomarker detection

Technique Receptor system Target proteins LOD Detection ranges References

ECHEM rGO-MWCNT/AuNPs PSA 1.0 pg/mL (0.005–20) ng/mL for DPV, (0.005-
100) ng/mL for EIS

[132]

ECHEM rGO/Ag@BSA HCG, PSA, CEA 0.0007 mIU/mL for HCG, 0.35 pg/
mL for PSA, and 0.33 pg/mL 
for CEA

(0.002-120) mIU/mL for HCG, 
(0.001–110) ng/mL for PSA, 
(0.001–100) ng/mL for CEA

[127]

ECHEM Au@Th/GO, PtCu@rGO/graphitic 
carbon nitride

PSA 16.6 fg/mL 50 fg/mL–40 ng/mL [128]

ECHEM GO/ssDNA/PLLA NPs VEGF, PSA – (0.05-100) ng/mL for VEGF, 
(1-100) ng/mL for PSA

[118]

ECHEM Fe3O4/PDDA/GO PSA, PSMA 15 fg/mL for PSA, 4.8 fg/mL for 
PSMA

(61 fg/mL–3.9 pg/mL) for PSA, 
(9.8 fg/mL–10 pg/mL) for PSMA

[129]

ECHEM Au@PBNPs/O-GS, Au@NiNPs/O-
GS

fPSA, PSA 6.7 pg/mL for fPSA, 3.4 pg/mL 
for PSA

(0.02–10) ng/mL for fPSA, 
(0.01–50) ng/mL for PSA

[126]

ECHEM GS/DA/Fe3O4/FC PSA 2 pg/mL (0.01–40) ng/mL [92]

ECHEM Carbon-graphene/aptamer EN2 protein 38.5 nM (35–185) nM [119]

ECHEM GS-MB-CS PSA 13 pg/mL (0.05–5.00) ng/mL [93]

ECHEM 3D graphene/Au PSA 0.59 ng/mL (0–10) ng/mL [94]

FET rGO PSA-ACT​ 100 fg/mL (10−7–1) μg/mL [105]

Fluorescence GQDs–NR ACP 28 μU/mL (0–1500) μU/mL [133]

Fluorescence GO/peptide/FITC PSA 0.3 nM (0–20) nM [64]

ECL Au/Ag-rGO/aminated-GQDs/
carboxyl-GQDs

PSA 0.29 pg/mL 1 pg/mL–10 ng/mL [96]

ECL graphene PSA 8 pg/mL 10 pg/mL–8 ng/mL [95]

Colorimetric GO/MB PSA – – [134]
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materials like MoS2 could be employed and integrated 
into biosensors for PC biomarker detection in the 
upcoming future.

Although tremendous progress has been made in the 
past a few years of graphene-based biosensors for PC 
detection, there still remain some challenges. Firstly, 
PSA has been demonstrated not a specific biomarker 
in prostate cancer early screening. As a result, detec-
tion of multiple biomarkers is crucial for precise diag-
nosis and prognosis of PC [130, 131]. More attention 
should be paid to studies on the simultaneous detection 
of multiple biomarkers in the future. In addition, there 
are only a few studies on PC biomarker detection in dif-
ferent body fluid. To improve the accuracy and practi-
cability of the diagnosis, more studies are expected to 
perform biomarker detection in different body fluid.

Acknowledgements
This work was supported by National Key R&D Program of China 
(2017YFF0204605, 2017YFF0204603, 2018YFF0212803), National Natural Sci-
ence Foundation of China (No. 21775104), and Shanghai Rising-Star Program 
(16QB1403100). This work was supported by grants from Vinnova, the Danish 
Research Council FTP and Olle Engkvist Foundation to IM.

Authors’ contributions
LX contributed to the conception of the review and manuscript writing. 
YLW and SP contributed to the data collection. VRSSM contributed to the 
manuscript preparation. IM helped revising the manuscript. YL, MD, SZR and 
WL helped interpreting the data with constructive discussions. GL contrib-
uted to the conception of the review. All authors read and approved the final 
manuscript.

Funding
This work was supported by National Key R&D Program of China 
(2017YFF0204605, 2017YFF0204603, 2018YFF0212803), National Natural Sci-
ence Foundation of China (No. 21775104), and Shanghai Rising-Star Program 
(16QB1403100). This work was supported by grants from Vinnova, the Danish 
Research Council FTP and Olle Engkvist Foundation to IM.

Availability of data and materials
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation 
Measurement Technology, Shanghai Institute of Measurement and Testing 
Technology, Shanghai 201203, People’s Republic of China. 2 Division of Sys-
tems and Synthetic Biology, Department of Biology and Biological Engineer-
ing, Chalmers University of Technology, 41126 Gothenburg, Sweden. 3 The 
Novo Nordisk Foundation Center for Biosustainability, Technical University 
of Denmark, 2800 Lyngby, Denmark. 

Received: 21 August 2018   Accepted: 15 July 2019

References
	 1.	 Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Biosen-

sor developments: application to prostate-specific antigen detection. 
Trends Biotechnol 25:125–131

	 2.	 Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J 
Clin 67:7–30

	 3.	 Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J 
Clin 68:7–30

	 4.	 Kim EH, Andriole GL (2018) Prostate cancer review. Mo Med 115:131
	 5.	 Pettersson A, Robinson D, Garmo H, Holmberg L, Stattin P (2018) Age at 

diagnosis and prostate cancer treatment and prognosis: a population-
based cohort study. Ann Oncol 29:377–385

	 6.	 Lemanska A, Dearnaley DP, Jena R, Sydes MR, Faithfull S (2018) Older 
age, early symptoms and physical function are associated with the 
severity of late symptom clusters for men undergoing radiotherapy for 
prostate cancer. Clin Oncol (R Coll Radiol) 30:334–345

	 7.	 Bashir MN (2015) Epidemiology of prostate cancer. Asian Pac J Cancer 
Prev 16:5137–5141

	 8.	 Pernar CH, Ebot EM, Wilson KM, Mucci LA (2018) The epidemiol-
ogy of prostate cancer. Cold Spring Harb Perspect Med. https​://doi.
org/10.1101/cshpe​rspec​t.a0303​61

	 9.	 Sammon JD, Serrell EC, Karabon P, Leow JJ, Abdollah F, Weissman JS, 
Han PKJ, Hansen M, Menon M, Trinh QD (2018) Prostate cancer screen-
ing in early medicaid expansion states. J Urol 199:81–88

	 10.	 Carroll PR, Parsons JK, Andriole G, Bahnson RR, Castle EP, Catalona WJ, 
Dahl DM, Davis JW, Epstein JI, Etzioni RB, Farrington T, Hemstreet GP, 
Kawachi MH, Kim S, Lange PH, Loughlin KR, Lowrance W, Maroni P, 
Mohler J, Morgan TM, Moses KA, Nadler RB, Poch M, Scales C, Shaneyfelt 
TM, Smaldone MC, Sonn G, Sprenkle P, Vickers AJ, Wake R, Shead DA, 
Freedman-Cass DA (2016) Prostate cancer early detection, version 
2.2016. J Natl Compr Cancer Netw 14:509–519

	 11.	 Partin AW (2013) Early detection of prostate cancer continues to sup-
port rational, limited screening. J Urol 190:427–428

	 12.	 Cremers RG, Eeles RA, Bancroft EK, Ringelberg-Borsboom J, Vasen HF, 
Van Asperen CJ, Committee IS, Schalken JA, Verhaegh GW, Kiemeney 
LA (2015) The role of the prostate cancer gene 3 urine test in addition 
to serum prostate-specific antigen level in prostate cancer screening 
among breast cancer, early-onset gene mutation carriers. Urol Oncol 
33:202 e19-e28

	 13.	 Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and 
validation: the long and uncertain path to clinical utility. Nat Biotechnol 
24(8):971–983

	 14.	 Ordonez NG (2014) Value of podoplanin as an immunohistochemical 
marker in tumor diagnosis: a review and update. Appl Immunohisto-
chem Mol Morphol 22:331–347

	 15.	 Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agad-
janyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban 
N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, 
Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable 
blood-based markers for cancer detection. Proc Natl Acad Sci USA 
105:10513–10518

	 16.	 Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang YX, Agrawal N, Bartlett 
BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem 
H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, 
Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao YC, Juhl HH, Kim JJ, 
Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SKN, Netto 
GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt 
K, Shih IM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie JN, Harkins TT, 
Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing DM, 
Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler 
KW, Vogelstein B, Papadopoulos N, Luis AJ (2014) Detection of circulat-
ing tumor DNA in early- and late-stage human malignancies. Sci Transl 
Med 6(224):224ra24

	 17.	 Isbell JM, Jones DR, Li BT (2018) Circulating tumor DNA: A promising 
biomarker to guide postoperative treatment and surveillance of non-
small cell lung cancer. J Thorac Cardiovasc Surg 155:2628–2631

	 18.	 Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of 
oxidative stress to DNA and a risk factor for cancer, atherosclerosis and 
diabetics. Clin Chim Acta 339:1–9

	 19.	 Monteiro M, Moreira N, Pinto J, Pires-Luis AS, Henrique R, Jeronimo 
C, Bastos ML, Gil AM, Carvalho M, Guedes de Pinho P (2017) GC-MS 
metabolomics-based approach for the identification of a potential 
VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell 
Mol Med 21(9):2092–2105

	 20.	 Natarajan H, Kumar L, Bakhshi S, Sharma A, Velpandian T, Kabra M, 
Gogia A, Ranjan Biswas N, Gupta YK (2018) Imatinib trough levels: a 
potential biomarker to predict cytogenetic and molecular response 

https://doi.org/10.1101/cshperspect.a030361
https://doi.org/10.1101/cshperspect.a030361


Page 10 of 12Xu et al. BMC Chemistry          (2019) 13:112 

in newly diagnosed patients with chronic myeloid leukemia. Leuk 
Lymphoma 60:1–8

	 21.	 Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating 
tumor cells: approaches to isolation and characterization. J Cell Biol 
192:373–382

	 22.	 Inoue M, Otsuka K, Shibata H (2016) Circulating tumor cell count as a 
biomarker of a specific gastric cancer subgroup characterized by bone 
metastasis and/or disseminated intravascular coagulation—an early 
indicator of chemotherapeutic response. Oncol Lett 11:1294–1298

	 23.	 Wu L, Qu X (2015) Cancer biomarker detection: recent achievements 
and challenges. Chem Soc Rev 44:2963–2997

	 24.	 Severi G, FitzGerald LM, Muller DC, Pedersen J, Longano A, Southey 
MC, Hopper JL, English DR, Giles GG, Mills J (2014) A three-protein bio-
marker panel assessed in diagnostic tissue predicts death from prostate 
cancer for men with localized disease. Cancer Med 3:1266–1274

	 25.	 Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, Li W, Jaffrezic-Renault N, 
Mei Y, Guo Z (2018) Biosensors for Alzheimer’s disease biomarker detec-
tion: a review. Biochimie 147:13–24

	 26.	 Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, 
Cooney M, Thompson CL, Liu CC (2012) Detection of Alpha-Methylacyl-
CoA Racemase (AMACR), a biomarker of prostate cancer, in patient 
blood samples using a nanoparticle electrochemical biosensor. Biosen-
sors (Basel) 2:377–387

	 27.	 Parra-Cabrera C, Samitier J, Homs-Corbera A (2016) Multiple biomarkers 
biosensor with just-in-time functionalization: application to prostate 
cancer detection. Biosens Bioelectron 77:1192–1200

	 28.	 Narwal V, Kumar P, Joon P, Pundir CS (2018) Fabrication of an ampero-
metric sarcosine biosensor based on sarcosine oxidase/chitosan/
CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. 
Enzyme Microb Technol 113:44–51

	 29.	 Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 
6:183–191

	 30.	 Pena-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) 
Recent advances in graphene-based biosensor technology with appli-
cations in life sciences. J Nanobiotechnol 16:75

	 31.	 Kim J, Park SJ, Min DH (2017) Emerging approaches for graphene oxide 
biosensor. Anal Chem 89:232–248

	 32.	 Tarro G, Perna A, Esposito C (2005) Early diagnosis of lung cancer by 
detection of tumor liberated protein. J Cell Physiol 203:1–5

	 33.	 Borrebaeck CA (2017) Precision diagnostics: moving towards protein bio-
marker signatures of clinical utility in cancer. Nat Rev Cancer 17:199–204

	 34.	 Surinova S, Radova L, Choi M, Srovnal J, Brenner H, Vitek O, Hajduch M, 
Aebersold R (2015) Non-invasive prognostic protein biomarker signa-
tures associated with colorectal cancer. EMBO Mol Med 7:1153–1165

	 35.	 Morin PJ (2005) Claudin proteins in human cancer: promising new 
targets for diagnosis and therapy. Cancer Res 65:9603–9606

	 36.	 Tang T, Yang C, Brown HE, Huang J (2018) Circulating heat shock protein 
70 is a novel biomarker for early diagnosis of lung cancer. Dis Markers 
2018:6184162

	 37.	 Jung YJ, Katilius E, Ostroff RM, Kim Y, Seok M, Lee S, Jang S, Kim WS, Choi 
CM (2017) Development of a protein biomarker panel to detect non-
small-cell lung cancer in Korea. Clin Lung Cancer 18:e99–e107

	 38.	 Yang Z, Li DM, Xie Q, Dai DQ (2015) Protein expression and promoter 
methylation of the candidate biomarker TCF21 in gastric cancer. J 
Cancer Res Clin Oncol 141:211–220

	 39.	 Zhurauski P, Arya SK, Jolly P, Tiede C, Tomlinson DC, Ko Ferrigno P, Estrela 
P (2018) Sensitive and selective Affimer-functionalised interdigitated 
electrode-based capacitive biosensor for Her4 protein tumour bio-
marker detection. Biosens Bioelectron 108:1–8

	 40.	 Arya SK, Kongsuphol P, Park MK (2017) Off surface matrix based on-chip 
electrochemical biosensor platform for protein biomarker detection in 
undiluted serum. Biosens Bioelectron 92:542–548

	 41.	 Ray S, Senapati T, Sahu S, Bandyopadhyaya R, Anand R (2018) Design 
of ultrasensitive protein biosensor strips for selective detection of 
aromatic contaminants in environmental wastewater. Anal Chem 
90:8960–8968

	 42.	 Stamey TA, Ekman PE, Blankenstein MA, Cooper EH, Kontturi M, Lilja H, 
Oesterling JE, Stenman UH, Turkes A (1994) Tumor markers. In: Consen-
sus conference on diagnosis and prognostic parameters in localized 
prostate cancer. Stockholm, Sweden, May 12–13, 1993. Scand J Urol 
Nephrol Suppl 162:73–87. (discussion 115–127)

	 43.	 Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate 
cancer development and progression. Nat Rev Cancer 2:918–926

	 44.	 Hernandez J, Thompson IM (2004) Prostate-specific antigen: a review of 
the validation of the most commonly used cancer biomarker. Cancer 
101:894–904

	 45.	 Liu N, Liang W, Ma X, Li X, Ning B, Cheng C, Ou G, Wang B, Zhang J, Gao 
Z (2013) Simultaneous and combined detection of multiple tumor 
biomarkers for prostate cancer in human serum by suspension array 
technology. Biosens Bioelectron 47:92–98

	 46.	 Vergho DC, Heine K, Wolff JM (2005) The role of PSA in diagnosis of 
prostate cancer and its recurrence. Pathologe 26:473–478

	 47.	 Bantis A, Grammaticos P (2012) Prostatic specific antigen and bone 
scan in the diagnosis and follow-up of prostate cancer. Can diagnostic 
significance of PSA be increased? Hell J Nucl Med 15:241–246

	 48.	 Perez-Ibave DC, Burciaga-Flores CH, Elizondo-Riojas MA (2018) Prostate-
specific antigen (PSA) as a possible biomarker in non-prostatic cancer: a 
review. Cancer Epidemiol 54:48–55

	 49.	 Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a 
decade of discovery–what we have learned and where we are going. J 
Urol 162:293–306

	 50.	 Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs 
J (2004) The prostate specific antigen era in the United States is 
over for prostate cancer: what happened in the last 20 years? J Urol 
172:1297–1301

	 51.	 Stephan C, Ralla B, Jung K (2014) Prostate-specific antigen and other 
serum and urine markers in prostate cancer. Biochim Biophys Acta 
1846:99–112

	 52.	 Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a 
complementary DNA encoding a prostate-specific membrane antigen. 
Cancer Res 53:227–230

	 53.	 Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate 
specific membrane antigen expression in prostatic intraepithelial neo-
plasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261

	 54.	 Wright GL Jr, Haley C, Beckett ML, Schellhammer PF (1995) Expression 
of prostate-specific membrane antigen in normal, benign, and malig-
nant prostate tissues. Urol Oncol 1:18–28

	 55.	 Violet JA, Hofman MS (2017) Prostate-specific membrane antigen from 
diagnostic to therapeutic target: radionuclide therapy comes of age in 
prostate cancer. BJU Int 120:310–312

	 56.	 Ristau BT, O’Keefe DS, Bacich DJ (2014) The prostate-specific membrane 
antigen: lessons and current clinical implications from 20 years of 
research. Urol Oncol 32:272–279

	 57.	 Arsenault F, Beauregard JM, Pouliot F (2018) Prostate-specific mem-
brane antigen for prostate cancer theranostics: from imaging to 
targeted therapy. Curr Opin Support Palliat Care 12(3):359–365

	 58.	 Afaq A, Bomanji J (2018) Prostate-specific membrane antigen positron 
emission tomography in the management of recurrent prostate cancer. 
Br Med Bull 128:37–48

	 59.	 Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani 
S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell 
antigen: a cell surface marker overexpressed in prostate cancer. Proc 
Natl Acad Sci USA 95:1735–1740

	 60.	 Yang X, Guo Z, Liu Y, Si T, Yu H, Li B, Tian W (2014) Prostate stem cell anti-
gen and cancer risk, mechanisms and therapeutic implications. Expert 
Rev Anticancer Ther 14:31–37

	 61.	 Ross S, Spencer SD, Holcomb I, Tan C, Hongo J, Devaux B, Rangell L, 
Keller GA, Schow P, Steeves RM, Lutz RJ, Frantz G, Hillan K, Peale F, Tobin 
P, Eberhard D, Rubin MA, Lasky LA, Koeppen H (2002) Prostate stem cell 
antigen as therapy target: tissue expression and in vivo efficacy of an 
immunoconjugate. Cancer Res 62:2546–2553

	 62.	 Bargao Santos P, Patel HR (2014) Prostate stem cell antigen—novel 
biomarker and therapeutic target? Expert Rev Anticancer Ther 14:5–7

	 63.	 Marszall MP, Sroka W, Adamowski M, Slupski P, Jarzemski P, Siodmiak 
J, Odrowaz-Sypniewska G (2015) Engrailed-2 protein as a potential 
urinary prostate cancer biomarker: a comparison study before and after 
digital rectal examination. Eur J Cancer Prev 24:51–56

	 64.	 Feng T, Feng D, Shi W, Li X, Ma H (2012) A graphene oxide-peptide 
fluorescence sensor for proteolytically active prostate-specific antigen. 
Mol BioSyst 8:1441–1445

	 65.	 Sadlowski C, Balderston S, Sandhu M, Hajian R, Liu C, Tran TP, Conboy 
MJ, Paredes J, Murthy N, Conboy IM, Aran K (2018) Graphene-based 



Page 11 of 12Xu et al. BMC Chemistry          (2019) 13:112 

biosensor for on-chip detection of bio-orthogonally labeled proteins 
to identify the circulating biomarkers of aging during heterochronic 
parabiosis. Lab Chip 18:3230–3238

	 66.	 Wang L, Zhang Y, Wu A, Wei G (2017) Designed graphene-peptide 
nanocomposites for biosensor applications: a review. Anal Chim Acta 
985:24–40

	 67.	 Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on 
graphene materials. Chem Soc Rev 41:2283–2307

	 68.	 Ryoo SR, Yim Y, Kim YK, Park IS, Na HK, Lee J, Jang H, Won C, Hong S, 
Kim SY, Jeon NL, Song JM, Min DH (2018) High-throughput chemical 
screening to discover new modulators of microRNA expression in living 
cells by using graphene-based biosensor. Sci Rep 8:11413

	 69.	 Klukova L, Filip J, Belicky S, Vikartovska A, Tkac J (2016) Graphene oxide-
based electrochemical label-free detection of glycoproteins down to 
aM level using a lectin biosensor. Analyst 141:4278–4282

	 70.	 Xie H, Li YT, Lei YM, Liu YL, Xiao MM, Gao C, Pang DW, Huang WH, Zhang 
ZY, Zhang GJ (2016) Real-time monitoring of nitric oxide at single-cell 
level with porphyrin-functionalized graphene field-effect transistor 
biosensor. Anal Chem 88:11115–11122

	 71.	 Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, 
Monthioux M, Park CR, Tascon JMD, Zhang J (2013) All in the graphene 
family—a recommended nomenclature for two-dimensional carbon 
materials. Carbon 65:1–6

	 72.	 Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for 
biosensors: a review. Sensors (Basel).  https​://doi.org/10.3390/s1710​
2161

	 73.	 Tabish TA (2018) Graphene-based materials: the missing piece in nano-
medicine? Biochem Biophys Res Commun 504:686–689

	 74.	 Khalilzadeh B, Shadjou N, Afsharan H, Eskandani M, Nozad Charoudeh 
H, Rashidi MR (2016) Reduced graphene oxide decorated with gold 
nanoparticle as signal amplification element on ultra-sensitive electro-
chemiluminescence determination of caspase-3 activity and apoptosis 
using peptide based biosensor. Bioimpacts 6:135–147

	 75.	 Morales-Narvaez E, Merkoci A (2018) Graphene oxide as an optical 
biosensing platform: a progress report. Adv Mater 31:e1805043

	 76.	 Liu B, Huang PJ, Kelly EY, Liu J (2016) Graphene oxide surface block-
ing agents can increase the DNA biosensor sensitivity. Biotechnol J 
11:780–787

	 77.	 Yang G, Li L, Lee WB, Ng MC (2018) Structure of graphene and its disor-
ders: a review. Sci Technol Adv Mater 19:613–648

	 78.	 Kumar S, Kumar S, Srivastava S, Yadav BK, Lee SH, Sharma JG, Doval DC, 
Malhotra BD (2015) Reduced graphene oxide modified smart conduct-
ing paper for cancer biosensor. Biosens Bioelectron 73:114–122

	 79.	 Seifati SM, Nasirizadeh N, Azimzadeh M (2018) Nano-biosensor based 
on reduced graphene oxide and gold nanoparticles, for detection 
of phenylketonuria-associated DNA mutation. IET Nanobiotechnol 
12:417–422

	 80.	 Munief WM, Lu X, Teucke T, Wilhelm J, Britz A, Hempel F, Lanche R, 
Schwartz M, Law JKY, Grandthyll S, Muller F, Neurohr JU, Jacobs K, 
Schmitt M, Pachauri V, Hempelmann R, Ingebrandt S (2018) Reduced 
graphene oxide biosensor platform for the detection of NT-proBNP 
biomarker in its clinical range. Biosens Bioelectron 126:136–142

	 81.	 Zhang HG, Hu H, Pan Y, Mao JH, Gao M, Guo HM, Du SX, Greber T, Gao 
HJ (2010) Graphene based quantum dots. J Phys Condens Matter 
22:302001

	 82.	 Zeng X, Ma S, Bao J, Tu W, Dai Z (2013) Using graphene-based 
plasmonic nanocomposites to quench energy from quantum 
dots for signal-on photoelectrochemical aptasensing. Anal Chem 
85:11720–11724

	 83.	 Zeng L, Wang R, Zhu L, Zhang J (2013) Graphene and CdS nanocom-
posite: a facile interface for construction of DNA-based electrochemi-
cal biosensor and its application to the determination of phenformin. 
Colloids Surf B Biointerfaces 110:8–14

	 84.	 Li Y, Wang X, Gong J, Xie Y, Wu X, Zhang G (2018) Graphene based 
nanocomposites for efficient photocatalytic hydrogen evolution: 
insight into the interface toward separation of photogenerated 
charges. ACS Appl Mater Interfaces 10:43760–43767

	 85.	 Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G (2016) When biomolecules 
meet graphene: from molecular level interactions to material design 
and applications. Nanoscale 8:19491–19509

	 86.	 Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L 
(2016) Recent progress on graphene-based electrochemical biosen-
sors. Chem Rec 16:273–294

	 87.	 Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High 
surface area tapes produced with functionalized graphene. ACS 
Nano 5:5214–5222

	 88.	 Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, 
biocompatibility, and cytotoxicity. Int J Mol Sci 19:3564

	 89.	 Sakhnini LI, Pedersen AK, Ahmadian H, Hansen JJ, Bulow L, Dainiak M 
(2016) Designing monoclonal antibody fragment-based affinity res-
ins with high binding capacity by thiol-directed immobilisation and 
optimisation of pore/ligand size ratio. J Chromatogr A 1468:143–153

	 90.	 Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection 
using thermally reduced graphene oxide sheet decorated with gold 
nanoparticle-antibody conjugates. Adv Mater 22:3521–3526

	 91.	 Zhang J, Sun Y, Xu B, Zhang H, Gao Y, Zhang H, Song D (2013) A novel 
surface plasmon resonance biosensor based on graphene oxide 
decorated with gold nanorod-antibody conjugates for determination 
of transferrin. Biosens Bioelectron 45:230–236

	 92.	 Li H, Wei Q, He J, Li T, Zhao Y, Cai Y, Du B, Qian Z, Yang M (2011) 
Electrochemical immunosensors for cancer biomarker with signal 
amplification based on ferrocene functionalized iron oxide nanopar-
ticles. Biosens Bioelectron 26:3590–3595

	 93.	 Mao K, Wu D, Li Y, Ma H, Ni Z, Yu H, Luo C, Wei Q, Du B (2012) Label-
free electrochemical immunosensor based on graphene/methylene 
blue nanocomposite. Anal Biochem 422:22–27

	 94.	 Jang HD, Kim SK, Chang H, Choi JW (2015) 3D label-free prostate 
specific antigen (PSA) immunosensor based on graphene-gold 
composites. Biosens Bioelectron 63:546–551

	 95.	 Xu SJ, Liu Y, Wang TH, Li JH (2011) Positive potential operation of 
a cathodic electrogenerated chemiluminescence immunosensor 
based on luminol and graphene for cancer biomarker detection. Anal 
Chem 83:3817–3823

	 96.	 Wu D, Liu Y, Wang Y, Hu L, Ma H, Wang G, Wei Q (2016) Label-free 
electrochemiluminescent immunosensor for detection of prostate 
specific antigen based on aminated graphene quantum dots and 
carboxyl graphene quantum dots. Sci Rep 6:20511

	 97.	 Tu J, Gan Y, Liang T, Hu Q, Wang Q, Ren T, Sun Q, Wan H, Wang P (2018) 
Graphene FET array biosensor based on ssDNA aptamer for ultrasensi-
tive Hg(2 +) detection in environmental pollutants. Front Chem 6:333

	 98.	 Ray R, Basu J, Gazi WA, Samanta N, Bhattacharyya K, RoyChaudhuri C 
(2018) Label-free biomolecule detection in physiological solutions 
with enhanced sensitivity using graphene nanogrids FET biosensor. 
IEEE Trans Nanobiosci 17:433–442

	 99.	 Sharma B, Kim JS (2018) MEMS based highly sensitive dual FET gas 
sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 
detection. Sci Rep 8:5902

	100.	 Wang C, Cui X, Li Y, Li H, Huang L, Bi J, Luo J, Ma LQ, Zhou W, Cao 
Y, Wang B, Miao F (2016) A label-free and portable graphene FET 
aptasensor for children blood lead detection. Sci Rep 6:21711

	101.	 Basu J, RoyChaudhuri C (2016) Graphene nanogrids FET immunosen-
sor: signal to noise ratio enhancement. Sensors (Basel) 16:1481

	102.	 Mukherjee S, Meshik X, Choi M, Farid S, Datta D, Lan Y, Poduri S, Sarkar K, 
Baterdene U, Huang CE, Wang YY, Burke P, Dutta M, Stroscio MA (2015) 
A graphene and aptamer based liquid gated FET-like electrochemical 
biosensor to detect adenosine triphosphate. IEEE Trans Nanobiosci 
14:967–972

	103.	 Farid S, Meshik X, Choi M, Mukherjee S, Lan Y, Parikh D, Poduri S, 
Baterdene U, Huang CE, Wang YY, Burke P, Dutta M, Stroscio MA (2015) 
Detection of Interferon gamma using graphene and aptamer based 
FET-like electrochemical biosensor. Biosens Bioelectron 71:294–299

	104.	 Kakatkar A, Abhilash TS, De Alba R, Parpia JM, Craighead HG (2015) 
Detection of DNA and poly-l-lysine using CVD graphene-channel FET 
biosensors. Nanotechnology 26:125502

	105.	 Kim DJ, Sohn IY, Jung JH, Yoon OJ, Lee NE, Park JS (2013) Reduced 
graphene oxide field-effect transistor for label-free femtomolar protein 
detection. Biosens Bioelectron 41:621–626

	106.	 Wang Q, Ding Y, Gao F, Jiang S, Zhang B, Ni J, Gao F (2013) A sensi-
tive DNA biosensor based on a facile sulfamide coupling reaction for 
capture probe immobilization. Anal Chim Acta 788:158–164

https://doi.org/10.3390/s17102161
https://doi.org/10.3390/s17102161


Page 12 of 12Xu et al. BMC Chemistry          (2019) 13:112 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	107.	 Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that 
bind specific ligands. Nature 346:818–822

	108.	 Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that 
specifically cleaves single-stranded DNA. Nature 344:467–468

	109.	 Zhang LQ, Wan S, Jiang Y, Wang YY, Fu T, Liu QL, Cao ZJ, Qiu LP, Tan WH 
(2017) Molecular elucidation of disease biomarkers at the interface of 
chemistry and biology. J Am Chem Soc 139(7):2532–2540

	110.	 Zhang J, Li S, Liu F, Zhou L, Shao N, Zhao X (2015) SELEX aptamer used 
as a probe to detect circulating tumor cells in peripheral blood of 
pancreatic cancer patients. PLoS ONE 10:e0121920

	111.	 Chen C, Zhou S, Cai Y, Tang F (2017) Nucleic acid aptamer application 
in diagnosis and therapy of colorectal cancer based on cell-SELEX 
technology. NPJ Precis Oncol 1:37

	112.	 Sedighian H, Halabian R, Amani J, Heiat M, Amin M, Fooladi AAI (2018) 
Staggered Target SELEX, a novel approach to isolate non-cross-reactive 
aptamer for detection of SEA by apta-qPCR. J Biotechnol 286:45–55

	113.	 Kaur H (2018) Recent developments in cell-SELEX technology for 
aptamer selection. Biochim Biophys Acta Gen Subj 1862:2323–2329

	114.	 Wang X, Li W, Li Z, Li H, Xu D (2015) A highly sensitive fluorescence 
turn-on platform with silver nanoparticles aptasening for human 
platelet-derived growth factor-BB. Talanta 144:1273–1278

	115.	 Liu J, Zeng J, Tian Y, Zhou N (2017) An aptamer and functionalized 
nanoparticle-based strip biosensor for on-site detection of kanamycin 
in food samples. Analyst 143:182–189

	116.	 Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical 
biosensor array for the detection of total and glycated hemoglobin in 
human whole blood. Sci Rep 7:1016

	117.	 Aliakbarinodehi N, Jolly P, Bhalla N, Miodek A, De Micheli G, Estrela P, 
Carrara S (2017) Aptamer-based field-effect biosensor for tenofovir 
detection. Sci Rep 7:44409

	118.	 Pan LH, Kuo SH, Lin TY, Lin CW, Fang PY, Yang HW (2017) An electro-
chemical biosensor to simultaneously detect VEGF and PSA for early 
prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nano-
particles. Biosens Bioelectron 89:598–605

	119.	 Settu K, Liu JT, Chen CJ, Tsai JZ (2017) Development of carbon-
graphene-based aptamer biosensor for EN2 protein detection. Anal 
Biochem 534:99–107

	120.	 Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic 
peroxidase catalytic activity and its application to glucose detection. 
Adv Mater 22:2206–2210

	121.	 Qu FL, Li T, Yang MH (2011) Colorimetric platform for visual detection 
of cancer biomarker based on intrinsic peroxidase activity of graphene 
oxide. Biosens Bioelectron 26:3927–3931

	122.	 Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, Liu Y, Li CM (2014) 
Graphene oxide-enabled tandem signal amplification for sensitive SPRi 
immunoassay in serum. Chem Commun 50:2133–2135

	123.	 Li W, Wu P, Zhang H, Cai C (2012) Signal amplification of graphene oxide 
combining with restriction endonuclease for site-specific determina-
tion of DNA methylation and assay of methyltransferase activity. Anal 
Chem 84:7583–7590

	124.	 Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H, Yao S (2013) A double signal 
amplification platform for ultrasensitive and simultaneous detection 
of ascorbic acid, dopamine, uric acid and acetaminophen based on a 
nanocomposite of ferrocene thiolate stabilized Fe(3)O(4)@Au nanopar-
ticles with graphene sheet. Biosens Bioelectron 48:75–81

	125.	 Wang B, Akiba U, Anzai JI (2017) Recent progress in nanomaterial-based 
electrochemical biosensors for cancer biomarkers: a review. Molecules 
22:1048

	126.	 Han J, Zhuo Y, Chai YQ, Yuan R, Zhang W, Zhu Q (2012) Simultaneous 
electrochemical detection of multiple tumor markers based on dual 
catalysis amplification of multi-functionalized onion-like mesoporous 
graphene sheets. Anal Chim Acta 746:70–76

	127.	 Sun G, Zhang L, Zhang Y, Yang H, Ma C, Ge S, Yan M, Yu J, Song X (2015) 
Multiplexed enzyme-free electrochemical immunosensor based on 
ZnO nanorods modified reduced graphene oxide-paper electrode and 
silver deposition-induced signal amplification strategy. Biosens Bioelec-
tron 71:30–36

	128.	 Feng JH, Li YY, Li MD, Li FY, Han J, Dong YH, Chen ZW, Wang P, Liu H, Wei 
Q (2017) A novel sandwich-type electrochemical immunosensor for 
PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. 
Biosens Bioelectron 91:441–448

	129.	 Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF 
(2017) Fe3O4 nanoparticles on graphene oxide sheets for isolation and 
ultrasensitive amperometric detection of cancer biomarker proteins. 
Biosens Bioelectron 91:359–366

	130.	 Zheng Z, Wu L, Li L, Zong S, Wang Z, Cui Y (2018) Simultaneous and 
highly sensitive detection of multiple breast cancer biomarkers in real 
samples using a SERS microfluidic chip. Talanta 188:507–515

	131.	 Nie Y, Zhang P, Wang H, Zhuo Y, Chai Y, Yuan R (2017) Ultrasensitive elec-
trochemiluminescence biosensing platform for detection of multiple 
types of biomarkers toward identical cancer on a single interface. Anal 
Chem 89:12821–12827

	132.	 Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay 
development for ultrasensitive aptasensing of prostate specific antigen. 
Biosens Bioelectron 91:284–292

	133.	 Na W, Liu Q, Sui B, Hu T, Su X (2016) Highly sensitive detection of acid 
phosphatase by using a graphene quantum dots-based forster reso-
nance energy transfer. Talanta 161:469–475

	134.	 Qu F, Li T, Yang M (2011) Colorimetric platform for visual detection of 
cancer biomarker based on intrinsic peroxidase activity of graphene 
oxide. Biosens. Bioelectron 26:3927–3931

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review
	Abstract 
	Introduction
	Most commonly used protein biomarkers for PC detection
	Properties of graphene materials in biosensor study
	Biosensor interfaces based on graphene
	Construction of antibody-graphene biosensor interface
	Construction of aptamer-graphene biosensor interface

	Graphene-based composites for signal-amplification
	Peroxidase-like activity of GO
	Graphene materials being applied as the carrier of signal tags

	Conclusion and future perspectives
	Acknowledgements
	References




