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Abstract

Background: It is seen that the regioselective functionalizations of halogenated heterocycles play an important role
in the synthesis of several types of organic compounds. In this domain, the Suzuki-Miyaura reaction has emerged as
a convenient way to build carbon-carbon bonds in synthesizing organic compounds. Some of the most important
applications of these reactions can be seen in the synthesis of natural products, and in designing targeted pharmaceutical
compounds. Herein, we present the regioselective synthesis of the novel series of 2-(bromomethyl)-5-aryl-thiophenes 3a-i,
via Suzuki cross-coupling reactions of various aryl boronic acids with 2-bromo-5-(bromomethyl)thiophene (2).

Results: The synthesized compounds were screened for their haemolytic and antithrombolytic activities. The novel
compounds 3f, 3i showed highest 69.7, 33.6% haemolysis of blood cells, respectively. The antithrombolytic activity of
the compounds was found to be within low to moderate against human blood clot. The compound 3i showed potent
clot lysis (31.5%).

Conclusions: Considering these results, it is concluded that the synthesized compounds can be used as a promising
source of therapeutic agents.

Keywords: Thiophene, Palladium, Suzuki cross-coupling reactions, Heterocycles, Aryl boronic acid, Antithrombotic,
Haemolytic, Cytotoxicity
Background
In present days, the synthesis of new and safe thera-
peutic agents is getting high importance in the field of
medicinal science and pharmaceuticals. Most precisely,
sulphur containing heterocycles are seen as the center of
activity due to their widespread use in several important
medicinal compounds. However, it is seen that the suc-
cess of thiophene as an important moiety of medicinal
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agents led to the introduction of new therapeutic drugs.
Substituted thiophene derivatives are well known for their
chemotherapeutic applications. Many thiophene based
heterocyclic compounds have shown versatile pharmaco-
logical activities such as antimicrobial [1,2], antiamoebic
[3], antiparasitic, anticancer [4], antifolates, antipsychotic
[5], diabetes mellitus [6], anticonvulsant [7], analgesic [8],
antidepressant [9], antihistaminic, anticholinergic [10],
antiallergic [11]. In addition, the cholesterol inhibition ac-
tivity and as antagonist against many hormones releasing
receptors has also been reported. In a yet different con-
text, the thiophene based heterocyclic compounds has
also been employed in formulizing computer printer’s ink
and as a raw material for herbicides and pesticides [12].
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Scheme 1 Synthesis of intermediate compound 2-bromo-5-
(bromomethyl)thiophene (2) and 2-(bromomethyl)-5-aryl-
thiophenes 3a–i. Conditions: i, 1, (1 eq, 20.4 mmol), NBS (2.1 eq,
42.84 mmol), CCl4 (9–10 mL). Procedure: reflux 1 and NBS in CCl4 for
4–5 hours; Condition ii, 2 (1 eq, 0.976 mmol), Pd(PPh3)4 (2.5 mol%)
aryl boronic acid (1.1 eq, 1.073 mmol), K3PO4 (2 eq, 1x.952 mmol),
1,4-dioxane/H2O (4:1) (Table 1), 12 h, 90°C.
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Some of the recent studies showed that the thiophene
containing compounds constitutes an important class of
materials, which show intrinsic electronic properties such
as luminescence, redox activity, non-linear optical chro-
mism and electron transport [13-17]. The incidence of
death due to thrombosis is higher in the world. Antith-
rombolytic activity of thiophene based compounds has
been reported in literature [18,19].
In the synthesis of several types of organic compounds,

the transition metal-catalyzed reactions are well known
for the formation of new carbon–carbon (C–C) bonds.
In this context, the Pd-catalyzed Suzuki–Miyaura coup-
ling reaction [20] is one of the most efficient and unique
method for the C–C bonds formation due to the re-
quirement of mild reaction conditions, easily available
environmentally safe organoboron compounds, high tol-
erance of functional groups and easy handling of the by-
products [21-25].
The Suzuki–Miyaura cross-coupling reaction, which

produces biaryls has proven to be the most important
building blocks in organic synthesis owing to their indus-
trial applications. We have previously reported the synthesis
of arylthiophenes by regioselective Suzuki cross-coupling
reactions and they were potentially studied as pharma-
ceutical agents [26,27].
There are few reports about the Suzuki Cross Coupling

reaction of benzyl halides with different palladium cata-
lysts under variable reaction conditions. Langle et al. [28]
reported the Suzuki cross coupling reaction of unsymmet-
rical diarylmethanes, while Bandgar et al. [29] reported
ligand free Suzuki cross coupling reactions of benzylic ha-
lides with aryl boronic acid. Molander and Elia [30] de-
scribed the Suzuki-Miyaura cross-coupling Reactions of
Benzyl halides with Potassium Aryltrifluoroborates. The
cross-coupling of benzylic bromides with various aryl bo-
ronic acids have also been reported under microwave con-
ditions [31].
For the first time, the present work focuses on the

synthesis of various palladium (0) catalyzed Suzuki
cross coupled derivatives of 2-bromo-5-(bromomethyl)
thiophene, particularly with the aim to investigate their
biological activities (Haemolytic and Antithrombolytic
activities).

Results and discussion
Chemistry
We have investigated the Suzuki cross coupling reactions
of 2-bromo-5-(bromomethyl)thiophene (2) with various
aryl boronic acids under optimized conditions. To the best
of our knowledge, no such work on the synthesis and
biological activities of 2-(bromomethyl)-5-aryl-thiophenes
(3a–i) has been reported to date.
As outlined in the reaction scheme (1), the first step in

the synthesis of 2-(bromomethyl)-5-aryl-thiophenes (3a–i)
is the preparation of intermediate compound 2-bromo-5-
(bromomethyl)thiophene (2), which was obtained in 58%
yield from the reaction between 2-methylthiophene (1)
and N-bromosuccinamide in CCl4 [32] (Scheme 1).
In the next step, the Suzuki cross coupling reaction of ap-

propriate aryl boronic acids with 2-bromo-5-(bromomethyl)
thiophene (2) was carried out that eventually led to the
corresponding 2-(bromomethyl)-5-aryl-thiophenes (3a-i) in
moderate to excellent yields (25− 76%) (Scheme 1, Table 1).
The Suzuki-Miyaura cross coupling reaction of benzyl

halide with aryl boronic acid usually follow slow oxida-
tive addition and facile reductive elimination as com-
pared to aryl halide [33,34], therefore the reaction of aryl
halide with aryl boronic acid is preferred over benzyl
halide. The structures of these newly synthesized com-
pounds were investigated from the data based on elemen-
tal analyses, Mass spectrometry, 1H-NMR and 13C-NMR
spectra.
The results revealed that the compound 2-(bromomethyl)-

5-(4 methoxyphenyl)thiophene (3b) was obtained in excel-
lent yield (76%), which could be due to the solvent
mixture (1,4-dioxane/water = 4:1), which has previously
been reported to obtain high yields [35]. Another possible
explanation is the high solubility of oxygen containing bo-
ronic acids in 1,4-dioxane, which led to the obtained high
yield of compound (3b). The coupling of intermediate
compound (2) with 3-chloro-4-fluoro phenyl boronic
acid also gave 2-(bromomethyl)-5-(3-chloro-4-fluorophenyl)
thiophene (3a) in good yield. The products 2-(bromomethyl)-
5-(4-chlorophenyl)thiophene (3c), 2-(bromomethyl)-5-
(3,5-difluorophenyl)thiophene (3d), 1-(3-(5-(bromomethyl)
thiophene-2-yl)phenyl)ethanone (3e), 2-(bromomethyl)-
5-(3,5-dimethylphenyl)thiophene (3i) were also obtained
in relatively high yields ~ 63, 61, 63, 70% respectively.
The obtained yield of products 2-(bromomethyl)-5-(4
(methylthio)phenyl)thiophene (3f), 2-(bromomethyl)-5-



Table 1 Synthesis of 2-(bromomethyl)-5-aryl-thiophenes (3a-i)

3 Aryl/ArylBoronic acids Products Solvent/H2O (4:1) Yield %

a 3-Cl-4-F-C6H3 1,4-Dioxane 65

b 4-MeO-C6H4 1,4-Dioxane 76

c 4-Cl-C6H4 1,4-Dioxane 63

d 3,5-F2-C6H3 1,4-Dioxane 61

e 3-(MeCO)-C6H4 1,4-Dioxane 63

f 4-(MeS)-C6H4 1,4-Dioxane 56

g 4-I-C6H4

S

Br

I
1,4-Dioxane 60

h 4-Me-C6H4

S

Br

Me
1,4-Dioxane 53

i 3,5-Me2C6H3

S

Br
Me

Me 1,4-Dioxane 70
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(4-iodophenyl)thiophene (3g), 2-(bromomethyl)-5-p-
tolylthiophene (3h) was fair as well (Table 1). In the
cases, where low yield of products were obtained, the
steric effects of substituents attached on aryl group of
boronic acids and some practical problems associated
with difficult chromatographic purification are suggested
to be the possible issues [36]. Ortho-substituted aryl bo-
ronic acids have lack of reactivity and cannot couple
in a good way due to steric factor. Hence, boronate
anion of boronic acid are unable to attack easily on the
substrate [36].

Biology
Measurement of potential cytotoxicity by haemolytic
activity
The cytotoxicity of the synthesized compounds viz. 2
and 3a-i was studied by examining the haemolytic activ-
ity against human red blood cells. The cytotoxicity of
blood lymphocytes, thymocytes and spleen cells of vari-
ous compounds are already known [37]. When com-
pared with the positive control triton X-100 standard,
the novel compounds 3f and 3i showed significantly
high haemolytic activity ~ 69.7 and 33.6% lysis of blood
cells respectively, which can be attributed to the pres-
ence of electron donating methyl groups. Molongi et al.
[38] reported that the anticancer activity is often en-
hanced by the presence of electron releasing groups. In
contrast, the compounds viz. 2, 3a, 3b, 3c, 3d, 3e, 3g
and 3h exhibited haemolytic activity below 10% (Table 2,
Figure 1). In view of the observed differences in the %
lysis of RBC values, it is inferred that the electron with-
drawing and electron donating nature of the substituent
groups have an influence on the haemolytic activity of
the compounds [39]. Moreover, the cytotoxicity of the
compounds viz. 3f and 3i can be optimized by making
Table 2 Cytotoxicity studies by Haemolytic activity of
synthetic compounds 2 and 3a-i

Compounds % of haemolysis

2 3.06 ± 0.03

3a 1.63 ± 0.02

3b 6.31 ± 0.07

3c 3.88 ± 0.04

3d 4.43 ± 0.05

3e 5.13 ± 0.05

3f 69.7 ± 1.23

3 g 9.87 ± 0.08

3 h 3.59 ± 0.03

3i 33.6 ± 0.87

Phosphate-buffered saline (PBS) 0.00 ± 0.00

Triton X-100 100 ± 0.58

The results are average ± S.D of triplicate experiments p < 0.05.
appropriate changes in the molecular structures for the
purpose of their use as toxic compounds to control the
uncontrolled proliferation of cells [38].

Antithrombolytic activity
In the field of antithrombotic research, the compounds
that exhibit anti-aggregatory activity have received a great
deal of interest from research community. Several types of
drugs such as heparin, ticlopidine, clopidogrel, plasmino-
gen activator (t-PA), urokinase and streptokinase were ex-
plored as clot lysis agent but only few of them were found
potent for clinical purposes [40-43].
Because of high death rate due to cardio-vascular dis-

eases, the clot lysis activity is very important characteristic
of any drug [44,45]. The compounds under investiga-
tion exhibited low to moderate antithrombolytic activity
against clot development in human blood. The compound
3i showed potent clot lysis (~ 31.5%), whereas, the com-
pounds 3e and 2 showed comparatively low thrombolytic
activity (Table 3, Figure 2). The values of % clot lysis for
other compounds were found moderate. However, the
results were significant p < 0.05, when compared with
streptokinase taken as control. According to the best of
our knowledge, no relative literature is available on this
type of activity for such compound.

Experimental
General
The melting points of compounds were determined using
a Buchi melting point apparatus (B-540). High pure analyt-
ical grade reagents were used throughout all experiments
and were purchased from Sigma Aldrich Chemical Co.
(St. Louis, MO, USA) and Alfa Aesar Chemical Co.
(St. Parkridge Ward Hill, MA, USA). 1H-NMR and
13C-NMR spectra were measured in CDCl3 and CD3OD
(Bruker Aspect AM-300 instrument) at 300/75 MHz re-
spectively. The chemical shift values (δ) were given in ppm
and coupling constant was measured in Hertz (Hz). EI-MS
spectra were recorded on a JMS-HX-110 spectrometer
with a data system. Elemental analysis was carried out by
using CHNS/O analyzer (Perkin-Elmer 2400 series). For
column chromatography, silica gel (70–230 mesh) and silica
gel (230–400 mesh) were used. The reactions were moni-
tored on TLC, using Merck silica gel 60 PF254 cards. The
compounds were visualized by UV lamp (254–365 nm).

General procedure for synthesis of 2-bromo-5-
(bromomethyl)thiophene (2)
To carry out bromination of 2-methylthiophene, a
weighed amount of starting material 2-methylthiophene
(1, 1 eq, 20.4 mmol) suspended in 9–10 mL of dry
carbon tetrachloride (CCl4) was made to react with N-
bromosuccinimide (NBS) (2.1 eq, 42.84 mmol). This reac-
tion mixture is then heated under reflux for four to five
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Figure 1 Percentage of haemolysis of synthetic compounds 2, 3a-i.
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hours, followed by filtration and the removal of carbon
tetrachloride under vacuum. Later on, the synthesized
compound was purified by fractional distillation. Finally,
the spectroscopic techniques were used to characterized
the purified final product [32].

General procedure for the preparation of 2-
(bromomethyl)-5-aryl-thiophene (3a-i)
Pd(PPh3)4 (2.5 mol%) was added to 2-bromo-5-(bromomethyl)
thiophene (2, 1 eq, 0.976 mmol) under nitrogen atmos-
phere and the resulting mixture was stirred for 30 min
with the addition of 1,4-dioxane (2.5 mL). After 30 min
the aryl boronic acid (1.1 eq, 1.073 mmol), K3PO4 (2 eq,
1.952 mmol) and water (0.625 mL) were added [27]. The
whole mixture was stirred for 12 h at 90°C, and was later
removed and cooled to room temperature. After cooling
to ambient temperature, the mixture was diluted with ethyl
acetate and the organic layer was separated, dried with
Table 3 Percentage efficiency of Clot lysis of synthetic
compounds 2 and 3a-i

Compounds Clot lysis %

2 2.73 ± 0.03

3a 9.76 ± 0.08

3c 12.3 ± 0.15

3b 5.29 ± 0.04

3d 3.71 ± 0.04

3e 1.96 ± 0.02

3f 8.05 ± 0.07

3 g 7.28 ± 0.06

3 h 4.37 ± 0.02

3i 31.5 ± 0.45

Water 0.43 ± 0.005

Streptokinase 87.2 ± 0.95

The results are average ± S.D of triplicate experiments p < 0.05.
magnesium sulfate and the solvent was removed under
vacuum. The obtained crude residue was purified by col-
umn chromatography using ethyl-acetate and n-hexane in
(1:1) ratio to get the desired products, which were further
analyzed by using different spectroscopic techniques.

Characterization data
2-bromo-5-(bromomethyl)thiophene (2). Brown liquid;
1H-NMR (300 MHz, CDCl3 + CD3OD): δ = 6.98 (d, J =
3.6 Hz, 1H), 6.83 (d, J = 3.6 Hz, 1H), 4.68 (s, 2H-CH2).
13C-NMR (75 MHz CDCl3 + CD3OD): δ = 25.4, 108.2
128.0, 128.8, 141.5; EI/MS m/z (%:) 255.0 [M+˙]; 257.0
[M+ (Br79, Br81) 100], 259.0 [M+ (Br81, Br81) 40], [M+-Br] =
177.0; [M+-CH2Br] = 163.0; [M+-2Br] = 125.8; [M+-Br and
CH2Br fragment] = 84.0. Anal. Calcd. for C5H4Br2S: C,
23.46; H, 23.50. Found: C, 1.60; H, 1.60%.
2-(bromomethyl)-5-(3-chloro-4-fluorophenyl)thiophene (3a).

Light yellow solid, Mp: 200-250°C; 1H-NMR (300 MHz,
CDCl3 +CD3OD): δ= 7.54 (m, 1H-aryl), 7.52 (m, 1H-aryl),
7.36 (s, 1H-thiophene), 7.28 (m, 1H-aryl), 6.77 (s, 1H-
thiophene), 4.07 (s, 2H-CH2).

13C-NMR (75 MHz CDCl3 +
CD3OD): 27.4, 116.4, 121.2, 127.0, 127.6, 127.9, 129.0,
131.2, 137.0, 139.4, 158.0; EI/MS m/z (%): 304.8 [M+˙];
306.8 [M+ (Br81,Cl35) 49]; 306.8 [M+ (Br79, Cl37) 17]; 308.8
[M+ (Br81, Cl37) 49]; [M+-F] = 287.2; [M+-Cl, F-fragments] =
253.1; [M+-CH2Br, thiophene, Cl- fragments] = 96.1. Anal.
Calcd. For C11H7BrClFS: C, 43.23; H, 2.31. Found: C, 42.22;
H, 2.40%.
2-(bromomethyl)-5-(4-methoxyphenyl)thiophene (3b).

light yellow solid,Mp: 200-250°C; 1H-NMR (300 MHz,
CDCl3 + CD3OD): δ = 7.12 (d, J = 8.4 Hz, 1H-thiophene),
6.84-6.81 (m, 4H-aryl), 6.52 (d, J = 3.6 Hz, 1H-thiophene),
3.98 (s, 2H-CH2), 2.03 (s, 3H-OMe). 13C-NMR (75 MHz
CDCl3 + CD3OD): 20.4, 27.9, 125.4, 125.9, 127.7, 127.9,
129.0, 129.9, 130.0, 131.9, 135.0, 139.1; EI/MS m/z (%):
283.0 [M+˙]; 285.0 [M+ (Br81) 49]; [M+-CH2Br, thiophene] =
108.2; [M+-CH2Br, thiophene, OMe- fragments] = 78.0.
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Figure 2 Antithrombolytic activity of synthetic compounds 2, 3a-i.
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Anal. Calcd. For C12H11BrOS: C, 50.90; H, 3.92. Found: C,
50.76; H, 3.80%.
2-(bromomethyl)-5-(4-chlorophenyl)thiophene (3c). Yellow

liquid; 1H-NMR (300 MHz, CDCl3 + CD3OD): δ = 7.59
(d, J= 8.4 Hz, 2H-aryl), 7.40-7.37 (m, 2H-aryl, 1H-thiophene),
7.27 (s, 1H-thiophene), 4.70 (s, 2H-CH2).

13C-NMR (75 MHz
CDCl3 + CD3OD): 27.6, 127.5 (2C), 128.5, 129.5 (2C),
128.4, 131.6, 134.1, 136.7, 139.1; EI/MS (m/z -ion mode):
286.9 [M+˙]; 288.9 [M+ (Br81,Cl35) 49]; 288.9 [M+ (Br79,
Cl37)17]; 290.9 [M+ (Br81, Cl37) 49]; [M+-Br] = 223.0;
[M+-CH2Br] = 194.2; [M+-CH2Br, Cl fragments] = 160.1,
[M+-CH2Br, Cl, aryl fragments] = 83.2. Anal. Calcd. For
C11H8BrClS: C, 45.94; H, 2.80. Found: C, 45.90; H, 2.70%.
2-(bromomethyl)-5-(3,5-difluorophenyl)thiophene (3d).

Dark brown gummy matter; 1H-NMR (300 MHz, CDCl3 +
CD3OD): δ = 7.42 (m, 1H-aryl), 7.22 (m, 1H-aryl), 7.12
(d, J = 2.4 Hz, 1H-thiophene) 6.55 (m, 1H-aryl), 6.51
(d, J = 3.6 Hz, 1H-thiophene), 4.51 (s, 2H-CH2).

13C-NMR
(75 MHz CDCl3 + CD3OD): 27.5, 104.0, 111.1 (2C), 127.5
(2C), 136.1, 136.9, 140.0, 165.1 (2C). EI/MS m/z (%): 288.0
[M+˙]; 290.0 [M+ (Br81) 49]; [M-F] = 270.0; [M-2 F] = 254.2;
[M-CH2Br] = 196.0; [M-CH2Br, thiophene fragments] =
113.1. Anal. Calcd. For C11H7BrF2S: C, 45.69; H, 2.44.
Found: C, 45.75; H, 2.43%.
1-(3-(5-(bromomethyl)thiophene-2-yl)phenyl)ethanone (3e).

Off white gummy matter; 1H-NMR (300 MHz, CDCl3 +
CD3OD): δ = 7.87-7.85 (m, 2H-aryl), 7.50-7.41 (m, 2H-
aryl), 6.91 (d, J = 3.6 Hz, 1H-thiophene), 6.66 (d, J =
3.6 Hz, 1H-thiophene), 4.83 (s, 2H-CH2), 2.57 (S, 3H-
COMe). 13C-NMR (75 MHz CDCl3 + CD3OD): 26.5, 27.8,
126.0, 127.5 (2C), 128.5, 129.5, 130.5, 133.4, 136.0, 137.1,
139.0, 197.4. EI/MS m/z (%): 294.1 [M+˙]; 296.0 [M+ (Br81)
49]; [M+-Me] = 281.0 [M+-COMe] = 253.0, [M+-CH2Br] =
201.1, [M+-CH2Br, aryl, COMe] = 84.0. Anal. Calcd. For
C13H11BrOS: C, 52.89; H, 3.76. Found: C, 52.80; H, 3.66%.
2-(bromomethyl)-5-(4-(methylthio)phenyl)thiophene (3f).

off white solid,Mp: 110-150°C; 1H-NMR (300 MHz,
CDCl3 + CD3OD): δ = 7.10 (m, 4H-aryl), 7.01 (d, J = 3.9,
1H-thiophene), 6.89 (d, J = 3.6, 1H-thiophene), 4.84
(s, 2H-CH2).

13C-NMR (75 MHz CDCl3 + CD3OD): 14.6,
27.8, 127.3 (2C), 127.5 (2C)127. 9 (2C), 130.0, 135.9, 139.4,
140.2. EI/MS m/z (%): 299.0 [M+˙]; 301.0 [M+ (Br81) 49];
[M+-Me] = 284.0; [M+-SMe] = 251.0; [M+-Br, Me frag-
ments] = 219.0; [M+-CH2Br, thiophene fragments] = 109.1;
[M+-CH2Br, thiophene, SMe fragments] = 77.5. Anal.
Calcd. For C12H11BrS2: C, 48.16; H, 3.71. Found: C, 48.10;
H, 3.77%.
2-(bromomethyl)-5-(4-iodophenyl)thiophene (3g). Brown

solid, Mp: > 300°C; 1H-NMR (300 MHz, CDCl3 + CD3OD):
δ = 7.76 (d, J = 2.1 Hz, 2H-Aryl), 7.58 (d, J = 1.8 Hz, 2H-
aryl), 7.18 (d, J = 4.2 Hz, 1H-Thiophene), 6.82 (d, J = 3.3 Hz,
1H-Thiophene), 4.62 (s, 2H-CH2).

13C-NMR (75 MHz
CDCl3 + CD3OD): 27.5, 94.6, 127.5 (2C), 129.0 (2C), 132.0,
135.7, 138.1 (2C), 140.0. EI/MS m/z (%): 378.1 [M+˙];
380.0 [M+ (Br81) 49]; [M+-I] = 252.9; [M+-aryl, I] = 177.0;
[M+-thiophene, aryl, I] = 95.8. Anal. Calcd. For C11H8BrIS:
C, 34.85; H, 2.13. Found: C, 34.80; H, 2.11%.
2-(bromomethyl)-5-p-tolylthiophene (3h). Brown gummy

matter;1H-NMR (300 MHz, CDCl3 + CD3OD): δ = 7.55-
7.40 (m, 4H-aryl, 2H-thiophene), 4.68 (s, 2H), 2.35 (S, 3H-
Me). 13C-NMR (75 MHz CDCl3 + CD3OD): 21.0, 28.1,
125.5 (2C), 127.5 (2C), 129.6 (2C), 130.5, 131.8, 136.5,
139.6. EI/MS m/z (%): 266.9 [M+˙]; 268.9 [M+ (Br81) 49];
[M+-CH2Br] = 175.0; [M+-CH2Br, Me fragments] = 161.0;
[M+-CH2Br, thiophene fragments] = 91.0; [M+-CH2Br,
aryl, Me fragments] = 83.4. Anal. Calcd. For C12H11BrS: C,
35.94; H, 4.15. Found: C, 35.84; H, 4.25%.
2-(bromomethyl)-5-(3,5-dimethylphenyl)thiophene (3i).

Brown liquid; 1H-NMR (300 MHz, CDCl3 + CD3OD): δ =
7.24 (s, 1H-aryl), 7.14 (d, J = 9.9, 2H-aryl), 7.11 (d, J =
10.5 Hz, 1H-thiophene), 6.95 (s, 1H-thiophene), 4.97
(s, 2H-CH2); 2.35 (s, 6H-2Me). 13C-NMR (75 MHz CDCl3 +
CD3OD): 21.8 (2C), 27.6, 127.4 (3C), 127.8, 130.8, 133.6,
135.9, 138.6 (2C), 139.8. EI/MS m/z (%): 280.2 [M+˙];
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282.2 [M+ (Br81) 49]; [M+-2Me] = 252.0; [M+-CH2Br] =
189.0; [M+-CH2Br, aryl, 2Me] = 83.2; [M+-CH2Br, Me]ˉ =
174.0. Anal. Calcd. For C13H13BrS: C, 55.52; H, 4.66.
Found: C, 55.58; H, 4.63%.

Cytotoxicity studies by haemolytic assay
The cytotoxicity of synthesized compounds 2 and 3a-i
was determined by examining the haemolytic activity of
human blood cells, following the previously reported
method [46]. In a typical experiment, approximately
3 mL freshly obtained heparinized human blood was
collected from the volunteers after consent and counsel-
ing. The blood samples were then centrifuged for 5 min at
1000 rpm, and the blood plasma was discarded and cells
were washed three times with 5 mL chilled (4°C) sterile
isotonic Phosphate-buffered saline (PBS) (pH 7.4). Eryth-
rocytes were maintained 108 cells per mL for each assay.
Approximately, 100 μL of each synthesized compound
was mixed with human blood cells (108 cells/mL) separ-
ately. Later on, the Samples were incubated for 35 min at
37°C and agitated after 10 min. Soon after incubation, the
samples were placed on ice for 5 min, followed by centri-
fuge for 5 min at 100 rpm. Supernatant 100 μL were taken
from each tube and diluted 10 times with chilled (4°C)
PBS. Triton X-100 (0.1% v/v) was taken as positive con-
trol and phosphate buffer saline (PBS) was taken as
negative control and pass through the same process.
The absorbance value was measured at 576 nm using
μQuant (Bioteck, USA). Finally, the % RBCs lysis for each
sample was calculated.

Antithrombolytic activity
The blood samples were collected from volunteers after
consent and counseling. Venous blood was pinched from
healthy human volunteers without a history of anti-
coagulant treatment. The 100 μL of blood was transmit-
ted to each of the previously weighed micro-centrifuge
tubes to form clots. Then the solution of synthesized
compounds 2 and 3a-i (100 μL) having concentration of
1 mg/mL was added to the tubes, and incubated at 37°C
for 45 minutes. Streptokinase was used as standard clot
lysis agent and water as negative control for this assay. Clot
lysis activity results were presented in percentage [47].

Conclusions
In conclusion, novel series of 2-(bromomethyl)-5-aryl-
thiophenes(3a–i) were synthesized, and the cytotoxicity
of the newly synthesized compounds (2, 3a-i) against the
human blood cells was investigated. Almost, all the tested
compounds revealed some haemolytic activity in the safe
range but in particular 3f and 3i exhibited highest lysis of
blood cells viz. 69.7 and 33.6 % respectively. The synthe-
sized compounds exhibited low to moderate antithrombo-
lytic activity against human blood clot. The compound 3i
was found more potent for clot lysis among all synthesized
compounds. We anticipate that the continued investiga-
tion in this field will provide new insights and promote
the progress towards the development of ideal thrombo-
lytic therapy, characterized by maximized stable coronary
arterial thrombolysis with minimal bleeding. The highly
toxic compounds are deemed to be potential antitumor
agents.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KR, MZ, NR, MZ, SA, AFZ, UAR, SUK and MS made a significant contribution
to experiment design, acquisition of data, analysis and drafting of the
manuscript. MZUH and HZEJ have made a substantial contribution to
interpretation of data, drafting and carefully revising the manuscript for
intellectual content. All authors read and approved the final manuscript.

Acknowledgments
The present data is the part of Ph.D thesis research work of Komal Rizwan.
Higher Education Commission (HEC) Pakistan is highly acknowledged for
financial support (Scholarschip Pin # 2 ps1-388). The authors also gratefully
acknowledge the financial support by HEC (HEC Project No. 20-1465/R&D/
09/5458). The authors would also like to extend their sincere appreciation to
the Deanship of Scientific Research at King Saud University for funding
through the Research Group Project No. RGP-VPP-345.

Author details
1Department of Chemistry, Government College University, Faisalabad 38000,
Pakistan. 2Sustainable Energy Technologies (SET) Center, College of
Engineering, King Saud University, PO-Box − 800, Riyadh 11421, Saudi Arabia.
3Department of Chemistry and Biochemistry, University of Agriculture,
Faisalabad 38040, Pakistan. 4The Patent Office, Karachi, Pakistan. 5Department
of Crop Science, Faculty of Agriculture, 43400 UPM Serdang, Selangor,
Malaysia.

Received: 5 July 2014 Accepted: 27 November 2014

References
1. Chaudhary A, Jha K, Kumar S: Biological Diversity of Thiophene: A Review.

J Adv Sci Res 2012, 3(3):3–10.
2. Mohan C, Bhargava G, Bedi PM: Thieno [3, 2-d] pyrimidin-4-one Derivatives

as Potential Antibacterial Agents. J Life Sci 2009, 1(2):97–101.
3. Sharma S, Athar F, Maurya MR, Azam A: Copper (II) complexes with

substituted thiosemicarbazones of thiophene-2-carboxaldehyde: synthesis,
characterization and antiamoebic activity against E. histolytica. Eur J Med
Chem 2005, 40(12):1414–1419.

4. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS,
Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC,
Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH,
Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M,
Wallweber HJ, Wan NC, Wiesmann C, et al: The identification of
2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-
4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally
bioavailable inhibitor of class I PI3 kinase for the treatment of cancer.
J Med Chem 2008, 51(18):5522–5532.

5. Sharma C, Yerande S, Chavan R, V Bhosale A: Synthesis of thienopyrimidines
and their antipsychotic activity. J Chem 2010, 7(2):655–664.

6. Abdelhamid AO: Convenient Synthesis of Some New Pyrazolo (1, 5-a
pyrimidine, Pyridine, Thieno (2, 3-b pyridine, and Isoxazolo (3, 4-d
pyridazine Derivatives Containing Benzofuran Moiety. J Heterocycl
Chem 2009, 46(4):680–686.

7. Laddha SS, Bhatnagar SP: A new therapeutic approach in Parkinson’s
disease: Some novel quinazoline derivatives as dual selective
phosphodiesterase 1 inhibitors and anti-inflammatory agents.
Bioorg Med Chem 2009, 17(19):6796–6802.



Rizwan et al. Chemistry Central Journal  (2014) 8:74 Page 8 of 8
8. Alagarsamy V, Raja Solomon V, Meenac R, Ramaseshu K, Thirumurugan K,
Murugesan S: Design and Synthesis of 2-Methylthio-3-substituted-5,
6-dimethylthieno [2, 3-d] pyrimidin-4 (3H)-ones as Analgesic,
Anti-Inflammatory and Antibacterial Agents. Med Chem 2007, 3(1):67–73.

9. Wardakhan W, Abdel-Salam O, Elmegeed G: Screening for antidepressant,
sedative and analgesic activities of novel fused thiophene derivatives.
Acta Pharm 2008, 58(1):1–14.

10. Shireesha B, UmaShankar K, RaghuramRao A, Rajan K, Raghuprasad M:
Design, Synthesis and H1-Antihistaminic Activity of Novel Thieno [2, 3-d]
pyrimidinones. Int J Pharm Sci Nanotechnol 2008, 1(2):136–143.

11. Connor DT, Sorenson RJ, Cetenko WA, Kerbleski JJ, Tinney FJ: Synthesis and
antiallergy activity of 10-oxo-10H-pyrido [1, 2-a] thieno [3, 2-d] pyrimidines
and 10-oxo-10H-pyrido [1, 2-a] thieno [3, 4-d] pyrimidines. J Med Chem
1984, 27(4):528–530.

12. Russel K, Press B, Rampulla A: Thiophene system 9, Thienopyrimidinedione
derivatives as potential antihypertensive agent. J Med Chem 1988,
31:1786–1789.

13. Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P:
Molecular engineering of organic semiconductors: design of self-assembly
properties in conjugated thiophene oligomers. J Am Chem Soc 1993,
115(19):8716–8721.

14. Garnier F, Hajlaoui R, Yassar A, Srivastava P: All-Polymer Field-Effect Transistor
Realized by Printing Techniques. Science 1994, 265(5179):1684–1686.

15. Garnier F: Functionalized Conducting Polymers—Towards Intelligent
Materials. Angewandte Chemie 1989, 101(4):529–533.

16. Dodabalapur A, Torsi L, Katz H: Organic transistors: two-dimensional transport
and improved electrical characteristics. Science 1995, 268(5208):270–271.

17. Dodabalapur A, Katz HE, Torsi L: Molecular orbital energy level
engineering in organic transistors. Adv Mater 1996, 8(10):853–855.

18. Roehrig S, Straub A, Pohlmann J, Lampe T, Pernerstorfer J, Schlemmer KH,
Reinemer P, Perzborn E: Discovery of the novel antithrombotic agent 5-
chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-
yl}methyl)thiophene- 2-carboxamide (BAY 59–7939): an oral, direct factor
Xa inhibitor. J Med Chem 2005, 48(19):5900–5908.

19. Dupin J, Gryglewski R, Gravier D, Hou G, Casadebaig F, Swies J, Chlopicki S:
SYNTHESIS AND THROMBOLYTIC ACTIVITY. J Physiol Pharmacol 2002,
53(4):625–634.

20. Miyaura N, Yanagi T, Suzuki A: The palladium-catalyzed cross-coupling
reaction of phenylboronic acid with haloarenes in the presence of bases.
Synthetic Comm 1981, 11(7):513–519.

21. Martin AR, Yang Y: Palladium-catalyzed cross-coupling reactions of
organoboronic acids with organic electrophiles. Acta Chem Scand
1993, 47:221–230.

22. Suzuki A: New synthetic transformations via organoboron compounds.
Pure Appl Chem 1994, 66(2):213–222.

23. Stanforth SP: Catalytic cross-coupling reactions in biaryl synthesis.
Tetrahedron 1998, 54(3–4):263–303.

24. Suzuki A: Recent advances in the cross-coupling reactions of organoboron
derivatives with organic electrophiles, 1995–1998. J Organomet Chem 1999,
576(1–2):147–168.

25. Miyaura N, Suzuki A: Palladium-catalyzed cross-coupling reactions of
organoboron compounds. Chem Rev 1995, 95(7):2457–2483.

26. Ali S, Rasool N, Ullah A, Nasim F-u-H, Yaqoob A, Zubair M, Rashid U, Riaz M:
Design and Synthesis of Arylthiophene-2-Carbaldehydes via
Suzuki-Miyaura Reactions and Their Biological Evaluation. Molecules 2013,
18(12):14711–14725.

27. Dang TT, Rasool N, Dang TT, Reinke H, Langer P: Synthesis of
tetraarylthiophenes by regioselective Suzuki cross-coupling reactions of
tetrabromothiophene. Tetrahedron Lett 2007, 48(5):845–847.

28. Langle S, Abarbri M, Duchêne A: Selective double Suzuki cross-coupling
reactions. Synthesis of unsymmetrical diaryl (or heteroaryl) methanes.
Tetrahedron Lett 2003, 44(52):9255–9258.

29. Bandgar B, Bettigeri SV, Phopase J: Palladium catalyzed ligand-free Suzuki
cross-coupling reactions of benzylic halides with aryl boronic acids
under mild conditions. Tetrahedron Lett 2004, 45(37):6959–6962.

30. Molander GA, Elia MD: Suzuki-Miyaura cross-coupling reactions of
benzyl halides with potassium aryltrifluoroborates. J Org Chem 2006,
71(24):9198–9202.

31. McDaniel SW, Keyari CM, Rider KC, Natale NR, Diaz P: Suzuki-Miyaura
Cross-Coupling of Benzylic Bromides Under Microwave Conditions.
Tetrahedron Lett 2011, 52(43):5656–5658.
32. Dittmer K, Martin RP, Herz W, Cristol SJ: The Effect of Benzoyl Peroxide on
the Bromination of Methylthiophenes by N-Bromosuccinimide. J Am
Chem Soc 1949, 71(4):1201–1204.

33. Negishi E-i, de Meijere A, Wiley J: Handbook of organopalladium chemistry
for organic synthesis, Volume 1. New York: Wiley-Interscience; 2002.

34. Juteau H, Gareau Y, Labelle M, Sturino CF, Sawyer N, Tremblay N,
Lamontagne S, Carriere MC, Denis D, Metters KM: Structure-activity
relationship of cinnamic acylsulfonamide analogues on the human
EP3 prostanoid receptor. Bioorg Med Chem 2001, 9(8):1977–1984.

35. Smith GB, Dezeny GC, Hughes DL, King AO, Verhoeven TR: Mechanistic
studies of the Suzuki cross-coupling reaction. J Org Chem 1994,
59(26):8151–8156.

36. Tùng ĐT, Tuân ĐT, Rasool N, Villinger A, Reinke H, Fischer C, Langer P:
Regioselective Palladium (0)‐Catalyzed Cross‐Coupling Reactions and
Metal‐Halide Exchange Reactions of Tetrabromothiophene: Optimization,
Scope and Limitations. Adv Synth Catal 2009, 351(10):1595–1609.

37. Mavrova A, Wesselinova D, Tsenov YA, Denkova P: Synthesis, cytotoxicity
and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on
immunocompetent cells. Eur J Med Chem 2009, 44(1):63–69.

38. Mologni L, Rostagno R, Brussolo S, Knowles PP, Kjaer S, Murray-Rust J, Rosso E,
Zambon A, Scapozza L, McDonald NQ: Synthesis, structure-activity
relationship and crystallographic studies of 3-substituted indolin-2-one
RET inhibitors. Bioorg Med Chem 2010, 18(4):1482–1496.

39. Ding H, Chen Z, Zhang C, Xin T, Wang Y, Song H, Jiang Y, Chen Y, Xu Y,
Tan C: Synthesis and Cytotoxic Activity of Some Novel N-Pyridinyl-2-
(6-phenylimidazo[2,1-b]thiazol-3-yl)acetamide Derivatives. Molecules 2012,
17(4):4703–4716.

40. Panak E, Maffrand J, Picard-Fraire C, Vallee E, Blanchard J, Roncucci R:
Ticlopidine: a promise for the prevention and treatment of thrombosis
and its complications. Haemostasis 1983, 13(Suppl 1):1–54.

41. Coukell AJ, Markham A: Clopidogrel. Drugs 1997, 54(5):745–750. discussion 751.
42. Mucklow J: Thrombolytic treatment. Streptokinase is more economical

than alteplase. BMJ 1995, 311(7018):1506.
43. Collen D: Coronary thrombolysis: streptokinase or recombinant tissue-type

plasminogen activator? Ann Intern Med 1990, 112(7):529–538.
44. Hunt BJ: Awareness and politics of venous thromboembolism in the

United kingdom. Arterioscler Thromb Vasc Biol 2008, 28(3):398–399.
45. Allroggen H, Abbott RJ: Cerebral venous sinus thrombosis. Postgrad Med J

2000, 76(891):12–15.
46. Shahid M, Bukhari SA, Gul Y, Munir H, Anjum F, Zuber M, Jamil T, Zia KM:

Graft polymerization of guar gum with acryl amide irradiated by microwaves
for colonic drug delivery. Int J Biol Macromol 2013, 62:172–179.

47. Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF:
Development of an in vitro model to study clot lysis activity of thrombolytic
drugs. Thromb J 2006, 4(14):1–4.
Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Chemistry
	Biology
	Measurement of potential cytotoxicity by haemolytic activity

	Antithrombolytic activity

	Experimental
	General
	General procedure for synthesis of 2-bromo-5-(bromomethyl)thiophene (2)
	General procedure for the preparation of 2-(bromomethyl)-5-aryl-thiophene (3a-i)
	Characterization data
	Cytotoxicity studies by haemolytic assay
	Antithrombolytic activity

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

