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Abstract

Background: In cluster randomized trials (CRTs) of interventions against malaria, mosquito movement between
households ultimately leads to contamination between intervention and control arms, unless they are separated by
wide buffer zones.

Methods: This paper proposes a method for adjusting estimates of intervention effectiveness for contamination and
for estimating a contamination range between intervention arms, the distance over which contamination measurably
biases the estimate of effectiveness. A sigmoid function is fitted to malaria prevalence or incidence data as a function
of the distance of households to the intervention boundary, stratified by intervention status and including a random
effect for the clustering. The method is evaluated in a simulation study, corresponding to a range of rural settings with
varying intervention effectiveness and contamination range, and applied to a CRT of insecticide treated nets in Ghana.

from the discordant intervention arm.

zones to avoid bias.

Results: The simulations indicate that the method leads to approximately unbiased estimates of effectiveness.
Precision decreases with increasing mosquito movement, but the contamination range is much smaller than the
maximum distance traveled by mosquitoes. For the method to provide precise and approximately unbiased
estimates, at least 50% of the households should be at distances greater than the estimated contamination range

Conclusions: A sigmoid approach provides an appropriate analysis for a CRT in the presence of contamination.
Outcome data from boundary zones should not be discarded but used to provide estimates of the contamination
range. This gives an alternative to “fried egg” designs, which use large clusters (increasing costs) and exclude buffer

Keywords: Nonlinear analysis, Sigmoid random effects analysis, Malaria, Mosquitoes, Simulation study

Background

Cluster randomized trials (CRTs) are often used in pub-
lic health research to avoid contamination effects (also
called indirect effects or spill-over effects) leading to aver-
aging of estimates of effectiveness across the arms of a
trial population in an individual-level randomized trial.
The full effect of the intervention is only observed in
comparisons of distinct clusters of individuals, but it may
be difficult to ensure full separation between the inter-
vention and control arms of the trial. This problem has
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long been recognized in the design of CRTs, especially for
vaccine studies [1-4]. With directly transmitted diseases,
dynamic models of the transmission across contact net-
works can provide an efficient, though technically chal-
lenging approach to optimizing trial design and estimating
effects of contamination on effectiveness estimates [5].
With diseases transmitted by vectors, construction of
contact networks is usually impossible and clusters are
defined to correspond to the places where people get
infected. In the case of Aedes transmitted diseases like
dengue or zika, these may be schools or workplaces,
since biting happens during the day. However, Anopheles
mosquitoes transmitting malaria bite in the early night
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and early morning. Hence, most transmission of malaria
is indoors or peri-domestic and can be geolocated to the
host’s primary residence. In trials of interventions, such as
the deployment of insecticides or distribution of bed nets,
clusters are therefore defined as geographically congru-
ent areas, with contamination effects mainly induced by
mosquito movement because people living nearby might
benefit from a reduced density of infectious mosquitoes.
Other contamination effects that are unrelated to geo-
graphical distance, such as relocation of human hosts, are
relatively unimportant. The maximum effect of interven-
tion is then observed only where high coverage is achieved
throughout a substantial group of neighboring individu-
als. Since Anopheles mosquitoes can fly several kilometers
[6], trial arms need to be separated by large distances if
contamination at cluster boundaries is to be avoided. This
has led to CRTs with clusters of much larger geographical
size than are required to estimate the effect of the inter-
vention with wide buffer zones around each cluster where
the intervention is introduced but excluded from data col-
lection and analysis (a so-called fried egg design [7-12]).

With the fried egg design, a simple mixed effects model
provides a valid analysis [7], providing the buffer zone is
large enough. But because the intervention must be intro-
duced in the buffer zone, the trial may be very expensive
if there are high per capita intervention costs. Since the
buffer zone is excluded from data collection, there are usu-
ally no data on whether the buffer is large enough to avoid
contamination effects, and an unexpectedly large contam-
ination leading to substantial bias in the estimate of effect
would go undetected. These considerations challenge the
rationale for fried egg designs. Recently, an alternative
was proposed to a simple fried egg design by either fully
including or excluding clusters from both the interven-
tion assignment and the analysis based on a criterium
of closeness between households to attain a better sepa-
ration between intervention and control arms [13]. This
approach leads to smaller trials and a conventional analy-
sis can be carried out, but, depending on the proximity of
clusters, is very computationally expensive and informa-
tion on the contamination range is still needed to design
such a trial.

There are reasons why contamination effects should
be measured [13-15]. Evidence on contamination effects
supports inference about indirect effects of the inter-
vention, thus analyses of contamination in CRTs of
insecticide-treated nets (ITNs) against malaria [16-18]
fed into the rationale for massive distribution of the nets
across Africa. In the largest trial in Asembo, Kenya [18],
significant protective effects of ITNs were found for dis-
tances of up to 300 m from cluster boundaries, while on
the coast effects persisted for distances of up to 1.5km
[17]. In these analyses, a linear model was extended to
include a term of the distance to the nearest discordant
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observation. Nevertheless, it is not possible to obtain a
closed-form range that specifies the maximal measurable
extent of contamination from a linear model. Methods
that jointly estimate contamination effects and adjust the
estimate of effectiveness accordingly are needed. Neither
the maximum distance that mosquitoes can fly, nor the
distance over which contamination effects can be mea-
sured, necessarily equates with the distance over which
contamination between trial arms is statistically relevant,
and if contamination only biases the intervention effects
over short distances then clusters could be smaller. This
could lead to more cost-efficient, smaller trials while
adding a new outcome measure to the analysis of CRTs.

This work proposes an approach for simultaneously
estimating the intervention effectiveness and the contam-
ination range, defined as the extent of measurable con-
tamination across the intervention boundaries in CRTs
of malaria interventions. Simulations of CRTs of malaria
interventions targeting mosquito densities and measur-
ing prevalence as the outcome, for example with a rapid
diagnostic test (RDT), were used to assess the model
performance. Simulated mosquito movement leads to cor-
relations between households and hence to contamina-
tion between intervention arms. The degree of mosquito
movement, intervention efficacy, numbers of clusters,
households per cluster, and the pattern of spatial cluster-
ing in both the human and vector populations rates were
varied. A reanalysis of a CRT for assessing the effects of
ITNs on child mortality in the Kassena-Nankana district
in northern Ghana (Navrongo trial) with the proposed
method illustrates the findings [16, 19].

Methods

Simulation of CRTs with contaminated intervention effects
The simulations of cluster randomized trials entailed gen-
erating simulated human populations at the household
level, assigning disease distribution in the absence of inter-
vention and implementation of intervention effects as
follows:

Human populations and disease distribution in the absence
of intervention

To approximate patterns of heterogeneous human disper-
sion, simulated human populations living in N households
on a domain of  x n km? were generated via a (modified)
Thomas cluster process [20] (Table 1). This algorithm gen-
erates a uniform Poisson point process of parent points
with intensity oy, the cluster centers, and then replaces
each parent point with a bivariate normally distributed
cluster of offspring points, the households, with a mean
number of points per cluster oy and a standard deviation
of random displacement of a point from its parent «3. This
algorithm is implemented in the R-package spatstat [21]
via the function rThomas.
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Table 1 Summary of the parameters used to generate the data sets
Levels Values
Fixed parameters used to generate the data sets
N Number of households in trial 2500
n Domain size 5km
o, oy, a3 Parameters for the Thomas process [21] 4,50, 0.25 km
& Index households and bandwidth for the KDE 200, 0.5 km
1, 0 Scaling of G's 0.2, 06
Varying parameters used to generate the data sets
Es Efficacy 2 02,04
o Standard deviation 5 0.042, 0.106, 0.170, 0.234, 0.298 km
0= 1A64ﬁa = Contamination range 0.10, 0.25, 040, 0.55, 0.70 km
c Number of clusters 20, 25, 30, 35
h Households per cluster 30, 40, 50, 60, 70
c&h Only combinations with 0.6N < 2hc < N households 8

Seed, sampled out of [ 1, 100 000] with seed(-1)

100

The simulated transmission potential was a smooth
function in space with local maxima at a simple random
sample of £ index households. Each household j with coor-
dinates x; and y; was assigned a local infection rate or
vectorial capacity Cj, represented as a function of its loca-
tion (see upper left part of Fig. 1), generated as a sum of
bivariate normal kernels centered on the index households
with a bandwidth 7 and scaled to lie in [ 1, &3].

Mosquito movement was simulated by further smooth-
ing these infection rates C; via a simple diffusion process
[22]. The acquisition of infection from mosquitoes at each
location is then proportional to C;. In the absence of inter-
vention, these infections are distributed to other locations
i proportionately to a bivariate normal kernel, where

2
g” 0
Z‘_< 0 02)

is the diagonal covariance matrix and o is the standard
deviation of the distance moved by mosquitoes during
the extrinsic cycle of the parasite, i.e., the time it takes
for a malaria parasite to become transmissible. Equiva-
lently, the numbers of infections distributed to house j
from house i is a Gaussian function of distance between
the houses,

Jiej =fxi — x5 —y)
( (xi — %)% + (y; —yj)z)
exp [—

202

= j—i'

T 2no?

This two-dimensional function results in a total dis-
persion of infections quantifiable by the trace of X,
that is 202. For each household J, this means that 95%
of the dispersion of infections happens within a radius
0:=®"1(0.95) x +/202km where &~ L(p) denotes the

quantile function of a standard normal distribution with
p €[0,1]. Hereafter, 6 is called the contamination range
that quantifies the significant dispersion of infections (and
hence the mosquito movement) in one direction.

The exposure to infection at location j in the absence of
intervention is thus

fisi
Zj0i= Z <Ciﬁf1]>k>’

i

where the normalizing term ), f;_ is required to ensure
that the total vectorial capacity distributed from house-
hold j over all destination houses sums to C;. The expected
prevalence in household j in the absence of intervention,
pj0, is scaled so that the mean of pjo corresponds to a
pre-defined value, po. i.e.

o N
Pj,0'=po 3 2ko Zj,0-

Determination of clusters and assignment of intervention
effects
The locations were grouped into ¢ clusters per arm, each
consisting of /1 households, by defining an efficient path
through them with a heuristic algorithm for the traveling
salesman problem (TSP) using the TSP package [23] in R,
as proposed by Silkey et al. [24] for a trial of mosquito
traps in Kenya [25], the SolarMal trial. Equal numbers of
households were then allocated to each cluster along the
derived path and a simple random sample of half the clus-
ters was assigned to each arm of the trial (see upper right
part of Fig. 1).

The presence of an intervention acting at source house-
hold j reduces the total number of infections acquired
from mosquitoes in that household by some efficacy E; so
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Fig. 1 Trial simulation and intervention assignment, visualizing the assigned initial malaria prevalence to a distribution of households (upper left), the
division of the households into clusters based on a travelling salesman algorithm together with the cluster assignment (upper right), the assigned
effectiveness varying at the cluster boundaries due to the mosquito movement (lower left), and the resulting expected prevalence (lower right). The
parameters used to generate this data set can be found in Table 1, with the varying parameters chosen as follows: households were assigned to 50
clusters, each consisting of 50 households. The intervention was assumed to be 40% effective and the assigned contamination range was 0.4 km

that z;1, the exposure to infection of household j in the
presence of the intervention, is

Zr=Y (CiZJZJ;—k 1- Ein)>,

i
where the indicator function x; takes the value 1 if house-
hold i is intervened, and the value O if it is in the control
arm (see lower left part of Fig. 1). The expected prevalence
in household j in the presence of intervention (using the
same scale factor as for p; ) is then

_ N
Pj1'=Po=—""%.1
Zk Zk,0

as shown in the lower right part of Fig. 1. For each house-
hold in the trial population, a single sample was drawn
from a Bernoulli distribution with probability p;, such
that

_J1 with probability pj1,
"= 1 0 with probability 1 — p; 1,

representing a malaria prevalence survey testing one per-
son per household with an RDT for simplicity. This could
easily be extended to more individuals per household by
including another level of clustering in the Thomas cluster
process.
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Trial parameterization

The parameters of the simulation study were chosen to
resemble a trial of mosquito traps in Kenya, the Solar-
Mal trial [24, 25]. In this trial, clusters were assigned with
a TSP and hence there were households within the con-
tamination range spanning the cluster boundaries. In the
upper part of Table 1, all fixed parameters of the trial sim-
ulation are listed. A domain of n x n, where n = 5km, was
chosen. The three parameters required for the Thomas
cluster process were chosen to be «; =4, o =50 and a3 =
0.25 km, resulting in an expected number of 5000 house-
holds per realization. Of these households, N = 2500
were chosen to represent the trial population (to have a
constant trial population over different simulations). For
the kernel density estimation (KDE) of a subsample of the
households, & = 200 households were randomly chosen
with a bandwidth of # = 0.5km for the Gaussian kernel.
The resulting pattern was then scaled to lay in between 0.2
and 0.6 for the initial prevalence.

In addition to the fixed parameters, four parameters of
interest were varied, influenced by the values chosen or
calculated for the SolarMal trial: the efficacy E; (20% and
40%); the standard deviation of the Gaussian functions
o, resulting in a contamination range 6 = 1.64+/202 km
(6 =0.1,0.25,0.4,0.55, 0.7 km); five levels of cluster size for
h (30, 40, 50, 60, 70 households per cluster); four levels
of ¢ (20, 25, 30, 35 clusters per arm), and of these 20
configurations of /1 and ¢ only the ones with 0.6N <2hc <N
were included to keep the number of observations sta-
ble (8 levels, (c,h) = (20,40), (20,50), (20,60), (25,40),
(25,50), (30, 30), (30,40), (35,30)). The theoretical intra-
cluster correlation coefficient (ICC), a measure of varia-
tion of the outcome within clusters that is usually obtained
from previous studies, was calculated for each data set,
resulting in a mean ICC of 0.0021. This leads to an ade-
quately powered study for an efficacy of 20% and an
overpowered study for an efficacy of 40%, based on sam-
ple size calculations for malaria prevalence [7, 26, 27]. One
hundred replicate data sets were produced using differ-
ent seeds (and hence different patterns of households and
infections) for each of the 2 x 5 x 8 parameter configura-
tions. Following guidelines on simulation studies [28, 29],
it was calculated that 100 replicate data sets were suffi-
cient since initial simulation showed that the variance of
the main parameter of interest, E; is very low, together
with high accuracy for moderate 6 for the sigmoid ran-
dom effects model introduced below. All fixed and varying
parameters can be found in Table 1.

Analysis of intervention effects in CRTs

Conventional linear analysis

The simplest analysis of a CRT of an intervention target-
ing mosquito densities and measuring malaria prevalence
is a calculation of the risk ratio comparing prevalence in
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the two trial arms based on cluster level summaries. This
leads to an estimate E, of effectiveness as

Es =1- {971;
pc
where pc is the proportion infected in the control arm
and p; the proportion infected in the intervention arm.
The more mosquito movement is introduced, the more
the estimate Es is biased towards the mean between inter-
vention and control arms as it does not adjust for the
contamination.

Intervention estimates based on individual-level data
and allowing for clustering can be obtained using general-
ized linear mixed effects models (GLMMSs) with the trial
arm as the dependent variable and a logistic link func-
tion. However, in the special case of binary data, fitting the
logistic regression random effect models using Gaussian
quadrature may not always provide an adequate model fit
due to the failure of the numerical quadrature invoked.
If this is the case, it is recommended in the literature to
then fit the model with generalized estimating equations
(GEEs) [30, p. 139; 31] and an exchangeable correlation
structure [7, p. 220]. The estimated effectiveness E, is
obtained as above, by comparing the model outputs pc
and py. It is possible to extend these linear models with a
term of the straight-line distance to the nearest discordant
observation or a term of the density of households within
a range that receive the intervention [4, 17, 18]. However,
the contribution of each estimated coefficient remains
linear and it is not possible to obtain a closed-form con-
tamination range that specifies the maximal measurable
extent of contamination from a linear model. It is also not
possible to obtain this information from a model with a
spatially structured random effect [4].

For malaria, interventions such as ITNs or indoor resid-
ual spraying are usually allocated to a household. The
endpoint is then either measured in all residents of an area
(as in the SolarMal trial [25]) or in a subgroup, normally
children (as in the Navrongo trial [19]). If there is more
than one observation per household, clustering within the
household should also be allowed for in the analysis. If
the trial outcome is malaria incidence instead of preva-
lence, the effectiveness can be calculated via a rate ratio
including the time at risk for each group. Individual-level
analysis can then use a logarithmic link function and an
offset for the time at risk.

Proposal of a nonlinear analysis allowing for contamination

If an intervention lowers mosquito densities in interven-
tion clusters, the intervention effects are contaminated
between trial arms due to mosquito movement. This con-
tamination depends on the distance of a household to
the nearest discordant household and is expected to fol-
low a symmetrical smooth gradient in the boundary area
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between intervention and control clusters. Let A;; denote
the distance of the jth household in the ith cluster to the
nearest household in the other arm, endowed with a neg-
ative sign for the households in the control arm and a
positive sign for households in the intervention arm (here-
after called nearest discordant household). This smooth
gradient of intervention effectiveness across arms can
then be modeled by a nonlinear sigmoidal function of A,
governed by three parameters, 8 and B3, determining its
position and height, and a parameter of steepness (growth
rate) B3. A variety of functions can be used to model this
sigmoidal shape, the most natural choice being the sig-
moid or logistic function (hereafter called sigmoid model
and abbreviated with S):

N1 P2 )

O S T Wl
It is assumed that mosquito densities are proportional to
the number of acquired infections, such that the analysis
can be carried out with data on malaria prevalence. The
function g~! hence denotes a logit link function, adjusting
S for binary outcome data. This model formulation can
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easily be extended for malaria incidence by using a log link
function g~! with a Poisson error function and an offset
for the time at risk, and other functions than S are also
possible.

The prevalences in the intervention and control arm
are then defined as pc = ¢~ (1), pr = ¢ (b1 + B2)
and the resulting effectiveness is E, =1-— pi/pbc. The
parameter f3 can be transformed to a measure of con-
tamination range in km, the distance over which the
estimate of effectiveness is measurably biased. This is
defined here as the value of A;; where S attains 95% of
its growth, i.e. S(Ay) = g Y(B1 + 0.958,). Solving this
for A results in an interpretable contamination range of
6 = p3'10g(0.95/0.05) = 2.9448; . An illustration of
the sigmoid function as well as how it fits the expected
prevalence of an example data set can be found in Fig. 2.

This sigmoid model can also be extended to allow for
within-cluster correlation. One way to include a random
effect for the clustering of the households is provided by
Bayesian hierarchical models using Markov chain Monte
Carlo (MCMC). A random effect B;; is assigned to each
cluster, with the random effects centered on the expected

Sigmoid model fit to the example data
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Fig. 2 lllustration of the sigmoid model function for an example data set of the subsequently described simulation study. Households are arranged
based on their distance to the nearest discordant household stratified by intervention status on the x-axis (Aj) and the expected prevalence is
shown on the y-axis. The black line indicates the model fit and the gray rectangle the contamination range in both arms. The model is fitted to the
same data set as is used in Fig. 1, the detailed parameters are listed there. The patterns in the expected prevalence (such as the approximately linear
grouping in the control arm with low expected prevalence) arise from the location of households
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prevalence in the control arm on a logit scale. For malaria
prevalence, the outcome Yj; of the jth household in the ith
cluster can then be described as follows:

Y;; ~ Binomial(p;),

B2
1+ exp(—B3A;)’
B1; ~ Normal(u, 7).

logit(p;) = B1,i +

Again, for malaria incidence, a log link function and an
offset for the time at risk must be used. The other param-
eters B9, B3, 1 and T are assigned non-informative pri-
ors. Hereafter, this model will be called sigmoid random
effects model, abbreviated with Sgg.

Opposed to a conventional, linear analysis ignoring con-
tamination, zones where contamination is likely have to be
included in a sigmoid analysis. The precision and accuracy
of the estimate of effectiveness ES and the contamina-
tion range # not only depend on the size and number of
clusters but also on the geographical size relative to the
contamination range, the proximity of clusters in oppos-
ing arms and on the settlement distribution. This can
be captured by considering the percentage of households
unaffected by the contamination range 6 across the inter-
vention boundary, namely the households whose distance
to the discordant arm is greater than @, hereafter called
percentage of households in core, denoted by w. To deter-
mine the premises under which a sigmoid analysis, either
with S or Sgg, yields precise and accurate estimates,
the percentage of households in core w will be used. A
summary of all parameters introduced is listed in Table 2.

Table 2 Summary of the important parameters and
abbreviations defined

E, b1, e Effectiveness and prevalences in the intervention and
control arm (ignoring contamination)

Aj Distance of jth household in the jth cluster to nearest
discordant household

S Sigmoid model (allowing for contamination)

Sre Sigmoid random effects model (allowing for
contamination and including random effects)

B, B2, B3 Parameters for S and Sgg, describing the position,
height and steepness of the function

E, b1 bc Effectiveness and prevalences in the intervention and
control arm
for S or Sge (allowing for contamination)

2 Estimated contamination range from S or Sgr

n, T Hyperparameters for the Bayesian hierarchical model
Ske

w Percentage of households in core, that is households

whose distance to the discordant arm is greater than

6 (ignoring assignment to arms)
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Guide for the implementation in R

A trial can be analyzed with a sigmoid random effects
model Sgg following the procedure outlined in Table 3.
The R code as well as simulated datasets can be found
in the additional files 1. As input, data on the trial is
needed, along with some technical parameters to fit the
MCMC model. The output is the estimated effectiveness
and contamination range, with their 95% credible inter-
vals (95%CI). In the first step, the distance to the nearest
discordant household is calculated for each household,
households in the control arm are additionally endowed
with a minus sign. In the second step, the model is imple-
mented as a Bayesian hierarchical model using MCMC,
formulated in BUGS (Bayesian inference Using Gibbs
Sampling) and fitted with JAGS [32] (Just Another Gibbs
Sampler). The parameter B3 is constrained for the result-
ing contamination range to be interpretable, because 6
is calculated by taking the inverse of S3. The model is
then fitted (third step) and the parameters are trans-
formed (fourth step) according to the chosen link func-
tion, to be interpretable. The back transformation for S3
is independent of the link function, it holds that § =
10g(0.95/0.05)/33_1, as discussed above.

Both GEE and GLMMs are easily implemented in R with
the packages geepack [33] and Ime4 [34] for instance. The
function S(Ay) can be fitted to prevalence data at the
household level with a maximum likelihood method for
Bernoulli data, assuming that households are independent
of each other. The optimization can then be performed
with a genetic algorithm (GA package [35]).

Analysis of simulations

Each data set was analyzed by the following: analysis
allowing for within-cluster correlation (GEE), sigmoid
model (S), and sigmoid model including a random effect
(SrE). For each of the 2 x 5 x 8 parameter configurations,
the performance of the different models was assessed in
terms of [28]: the relative bias with respect to the true
value of the parameter of interest; the empirical stan-
dard error, that is the standard error of the parameter of

Table 3 Four steps to fit a sigmoid random effects model Sge

using MCMC

Input: Geolocations of households; cluster and intervention
assignment of households; trial outcome of interest
(malaria prevalence or incidence); technical
parameters for the MCMC

Output: Estimated effectiveness and contamination range
with 95%Cl

1: Calculate distance to the nearest discordant
household

2: Set up the sigmoid random effects model in JAGS

3 Fit the sigmoid random effects model

4: Transform the model output for interpretation
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interest; the average width of the 95% confidence intervals;
and the coverage probability, the proportion of the 95%CI
that contain the true value of the parameter of interest.
The first two performance measures are on the parame-
ter of interest itself, measuring its accuracy and precision
across replicate data sets, the third and fourth are on the
95%CI around the parameter of interest, quantifying the
precision and accuracy of the 95%CI. A summary with the
corresponding formulae can be found in Table 4.

The 95%CI for the GEE and S analyses were calculated
by parametric bootstrapping [36], because this method is
very generalizable (R package boot [37]). This step was
repeated R = 100 times, leading to 10, 000 resamples for
each of the parameter configurations. For the fitting of S,
the parameter region for the genetic algorithm was cho-
sen such that 81, B €[0,1] and B3 > 0. For the JAGS
model, the 95% credible intervals were obtained from the
2.5 and 97.5 quantiles. Uninformative priors were cho-
sen for B; and B2 and a mildly informative prior for 3
to constrain the resulting contamination range to be in
[0,1.5] km. All simulations were performed at sciCORE
scientific computing core facility at the University of Basel
under R version 3.6.0 [38].

Results of the simulation study

The estimation of the two outcome parameters E =1
— p1/pc and @ for the sigmoid models are evaluated by
four performance measures (relBias, EmpSE, Width, CP)
in terms of the four parameters that were varied (Es, 6, ¢, /1)
and compared against conventional methods for analysis.
Both a GLMM and GEE showed very similar results and
had acceptable model fit. However, a mixed effects model
took slightly longer to fit. Simple cluster summaries also
resulted in very similar results to a GEE or GLMM. Hence,
only the results for a GEE analysis are used as comparison.
This section is divided into three parts: first an evaluation
of the simulations for the parameters Es and 6, followed
by the evaluation for the parameters determining cluster
size and number of households per cluster, ¢ and 4. Each
of these two parts is further divided based on the differ-
ent performance measurements. The third part is on the
results in terms of the percentage of households in core, w,
and the difference between a GEE and a sigmoid analysis.

Table 4 Evaluation criteria for parameter estimations across
replicate data sets. ® € R denotes the true value of the
parameter of interest, ® € R™ the parameter estimations for the
m replicate data sets

Evaluation criteria Abbreviation  Formula

Relative bias relBias (E[6]-1)/0

Empirical standard error ~ EmpSE Var[ @]172

Width of 95%Cl Width Average width of 95%Cl
Coverage probability cp Proportion of 95%Cl that

contained ®
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Varying the efficacy Es and the contamination range 6

The results in this paragraph are averaged over all values
of the number of clusters ¢ and the number of households
per cluster /.

Relative bias and empirical standard error

The relative bias and empirical standard error of the
model fits are depicted in Fig. 3. As the assigned con-
tamination range 0 increases, the effectiveness estimate of
the GEE is biased towards zero. Results are similar across
different levels of assigned efficacy Es. The two sigmoid
models also show greater bias towards zero with increas-
ing contamination, but less so than with the GEE model.
A similar pattern can be seen for the estimated contam-
ination range 6 for S, with greater bias towards zero as
0 increases. In contrast, the Sre model estimates a con-
stant contamination range regardless of the value of 6, but
is always substantially more biased towards zero than for
S. The empirical standard errors show the exact oppo-
site trends. For both parameter estimations, the empirical
standard error increases with greater contamination. The
GEE analysis has the lowest variance for the estimated
effectiveness, and the S model the highest. In conclusion,
a GEE analysis shows lower accuracy but higher precision
than the sigmoid models, S shows high accuracy together
with low precision and the Sy is in between.

Width of 95%Cl and coverage probability

The coverage probability and the width of the 95%CI are
highly correlated: a desirable result would be a narrow 95%CI
together with a high coverage probability. The results are
depicted in Table 5. GEE always has narrow 95%CI but
shows a very bad coverage probability for increasing 6.
The sigmoid models have much better coverage proba-
bilities but wider confidence intervals, with the random
effect model yielding even wider confidence intervals, as
was expected because S does not account for the cluster-
ing, leading to incorrectly high precision. For increasing
0, the width of the confidence intervals for the sigmoid
models increases and the coverage probability decreases.
This decrease in coverage probability is higher for a higher
assigned efficacy E;. The width of the confidence intervals,
however, is not altered by this parameter.

Varying the number of clusters c and the number of
households in each cluster h

The results in this paragraph are averaged over all values
of efficacy E; and contamination range 6.

Relative bias and empirical standard error

The relative bias and empirical standard error of the
model fits are visualized in Fig. 4. All three models are
quite robust with respect to the different variations of ¢
and /. Again, as noted above, a GEE has the lowest accu-
racy and highest precision, while S shows the opposite.
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Relative bias for estimated effectiveness
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Fig. 3 Relative bias (upper plots) and empirical standard error (lower plots) for model fits. The graphs on the left illustrate the errors for the
parameter estimation E; for each of the three models and the graphs on the right for the contamination range 6 that only exists for the sigmoid
models S and Sge. Depicted on the x-axis are 10 different levels of parameter variation for £ and 0

Table 5 Coverage probability and the width of the confidence
intervals for the two parameters of interest, £ and 6 (10 levels)

GEE S Sge
EE 0 E 6 ] E )
02 01 82 - 85 100 9 100  CP(%)
018 - 020 030 027 030  Width
025 70 - 88 100 94 100
018 - 027 062 030 077
0.4 52 - 91 100 93 100
0.19 - 033 0.95 033 1.19
0.55 42 - 90 100 88 100
0.19 - 0.39 127 0.34 1.59
07 34 - 9% 100 84 100
020 - 046 161 035 199
04 0.1 80 - 88 100 9% 100
015 - 018 022 023 030
0.25 37 - 90 100 94 100
0.17 - 0.25 045 0.29 0.78
04 M - 90 99 85 100
0.18 - 0.30 0.70 0.32 118
055 2 - ®» 100 71 100
019 - 036 098 033 154
0.7 0 - 91 99 54 100
020 - 042 129 035 191

For all models, the empirical standard error is almost
constant for both estimated parameters.

Width of 95%Cl and coverage probability

The width of the confidence intervals and the coverage
probability yield no new insights; the results are depicted
in Table 6. Again, the sigmoid models have a very high
coverage probability whereas this is very low in GEE.
Sre has wider credible intervals than S, with comparable
coverage probability.

Comparison between the analyses based on the
percentage of households in core

The percentage of households in core, w, is the key indica-
tor for determining how small clusters can be with respect
to the contamination range 6 for the sigmoid models. This
measurement does not differentiate between households
in the intervention or control arm, but if an equal num-
ber of same size clusters are allocated to both arms, it is
likely that there is a certain balance. For each of the sim-
ulations, w was calculated, and the relative bias together
with the width of the 95%CI was plotted with respect to w;
see Fig. 5. This figure displays the same data as described
in Figs. 3 and 4, but with respect to . From the graphs
displaying the relative bias and width of the 95%ClI for the
estimated effectiveness ES, it becomes clear that at =~ 20%
of households in core, the dynamics of the curves change.
In all three models, there is considerably more bias mov-
ing towards less households in core. For a GEE analysis, it
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Relative bias for estimated effectiveness
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Fig. 4 Relative bias (upper plots) and empirical standard error (lower plots) for models fits when the parameters ¢ (number of clusters in one arm,
upper x-axis) and h (households per cluster, lower x-axis) are varied. The graphs on the left illustrate these errors for the parameter estimation £; and

is clearly beneficial to have w = 100%, all households in
core. For a sigmoid analysis (with S or Sgg), this is not the
case. For the estimated effectiveness, if around 50% of the
households are in core, the relative bias is approximately
zero and the width of the confidence intervals is still small

Table 6 Coverage probability and the width of the confidence
intervals for the two parameters of interest, ¢ and h (8 levels)

GEE S Sge
c h K 0 K ] E 0
20 40 59 - 89 100 91 100 CP (%)
0.20 - 0.33 0.79 0.34 1.01 Width
50 48 - 87 100 87 100
0.19 - 0.33 092 033 1.21
60 40 - 88 100 88 100
0.18 - 0.29 0.81 0.31 117
25 40 41 - 86 99 88 100
0.17 - 0.27 0.73 0.30 1.1
50 30 - 86 100 81 100
0.19 - 0.35 0.95 032 1.30
30 30 48 - 91 100 93 100
0.16 - 0.27 0.75 0.28 1.01
40 47 - 93 100 86 100
0.19 - 0.35 0.90 0.31 1.19
35 30 32 - 90 100 80 100
0.19 - 033 0.83 0.31 1.16

compared to the width if fewer households were in core.
The relative bias for the estimated contamination range
6 is very flat and shows a nonlinear behavior. The width
of the 95%CI increases the fewer households there are in
core, and once less than w ~ 20%, the growth accelerates
substantially.

Example: the Navrongo trial of ITNs

Study design

This large-scale CRT was conducted between July 1993
and June 1995 in the Kassena-Nankana districts of north-
ern Ghana with the goal to assess the effect of ITNs
compared to no ITNs on child mortality. The area was
predominantly rural with people living in dispersed settle-
ments, arranged in compounds. The study was a parallel
CRT with 96 geographically contiguous clusters and an
average of 120 compounds per cluster. Where possible,
small paths or roads were used to delineate the clusters,
but in most cases, the cluster boundaries did not corre-
spond to natural barriers. The intervention of permethrin
impregnated bed nets was allocated to 48 randomly cho-
sen clusters and 31, 000 ITNs were provided to interven-
tion participants. A full description of the study design is
reported elsewhere [19].

The outcome was all-cause mortality in children aged 6
months to 4 years, reported as a standardized mortality
ratio (SMR). All children in the study area were included.
The expected number of deaths for each cluster was com-
puted by applying age-specific death rates derived from
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the pre-intervention population to the post-intervention
time at risk and was treated as an offset for the regres-
sion models [16]. Data captured included the geographical
coordinates of the household and the distance from each
household to the nearest discordant household.

Published trial results

A total of 857 deaths occurred among children in the
trial over the 2 years of follow-up. The original analy-
sis found a 17% reduction in mortality (rate ratio (RR)
comparing SMRs of 0.83, 95%CI [ 0.69, 1.00]) [19]. Subse-
quently, Binka et al. [16] graphed the ITN effect in relation
to distance from the boundary. A regression approach
incorporating this distance indicated that among children
from clusters randomized to the control arm, the mor-
tality risk increased by 6.7% with each additional shift of
100 m away from the nearest household in the interven-
tion arm (95%CI [1.8,11.4] %) [16]. Notably, due to the
considerable spatial information available, the estimated
confidence intervals (which did not allow for the spatial
auto-correlation in the data) around the regression lines
in this analysis were narrow, even though the overall esti-
mate of effectiveness was imprecise [19]. This data set
was recently reanalyzed [39] using multilevel models and
geostatistical approaches to allow for spatial correlations
and contamination effects. Including the distance to the
nearest discordant household as a fixed effect in the mul-
tilevel model indicated an increase of the SMR with every
additional 100 m away from the intervention arm of 1.7%

(95% credible interval [ 0.6,2.6] %) [39]. The main conclu-
sion of the reanalysis was that, despite the evidence of a
spatial contamination effect, the primary conclusions of
the trial remain unaffected. The increase of the SMR with
every additional 100 m was estimated to be less than was
reported before, but the confidence intervals were simi-
larly narrow. The confidence intervals around the main
effect remained wide.

Methods

The Navrongo data was reanalyzed with the sigmoid mod-
els S and Sgpr and the results were reported in terms of
mortality incidence rates. Hence, a log link function g~!
with a Poisson error function was used. As in the origi-
nal analysis, the expected number of deaths was treated
as an offset. For comparison with the original spatial
analysis, the increase in mortality rate with each addi-
tional 100 m away from the boundary was calculated by
comparing the SMRs at the required distances. For fit-
ting the JAGS models, the number of iterations was set
at 20,000 with a burn-in period of 10,000 and uninfor-
mative priors were used for §; and B, together with a
mildly informative prior for f3, as for the simulation study.
For fitting the sigmoid models without a random effect,
R was set to 1000, and the valid parameter region for
the search of the genetic algorithm for the contamina-
tion range was chosen to be [0.05,0.6] km. An extended
reanalysis of the Navrongo data can be found in the
appendix.
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Table 7 Results for the parameter estimations for the Navrongo data for sigmoid models S and Sgg, compared to the results of the
original analysis [16] and a previous reanalysis [39]. In brackets, the 95%Cl are given. The contamination range only exists for S and Sgr.
The last column indicates the increase in mortality after 100 m away from the nearest discordant household. For Sge this is nonlinear,

hence the increase after 100 m and 200 m is reported

Effectiveness

Contamination range

Increase mortality shift 100m; 200m

Spe 16.6%, [2.2, 30.71%
S 19.0%, [7.7, 28.11%
Original [16] 17.0%, 0.0, 31.0)% -

Reanalysis [39] 18.0%, [5.0, 30.0] % -

0.198 km, [0.092, 1.088] km

5.6%, [0.2,15.5]%; 2.4%,[0.1,1.4] %

0.170km, [0.051, 0.495] km -

6.7%,[1.8,11.4]1%
1.7%, [0.6,2.6] %

Results

Bed nets were associated with a 16.6% and 19.0% reduc-
tion in all-cause mortality in children aged 6 months to 4
years for Sgr and S, the sigmoid models with and without
a random effect, respectively. As in the original analysis,
confidence intervals were wide. Contamination across the
boundary was found to be around 0.2 km per arm, again
with wide confidence intervals, especially for Sgg. The
parameter estimations for Sgr translate to an increase in
mortality from the intervention boundary of 5.6%, 95%CI
[0.2,15.5]% up to 100m and 2.4%, 95%CI [0.1,1.4] %
between 100m and 200m. After that, the increase is
very slow, since the contamination range is around 200 m.
Since the model is symmetrical, the same numbers also

hold for a decrease in mortality with each 100 m away
from the nearest household without a bed net. All the
estimates are displayed in Table 7. Figure 6 illustrates the
results for Sgg, analogous to Fig. 2.

Discussion

When contamination is anticipated in a cluster random-
ized trial of a malaria control intervention, a conventional
analysis would lead to a biased estimate of effectiveness.
To avoid this, a fried egg design is often recommended,
attempting to separate the trial arms with buffer zones
around each cluster [7]. This allows a conventional anal-
ysis, for instance with GEEs or GLMM, to be carried
out, but leads to trials of much bigger geographical size

Effect of permethrin impregnated bed nets
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Fig. 6 lllustration of the results for the sigmoid model Sge. The thick line indicates the fitted sigmoid curve, together with the confidence intervals.
On the x-axis, the distance to the nearest discordant household up to 1 km and on the y-axis, the standardized mortality ratio is plotted
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than would be needed based on sample size formulae
[26, 27]. Further, an estimate of the measurable contam-
ination range is needed to quantify the buffer zone, and
in the absence of suitable data this is typically based only
on expert opinion. The contamination between arms in a
cluster randomized trial contains information about the
intervention per se. An analysis that takes this informa-
tion into account as a trial outcome can lead to unbiased
estimates of effectiveness, even when a substantial part of
the data is affected by this contamination. This work pro-
poses such an analysis for CRTs where contamination of
intervention effects is introduced by mosquito movement
and a nonlinear model is used to quantify the range of
contamination across intervention arms.

The main strength of this approach lie in the adjustment
of the estimate of intervention effectiveness to account
for contamination and yielding a closed-form estimate for
the contamination range that can inform future analyses.
Obtaining such a simple closed-form estimate would not
be possible from a linear parametric or a nonparametric
approach. The sigmoidal shape functions make the model
nonlinear, complicating the analysis substantially. This
also implies that an interpretation of the coefficients is not
as straightforward as for a linear model and the contam-
ination range needs a back transformation. Furthermore,
the sigmoid function is symmetrical, which means that if
there was an asymmetrical contamination, such as a pro-
tective effect of an intervention on nearby non-users, but
no increase in risk for the intervention users associated
with being near the boundary, this would not be captured
with this proposed analysis. To capture this, an asymmet-
ric function with another parameter for the asymmetry
would be needed, further complicating the analysis and
interpretation.

The fitting of the random effects model was performed
with an MCMC approach, where the binary structure of
the outcome, representing a malaria prevalence survey,
can easily be treated. The inclusion of random effects
in a frequentist approach [40] with the R package nlme
[41] proved unreliable, because nlme does not allow for
binary outcome data structure. Representing the common
practice in the field, an exchangeable correlation structure
was chosen. For the Navrongo trial, a recent reanalysis
[39] tested the impact of different spatial correlations and
found minimal differences, supporting the choice of an
exchangeable correlation structure.

The simulation study indicated that different clus-
ter configurations (number of clusters and number of
households per cluster) only slightly influenced the per-
formance. This makes sense because rearrangement of
households based on their distance to the intervention
boundary does not take account of cluster assignment;
the overall number of households and their spatial distri-
bution relative to the boundary is more important. The
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results were not very sensitive to the assigned level of effi-
cacy and a low efficacy of 20% did not impose fitting prob-
lems. Mosquito movement and hence contamination was
simulated with varying widths of normal kernels centered
at the households. An increase in mosquito movement
biased the intervention effects towards the null in all of
the analyses, but the bias was less extreme for the sigmoid
functions.

It would be possible to extend the GEE model used for
comparison with a term of the straight-line distance to
the nearest discordant observation [4] and to include con-
tamination as a parameter that quantifies the increase in
effectiveness per distance unit away from the intervention
boundary, as it has been done in the original analysis of
the Navrongo trial [16]. In an initial analysis of the simula-
tion study using this approach, it was found that the main
parameter of effectiveness was not affected (results not
shown). Hence, only the more basic GEE model is used for
comparison to keep the focus of the simulation study on
the sigmoid models.

The results of the simulation study were obtained by
averaging over scenarios and varying parameters. This
should be kept in mind when interpreting these results.
Also, the variation arising due to a finite number of sim-
ulations that could be assessed by Monte Carlo standard
errors [29] was not addressed. More work is needed to
better understand the differences between linear models
incorporating contamination and nonlinear approaches
and to better determine the premises under which a sig-
moid model is suitable.

Since the performance of a sigmoid analysis, apart from
the parameters that were varied in the simulation study,
also depends on other factors such as geographical clus-
ter size, we explored the simulations with respect to the
percentage of households in core, i.e., households that are
unaffected by the contamination range across the bound-
aries, which is a scale-free parameter. Usually, parameter
configurations with a similar ratio between cluster size h
and contamination range led to similar values of the per-
centage of households in core. When more than ~ 50% of
the households are in core, the simulations indicated that
it is possible to estimate the effectiveness without bias,
irrespective of the cluster division.

Since Sgr adjusts for the clustering, it is certainly to be
preferred for primary analyses of efficacy over S, although
S vyields better results for estimating the contamination
range. Hence, these models are not a panacea for con-
tamination in CRTs. As validation, the information gained
from both models could be used to define buffer zones
post hoc. A range of different buffer zones could be
used, and the resulting estimates of effectiveness could be
compared to the sigmoid model to check how the esti-
mated contamination range relates to the size of buffer
needed to avoid bias. Furthermore, it would be desirable
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to assemble estimates from multiple previous field studies,
before an appropriate value of the contamination range
can be assumed for use in designing a new trial for any
specific site.

This analysis raises the question of how best to divide
populations into clusters. Many CRTs are designed with
individual villages as clusters, which, depending on the
settlement pattern, generally achieves spatial separation
of trial arms by ensuring that cluster boundaries pass
through unpopulated areas between villages. However,
this approach leads to heterogeneity between clusters and
varying cluster size (though a uniform number of house-
holds might be sampled in each cluster). If estimation
of the contamination function is considered desirable, it
may be important for some cluster boundaries to pass
through inhabited areas rather than avoiding them. This
makes it feasible to define clusters with equal numbers of
enrolled individuals, as was done in the simulation study.
It is attractive to use an algorithmic approach to clus-
ter assignment in a CRT, for instance using a travelling
salesman algorithm [24, 25] as we did in the simula-
tions. Further analysis would be needed to determine
whether this is optimal in terms of maximizing trial
efficiency.

A reanalysis of the Navrongo trial of the effect of ITNs
on child mortality in northern Ghana with the proposed
method yielded similar results to the original analysis [19].
For the sigmoid model Sgg, bed nets were associated with
a 16.6% reduction in all-cause mortality in children aged 6
months to 4 years (95%CI [ 2.2, 30.7] %) with a contamina-
tion range of 0.198 km per arm (95%CI [ 0.092, 1.088] km).
Given that the outcome was all-cause mortality in chil-
dren aged 6 months to 4 years and hence the data are
rather sparse, it is unsurprising that the credible intervals
for both the effectiveness and the contamination range
estimate are wide. The result for the contamination is
in line with what was found in a larger trial of ITNs in
Asembo, Kenya [18], where significant protective effects
of ITNs were found for distances of up to 300 m from
cluster boundaries. In the original spatial analysis of the
Navrongo data [16], an increase with each 100 m away
from the nearest household with a bed net was reported to
be 6.7% (and 1.7% for the spatial reanalysis, both with nar-
row confidence intervals). Since the sigmoid model Sgg is
nonlinear, the increase with each unit is not a constant.
The findings here of 5.6% increase in mortality for the
first 100 meters and then 2.4% increase from 100 — 200 m
are similar to the previously reported results of 6.7%. The
Navrongo trial had very large clusters and many house-
holds were unaffected by the estimated contamination
range. It can be seen in this example that even when the
contamination range is big enough to be estimable with
such methods, this need not make much difference to the
estimate of effectiveness.
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An extension of the analyses in this paper would be to
build on the results on the percentage of households in
core by transforming the distance to the boundary into a
measure of local coverage of the intervention and hence
estimating the effectiveness as a function of coverage.
This framework could also easily be extended to account
for another hierarchy of clustering at the household level
or to trial designs with repeated sampling of individuals
for either incidence or prevalence, using random effects
terms to account for individual variation in addition to
cluster effects. More estimates of the contamination range
from other field studies are needed to design further trials.
Guidelines for how to design CRTs for such an analysis as
well as reanalyzes of other CRTs are planned.

Conclusions

Contamination measures are themselves valuable trial
outcomes, providing information about the indirect
effects of the intervention, and calculation of quanti-
ties derived from them might have several motivations.
For some interventions, such as those intended to repel
mosquitoes, the extent of contamination directly relates
to the action of the intervention and will inform the
density at which deployment is required. For any interven-
tion, demonstration of significant contamination confirms
that there is effectiveness: it is not possible for contam-
ination to occur unless the two arms of the trial differ
in the outcome. Estimates of this contamination range
could be used to define buffer zones post hoc (using
pre-specified criteria). But—-more importantly—the possi-
bility of statistically adjusting for contamination suggests
not only that the size of buffer zones could be mini-
mized, but that they could be completely avoided, lead-
ing to smaller and more cost-efficient trials of malaria
interventions.

Appendix

Extension of the reanalysis for the Navrongo trial

The previous reanalysis [39] indicated that adjusting the
main outcome of mortality for a contamination effect did
not influence the results. At the same time, the confidence
intervals around the contamination effect were confirmed
to be narrow. It is hence assumed that clusters were cho-
sen to be so large that even a contamination range of
several hundred meters did not affect the main outcome,
i.e., the percentage of households in core was very high. As
shown above, for a sigmoid random effects analysis (Srr)
to result in precise and accurate estimates of effectiveness,
only around 50% of households need be in core. The trial
cannot be redone with smaller clusters (and hence ~ 50%
of households in core), but simulations can show whether
the estimate of effectiveness remains stable for a trial with
smaller clusters. For each cluster, a subset of households
far away from the discordant trial arm can be randomly
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excluded. This reduces the number of households per
cluster without violating the cluster boundaries. Because
only households far away from the discordant trial arm
are chosen for exclusion, the percentage of households,
o, decreases. This could be seen as the opposite of a
fried egg design, since in each cluster, households close to
a discordant household are kept. It is hypothesized that
a GEE analysis is more biased the more households in
core are excluded and a sigmoid model analysis remains
unaffected because the information of the contamination
range remains the same, although confidence intervals
will probably get wider.

If only households in core were eligible for exclusion,
the resulting cluster sizes would be imbalanced, since the
number of households in core in each cluster varies sig-
nificantly. Hence, households lying further away from the
nearest discordant household than the 20% quantile were
eligible for exclusion. Of these 80% of the households
in each cluster, a percentage g was randomly selected
and 0.8 households were randomly excluded. In total,
50 values for g were chosen and for each of those val-
ues, 50 replicate data sets were generated. The estimates
were bootstrap corrected for 100 resamples, for the JAGS
model the number of iterations was set to 2000 with a
burn-in period of 500.

For a contamination range of 0.198km, 82% of the
households were in core and hence unaffected by the esti-
mated contamination range. If only 50% of the households
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had been in core, the results for the sigmoid models
remain unaffected, but with slightly wider confidence
intervals. The result is displayed in Fig. 7. For the GEE
model, the estimated effectiveness decreases the more
households are excluded (and hence the fewer households
are in core) as expected. The estimated effectiveness for
the sigmoid models Sgr and S remains constant, even
when only &~ 50% of households lay in core, correspond-
ing to an exclusion of 64% of all households in the trial.
The width of the 95%CI around the estimated effective-
ness increases linearly for all three models, because fewer
households (and hence smaller clusters) leads to a loss of
power. This increase is slower for Sgg. The estimated con-
tamination range remains in the magnitude of 200 m, a
slight increase for both models is noted as w decreases.
The width of the 95%CI for the estimated contamination
range is constant for different w (but quite large for Sy,
around 1 km).

The conclusion that the Navrongo trial could have been
much smaller without the results being affected hence
holds. With only 36% of the original households included,
the same parameter estimations are attained with a sig-
moid random effects model, although the width of credi-
ble intervals increases. This underlines the findings from
the simulation study that clusters could be much smaller
in terms of number of households included and informa-
tion from households close to the boundary should not be
discarded.
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Fig. 7 Reanalysis of the Navrongo trial, where for each cluster, households far away from the intervention boundary were randomly excluded to vary
the percentage of households in core w. The estimated parameters (upper plots) and width of the 95%Cl (lower plots) for a GEE, S and Sgr analysis
in terms of the percentage of households in core are visualized
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