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Abstract

Background: Stepped-wedge designs (SWD) are increasingly used to evaluate the impact of changes to the process
of care within health care systems. However, to generate definitive evidence, a correct sample size calculation is
crucial to ensure such studies are properly powered. The seminal work of Hussey and Hughes (Contemp Clin Trials
28(2):182–91, 2004) provides an analytical formula for power calculations with normal outcomes using a linear model
and simple random effects. However, minimal development and evaluation have been done for power calculation
with non-normal outcomes on their natural scale (e.g., logit, log). For example, binary endpoints are common, and
logistic regression is the natural multilevel model for such clustered data.

Methods: We propose a power calculation formula for SWD with either normal or non-normal outcomes in the
context of generalized linear mixed models by adopting the Laplace approximation detailed in Breslow and Clayton (J
Am Stat Assoc 88(421):9–25, 1993) to obtain the covariance matrix of the estimated parameters.

Results: We compare the performance of our proposed method with simulation-based sample size calculation and
demonstrate its use on a study of patient-delivered partner therapy for STI treatment and a study that assesses the
impact of providing additional benchmark prevalence information in a radiologic imaging report. To facilitate
adoption of our methods we also provide a function embedded in the R package “swCRTdesign” for sample size and
power calculation for multilevel stepped-wedge designs.

Conclusions: Our method requires minimal computational power. Therefore, the proposed procedure facilitates
rapid dynamic updates of sample size calculations and can be used to explore a wide range of design options or
assumptions.
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Background
Great progress has been made in public health and med-
ical care during the past century through immunization,
food safety, improvements in maternal and infant health,
and advances in drugs, devices, and strategies to treat dis-
ease. However, continuing efforts to improve the quality
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and efficiency of care require rigorous evaluation to fur-
ther guide decision-making. To evaluate novel strategies
within health care delivery systems, cluster randomized
trials (CRT) represent a key experimental design that may
be used when individual randomization is not feasible due
to administrative, financial or ethical reasons [1, 2].
Stepped-wedge designs (SWD) are a type of contem-

porary and novel CRT that have been used to evaluate
new interventions and programs deployed in the context
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of routine implementation [3, 4]. A SWD is unique in that
it combines key elements of cluster-randomized designs
with a crossover component commonly used in longitu-
dinal designs. Specifically, in SWD, all clusters (typically)
start in the control group, cross over to the intervention
group at different time points, and stay on intervention
until the end of the trial. The time at which each clus-
ter starts the intervention is randomized. Either different
individuals (cross-sectional design) from each cluster may
be measured at different time points or the same individ-
uals may be repeatedly assessed (cohort design).
In the past 10 years, an increasing number of studies

have used the SWD in health-related research within a
broad range of domains, including HIV treatment, infec-
tion prevention, nutrition, asthma, cancer, and trauma.
Recent SWD trials have been conducted in various global
settings including America, Europe, Africa, Asia, and Aus-
tralia. Compared to a standard parallel design CRT, the
SWD is preferred in some circumstances due to practical,
ethical, or methodological concerns [5–7].
Linear mixed models and generalized linear mixed

models [8] are commonly used for the analysis of SWD
data. A linear mixed model (LMM) is a type of regres-
sion model that includes random effects in addition to the
standard fixed effects used in a linear model to account for
dependence among observations from the same cluster.
The use of random effects is a natural way to repre-
sent the heterogeneity among clusters under study and
these methods produce valid inference when assumptions
are satisfied. Generalized linear mixed models (GLMM)
extend the LMM framework to non-normal data and
non-identity links such as logistic regression for binary
outcomes or Poisson regression for count data.
The increasing adoption of the SWD necessitates the

development of flexible and valid sample size calcula-
tions. Hussey andHughes [9] provided analytical formulae
for power calculations based on repeated cross-sectional
samples using a weighted least squares approach. The
Hussey and Hughes [9] power calculations were based
on a linear mixed model with a random cluster effect
only. Woertman et al. [10] proposed a design effect that
accounts for the inflation caused by the within-cluster cor-
relation based on the Hussey and Hughes [9] formulation.
Hooper et al. [11] reviewed designs for cluster random-
ized trials with repeated cross-sections and included ran-
dom effects for time within clusters for stepped wedge
designs. Hooper et al. [12] introduced sample size cal-
culation for longitudinal CRTs including SWD, in which
they include random effects for time within clusters for
closed cohort designs. Hemming and Taljaard [13] sum-
marized the design effects for SWD and CRT and pro-
vided a unified approach for their sample size calculation.
Power calculations based on mixed models with random

intervention effects may also be important to consider
[14].
As an alternative to using the analytical expressions

based on weighted least squares or maximum likelihood,
Baio et al. [15] proposed simulation-based power calcu-
lations. The strategy is to specify a complete model that
represents the data generating procedure with flexible
choices for random effects and then calculate power using
data generated by the model coupled with the planned
primary analysis strategy. Simulationmethods are compu-
tationally intense yet totally flexible and may be used with
both cross-sectional and cohort study designs.
However, little research has been done on power cal-

culation for non-normal responses such as binary and
count outcomes when these are modeled on their natural
regression scale such as logit or log, respectively. Rather,
such data are commonly treated using linear model meth-
ods for the SWD which implicitly is either moment-based
or assumes approximately normally distributed data. As
a result, SWD power calculations for binary data are
typically conducted in terms of risk differences or rate dif-
ferences [11, 13]. However, it may be preferable to model
the outcomes on the natural and unconstrained scale
of interest particularly for the adoption of flexible mul-
tilevel models which can characterize multiple sources
of heterogeneity. In the presence of fixed time effects
(which are considered necessary for SWDs) or other fixed
effects, contrasts such as risk differences generally can-
not be translated to simple overall odds ratios associated
with intervention due to the change of model scale. Exist-
ing methods for non-normal outcomes are limited to
simulation-based power calculation strategies [15] and the
exact maximum likelihood-based power calculation strat-
egy [16]. Both of these approaches are computationally
intensive and inhibit the exploration of a wide range of
design configurations for a proposed study.
When the outcome is non-normal, a full maximum

likelihood analysis for a GLMM based on the marginal
distribution of the outcome in the observed data requires
numerical or stochastic integration for the calculation of
the log-likelihood. Breslow and Clayton [17] proposed a
rigorous approximate inference method based on penal-
ized quasi-likelihood (PQL). Dang et al. [18] use PQL
approximations to propose sample size and power cal-
culation based on GLMM with correlated binary out-
comes. Similarly, Kapur et al. [19] considered sample
size determination for longitudinal designs with binary
response data using a two-level mixed effect logistic
regression model. Amatya and Bhaumik [20] proposed a
general methodology for sample size determination with
hierarchical designs and their approach involves complex
expressions that have to be solved iteratively using esti-
mates of variance components. To facilitate the use of
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PQL-based sample size calculation in SWDs with non-
normal outcomes, we propose a sample size and power
calculation formula for SWDs with normal or non-normal
outcomes by simplifying the Laplace approximation of the
covariance matrix of the estimated parameter of inter-
est. The method is intuitive, requires minimal compu-
tational power, and allows for rapid dynamic updates of
sample size calculations when different parameters or
design options are of interest. To facilitate adoption of our
methods, we also provide a function embedded in the R
package “swCRTdesign” [21] for sample size and power
calculation for multilevel stepped wedge designs.
This paper is structured as follows. In “Method” section,

we introduce our proposed method and provide an
analytical formula for power/sample size calculation. In
“Results” section, we use simulation experiments to com-
pare the variance and power calculated by the proposed
method with those given by the computationally inten-
sive MLE-based method through repeated simulations. In
“Discussion” section, we apply the proposed method to
two studies, a public health patient-delivered partner ther-
apy study for STI treatment and prevention with one level
of clustering, and a health care delivery study with two lev-
els of clustering that assesses the impact of providing addi-
tional benchmark prevalence information with a spine
imaging report. Finally, we discuss the scope of application
of the proposed method in “Appendix” section.

Method
Denote the outcome for nj observations from a given clus-
ter j as Y nj×1

j = (Y1j, . . . ,Ynjj), the design matrix for fixed
effects as Xnj×p

j , the coefficient vector for the fixed effects
is denoted as β , random effects as bq×1

j with a design
matrix Znj×q

j , and g = h−1 as the link function. Suppose
the mean and variance of the outcome take the following
flexible GLMM form:

E
[
Y j | bj

] ≡ μ
bj
j = h

(
X jβ + Zjbj

) ≡ h
(
η
bj
j

)
,

Var[Yij | bj]= φaijv(μ
bj
ij ), (1)

where bj ∼ Normal(0,D), φ is a dispersion parameter, aij
is a known constant for each observation, and v() is a vari-
ance function. φ, aij, and v() depend on the distribution of
Y j (see Table 1). The outcomes are conditionally indepen-
dent given the random effects. We will assume that the pth
column ofX j corresponds to the intervention effect. Thus,
the parameter of interest is βp.
Typically, in a stepped-wedge design, the fixed effects

consist of (at least) fixed time effect(s) and a fixed inter-
vention effect. Random effects may consist of a ran-
dom intercept, a random time effect(s), and/or a random
intervention effect [14]. Additional random effects may

Table 1 Variance function values for selected distributions and
links ([22])

φ a v(μ) g(μ) g′(μ)

Normal σ 2 1 1 μ 1

Bernoulli 1 1 μ(1 − μ) log( μ
1−μ

) 1
μ(1−μ)

Poisson 1 1
mi

μ log(μ) 1
μ

Binomial 1 1
mi

μ(1 − μ) log( μ
1−μ

) 1
μ(1−μ)

*The 1
mi

indicates that the ith count is based onmi intervals or units; typically,mi = 1.

be included in a cohort design to further characterize
repeated measures on individuals within a cluster.

Variance approximation
Breslow and Clayton [17] use Laplace’s method of inte-
gral approximation for marginalizing over the random
effects in (1) to approximate the covariance matrix of the
estimated parameter β̂ by:

Var(β̂) =
(
XTV−1X

)−1
, (2)

where

V = Wb + ZDZT ,

and Wb denotes a diagonal matrix with entries wb
i =

φaiv
(
μb
i
) [
g′ (μb

i
)]2, which depend on random effects b.

Here X and Z are design matrices for the fixed effect
and the random effect for all observations across clus-
ters. Breslow and Clayton [17] refer to their procedure as
penalized quasi-likelihood or PQL. Note that PQL is an
estimation strategy that focuses primarily on the regres-
sion parameters and the variance components; however,
as part of the overall PQL approximation, individual ran-
dom effects estimates, b, are also available. To simplify
the power calculation procedure with specified regression
and variance component parameters, we propose the use
of (2) with b set to their prior mean/mode of 0, that is,
settingWb = W 0.
For cluster designs, assuming clusters are independent,

(2) may be rewritten as Var(β̂) =
(∑

j XT
j V

−1
j X j

)−1
,

where j is the index for cluster, and X j is a nj × p design
matrix for cluster j with nj observations. The terms on
the right-hand side of (2) are computed separately for
each cluster and the sum is over clusters. Our proposed
variance estimator is theoretically well-justified ([17]) but
relies on the essential PQL approximation and the plug-
in value for random effects. The PQL approximation is
exact when the outcome is normal with an identity link.
For non-linear outcomes that we consider, extensive sim-
ulation evaluation is conducted below to detail operating
properties of this strategy.
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Sample size and power calculation
For stepped-wedge clustered designs, the sample size is
a combination of the number of clusters, the number of
sequences, the number of time periods, and the number
of individuals per cluster period. Power can be calculated
given the sample size, or sample size may be computed
given power by satisfying the equation ([23]):

Power = �

⎛

⎜
⎝

|βp| − Z1− α
2

√
V0(β̂p)

√
Va(β̂p)

⎞

⎟
⎠ , (3)

where α is the (two-tailed) significance level, βp is the
intervention effect under the alternative hypothesis, and
V0

(
β̂p

)
and Va

(
β̂p

)
are the variances of the estimated

parameter under the null and alternative hypotheses,
respectively.

Results
Simulation
In this section we use simulation experiments to com-
pare the variance and power calculated by the proposed
method with those given by simulation-based variance
and power computations.

Simulation settings
We simulate binary outcomes with a Bernoulli distribu-
tion and a logit link since this scenario is biomedically
important and known to be a situation for which PQL
estimation may not perform well. We use a standard
cross-sectional SWD in which the number of sequences is
one less than the total number of time points. Specifically,
we generate data from a SWD with four time periods and
three sequences. For simplicity, each treatment sequence
is set to have the same number of clusters (see below),
and each cluster has the same number of individuals.
The methodology can be applied to general settings with
unequal number of clusters/individuals. We consider two
outcome models with different random effects. Outcome
Model I consists of a random intercept and a random
effect for the treatment at the cluster level. Outcome
Model II consists of a random intercept and a random
time effect at the cluster level. Fixed effects include time
effects and the treatment effect. Denote the number of
time periods as Nt . For cluster j, individual i, the data
generating model takes the following form:

logit
(
Pr

[
Yij = 1 | bj

]) = X ijβ + Zijbj,

where

X ij = (
1 Xtime,j Xtreatment,j

)
,β = (

β0 βtime βp
)
,

where Xtime,j is a Nt − 1 vector reparametrizing
time as dummy variables. For Outcome Model I,
Zij = (

1 Xtreatment,j
)
, bj = (

bcluster,j, btreatment,j
) ∼

Normal (0,D1), D1 is a diagonal matrix with elements
(σ 2

cluster , σ
2
treatment), assuming the two random effects

are uncorrelated (the proposed method could also be
implemented with correlated random effects). Similarly
for Outcome Model II, Zij =

(
1 X∗

time,j

)
, bj =

(
bcluster,j, btime,j

) ∼ Normal (0,D2), where X∗
time,j is a Nt

vector whose nth elements is 1 and the rest of the elements
are 0 where nt is the time of observation for individual i,
btime,j is a vector of length Nt , and D2 is a diagonal matrix
with elements

(
σ 2
cluster , σ

2
time

)
, assuming the two random

effects are uncorrelated.
Each simulated dataset is analyzed using a mixed model

regression to generate maximum likelihood (ML) esti-
mates (using function glmer() from “lme4” package). We
compute the variance of the ML estimates over many sim-
ulations and compare this to the variance predicted by
Eq. (2). We compute the ML-based power by simulat-
ing data under the alternative hypothesis and calculating
the frequency of rejection, then compare it to the power
computed using the predicted variance.
These comparisons are made under a range of scenar-

ios, including ones for which the PQL approximation may
perform poorly such as a small number of clusters, a high
variance for the random treatment effect, small sample
size within each cluster, and low prevalence.
Specifically, we consider 4, 8, or 12 clusters per sequence

(so 12, 24, or 36 clusters in total, respectively), a low
(0.03), moderate (0.12), or high (0.43) prevalence in the
null effect group (log odds approximately equal to −3.5,
−2.0, and −0.28, respectively), a cluster size of 20, 50, or
100, and an effect size of 0.2 (log odds ratio). On the log
odds scale, the standard deviation of the random cluster
effect is set to 0.05 and the standard deviation of the ran-
dom treatment and time effects is set to be 0.05 or 0.1. The
exact scenarios are given in Table 2.
For each scenario, the variance of the estimated treat-

ment effect coefficient β̂p is computed across 2000 simu-
lated datasets for theML estimate and compared to Eq. (2)
for the proposed method.

Simulation results
The relative variance of the treatment effect coefficient βp
for the proposed method compared to the MLE (as mea-
sured across simulations) is displayed in Fig. 1, under both
the null and alternative hypotheses.
Figure 1 shows that in the presence of a random treat-

ment effect, the relative variance between the ML-based
method and the proposed method, under the alternative
and the null hypotheses, is close to 1 in most scenarios
except in the extreme case where the number of clusters is
small (with a total of 12 independent clusters), the cluster
size is small (with 20 subjects per cluster), and the preva-
lence is 0.03. In this extreme case, the variance estimate
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Table 2 Parameter setting for binomial outcomes (log odds
scale)

Simulation EPT Trial LIRE Trial

# of sequence 3 4 5

# of time period
(Nt )

4 5 6

# of cluster per
sequence

4, 8, 12 6 20

# of pcp per
cluster

NA NA 35

Cluster size 20, 50, 100 ? ?

Prevalence
(roughly)

0.03, 0.12, 0.43 0.08 0.19

Fixed time effect
βtime

(0.1, 0.1, 0.1) (−0.008, −0.08,
-0.17, −0.11)

−0.124

Effect size for the
intervention βp

0.2 −0.3 −0.055

SD of random
cluster effect

0.05 0.2 0.011

SD of random
treatment effect

0.05, 0.1 NA 0.0054

SD of random
time effect

0.05, 0.1 0.12 NA

SD of random
cluster (pcp)
effect

NA NA 0.0015

*The cluster for LIRE Trial represents clinic, the random treatment effect is at clinic
level, and time is modeled as a continuous variable
**SD stands for standard deviation

given by the proposed method is smaller than the actual
variance of the MLE which could lead to an overestimate
of power.
Relative estimates of power, comparing the proposed

method and the MLE for situations when the power
according to MLE is around 80% (achieved by varying
the effect size), are displayed in Fig. 2. Here we target
comparison at the common benchmark power of 80%. A
relative power close to 1 is favorable for it indicates that
the proposed method does not over- or under-estimate
the power.
Note that the relative variance plots (Fig. 1) are not

directly comparable to the relative power plot (Fig. 2)
because the effect sizes (all greater than 1) in the latter
are chosen such that the estimated power is approximately
80% for the MLE. As a result, the prevalence may not
be low under the alternative hypothesis. Therefore, the
poor performance of the proposed method in the extreme
scenarios in Fig. 1 does not carry over to Fig. 2.
Figure 2 shows that when the estimated power calcu-

lated by MLE is around 80%, in the presence of random
treatment effect or random time effect, the relative power
between the ML-based method and the proposed method
is close to 1 implying validity for use in sample size and
power planning exercises.

Applications
Application with a simple data structure: partner notification
Patient delivered partner therapy (PDPT) is a part-
ner notification strategy for individuals with sexually
transmitted infections (STIs). Drugs or drug vouchers
are given to patients with STIs to give to their sex
partners.
The effectiveness of a PDPT-based partner notifi-

cation strategy dubbed EPT (expedited partner ther-
apy) was established by an individually randomized trial
conducted in King County, Washington, between 1998
and 2003 for chlamydia and/or gonorrhea infection
treatment.
EPT was then implemented in all counties in Washing-

ton between 2007 and 2009 through a cluster randomized
trial using a stepped wedge design. County-based health
districts in Washington state were randomized to EPT at
one of four possible time periods with 5–6 districts at a
time. Each time interval was 6–8 months. The prevalence
of chlamydia was measured using cross-sectional sam-
pling among women tested in family planning clinics for
each county in each time interval.
The proposed model (see appendix 6.1) includes ran-

dom cluster and time effects and we use the coefficient
estimates from the final analysis of chlamydia to demon-
strate the use of the proposed method in sample size
calculation (Table 2). With an effect size of −0.3 (log
odds ratio), prevalence of chlamydia must be measured
in approximately 140 women in each cluster period in 24
counties to achieve a power of 80%.

Application with a complex data structure: Lumbar Imaging
with Reporting of Epidemiology (LIRE)
Incidental anatomic spine findings given by diagnos-
tic imaging may lead to unnecessary additional tests
and treatments among pain-free individuals. However,
research has suggested that primary care patients were
less likely to receive subsequent tests or medical interven-
tions if the radiology report provides addition information
on the prevalence of imaging finding among patients with-
out back pain. Thus, Roland and van Tulder [24] proposed
providing reference prevalence of various degenerative
findings among patients without back pain in the spine
imaging report to help reduce unnecessary medical atten-
tion.
A large, prospective stepped wedge cluster randomized

control trial was designed to assess the impact of provid-
ing additional benchmark prevalence information in the
imaging report.
A total of 100 primary care clinics from four large health

systems were randomized to initiate the intervention at
one of five possible times, each 6 months apart. The num-
ber of sequences, time periods, and the number of clusters
per sequence are given by the study protocol ([25]). The
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Fig. 1 The relative estimated variance of β̂p for the proposed method versus the MLE (variance measured across simulations), under both the
alternative hypothesis (βp = 0.2) and the null hypothesis (βp = 0). The standard deviation of the treatment effect is on log odds scale

randomization was stratified by the clinic size. The size
of the clinic was determined by the number of primary
care providers (PCPs) and the site of the clinic. We exam-
ine the power calculation for the secondary outcome, the
indicator of any opioid prescription within 90 days of the
index imaging study. The random effect structure consid-
ered in our power calculation parallels those considered
in the original power calculation for the primary outcome.
The effect sizes and standard deviations of random effects
for the power calculations we present are given by a model
fit to the actual data from the trial (Table 2). The model is
included in appendix 6.2.
We consider power calculation for LIRE to demonstrate

the use of the proposed method for a problem with two-
levels of clustering (clinic level and PCP level), which
is computationally intensive for simulation-based meth-
ods and effectively impossible for existing exact methods.
With an effect size of −0.055 (log odds ratio), Fig. 3 shows

the relationship between the total number of clinics and
the power. When outcomes are measured in 140, 175,
or 210 patients per clinic-period, approximately 135, 160,
and 200 clinics are needed to achieve a power of 80%.
Figure 3 shows the value of high-fidelity approximation
methods since we can explore a wide range of design
alternatives with a computationally feasible strategy. To
illustrate the difference in computing burden between
our method and the simulation-based method, we have
calculated the time required for the two methods to
explore the 60 different scenarios presented in Fig. 3 for
the LIRE trial. The results are included in appendix 6.3.

Discussion
Power/sample size calculations are difficult for clustered
data when the outcome is non-normal. Specifically, use
of a normal approximation may be poor and there are no
analytical formulae for power under non-identity links.



Xia et al. Trials          (2021) 22:598 Page 7 of 10

Fig. 2 The relative estimated power (around 80%) of β̂p for the proposed method versus the MLE (variance measured across simulations), under
effect size of 0.2 (log odds ratio)

For stepped-wedge designs, the assumed time trend can
affect power when the outcome model has a nonlinear
link. Existing methods for non-normal outcomes, includ-
ing simulation-based or exact ML-based power calcula-
tions, are computationally intensive.
In this paper, we propose a sample size and power calcu-

lation formulae for SWD with normal or non-normal out-
comes using a Laplace approximation of the covariance
matrix of the estimated parameter of interest. Themethod
is fast computationally and has a good performance under
non-extreme cases with a reasonable number of clus-
ters, cluster sizes, and prevalence. This approach can be
extended to any design as long as the outcome model
can be specified in the form of a generalized linear mixed
model (model 1), which includes cohort designs, incom-
plete designs, or exponential decay models [26].

By allowing one to compute power on the same scale
as the intended analysis, the proposed approach can pro-
vide a more accurate estimate of study power. In addition,
boundary issues (i.e., proportions outside the range 0–
1) are avoided by working on canonical scales such as
the logit or log. Of course, this also means that the vari-
ances of random effects must be specified on those same
scales even though, at present, most published values for
variance components are given for an identity link scale.
Also, as noted previously, the assumed time trend may
affect power when computed on nonlinear scales so
greater attention must be given to this component during
the design phase.
Implementing the proposed method involves taking the

inverse of matrices Vj’s, which has dimension equal to
the cluster sizes. This can take extended computing time
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Fig. 3 The relationship between the total number of clinics and the power with different number of individuals per clinic-period

with large clusters. One way to speed up the inversion is
to use the Woodbury matrix identity [27], which requires
inversion of a matrix of size equal to the dimension of the
random effect vector bj instead. As long as the dimen-
sion of bj is smaller than the cluster size, the inversion
is faster.
The extreme cases where the variance given by the pro-

posedmethod does not reflect the actual cross-simulation
variance of the MLE are characterized by settings with a
combination of a small number of clusters, small sample
sizes, and extreme prevalence. Indeed, in simulations, we
also find that the mean of the variance estimates fromML
estimation often does not match the true cross-simulation
variance in these situations. These are likely to be cases
in which other approximate power calculations (such as
the existing closed-form formulas that approximate non-
normal outcomes using the normal distribution) also
perform poorly [16].
In summary, the proposed method provides a unified

procedure for sample size calculations for stepped wedge
design trials based on linear and generalized linear mixed
models. The method is computationally fast and so allows
for easy exploration of a variety of designs and parame-
ter values. To make the greatest use of these methods, it
is important that researchers reporting results from com-
pleted trials publish variance component values on the
natural analytic scales (e.g., logit and log) for binary and
count data.

Appendix
Model for the EPT Trial
cluster : j = 1, . . . , J ; individual : i = 1, . . . , I; time : t =
1, . . . ,T
E(Y j | bk) = h(X jβ + Zjbj),β = (β0,βtime,βtx), bj =

(bj,0, b1j, . . . , bTj),Y j = (Y1j, . . . ,YIj),
X j = (1I , (time1j, . . . , timeIj)T , (tx1j, . . . , txIj)T ), time are
(T − 1) vectors with 1 at exactly 1 place (reparametrizing
time as dummy variables, -1 degrees of freedom).
Zj = (1I ,A), A is a TI ×T matrix consists of time dummy
variables.

Model for the LIRE Trial
clinic : k = 1, . . . ,K ; pcp : j = 1, . . . , J ; individual : i =
1, . . . , I; time : t = 1, . . . ,T
E(Y j | bk) = h(X jβ + Zjbj),β = (β0,βtime,βtx), bk =
(bk,0, bk,1, b1k,0, . . . , bJk,0),
Y k =(Y11k ,Y21k , . . . ,YI1k ,Y12k , . . . ,YI1k , . . . ,Y1Jk , . . . ,YIJk),
Xk = (1IJ , (time11k , time21k , . . . , timeI1k , . . . , time1Jk , . . . ,
timeIJk)T ,
(tx11k , tx21k , . . . , txI1k , . . . , tx1Jk , . . . , txIJk)T ),
Zk = (1IJ , (tx11k , tx21k , . . . , txI1k , . . . , tx1Jk , . . . , txIJk)T ,B),
B = diag(1I , . . . , 1I)IJ×J .

Computation time comparison
To better illustrate the difference in computing burden
between our method and the simulation-based method,
we have calculated the time required for the two methods
to explore the 60 different scenarios presented in Fig. 3 for
the LIRE trial in which multilevel clustering is present for
non-normal outcomes (see Table 3).
To summarize, the table compares the calculation time

for the simulation-based method with 1000 replicates and
the proposed analytic method for a total of 60 scenarios
using a single core of a 2.6 GHz Intel Core i7 processor. As
expected, the simulation-based method’s calculation time
increases drastically as the number of individuals consid-
ered increases, but the calculation time of the analytic
method is consistently short. The table shows the total
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Table 3 Calculation time for the 60 scenarios considered in the
paper for the LIRE trial

Number of individuals
per clinic-period

Methods Computing time
(in days)

140 Analytic 0.02

Simulation-based 12.43

175 Analytic 0.04

Simulation-based 16.11

210 Analytic 0.07

Simulation-based 19.88

number of days taken for both methods to explore the 60
scenarios. It takes weeks for a simulation-based method
to explore all scenarios, but the analytic method takes less
than 2 h. In fact, exploring just one single scenario using
the simulation-based method can take up to 2 days in this
example.
Moreover, since the simulation-based methods rely on

replicates that successfully converge without parameter
estimates on the boundary, the actual time taken to get
1000 successful replicates could be much longer.
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