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Abstract

Background: In the presence of heterogeneous treatment effects, it is desirable to divide patients into subgroups
based on their expected response to treatment. This is formalised via a personalised treatment recommendation: an
algorithm that uses biomarker measurements to select treatments. It could be that multiple, rather than single,
biomarkers better predict these subgroups. However, finding the optimal combination of multiple biomarkers can
be a difficult prediction problem.

Methods: We described three parametric methods for finding the optimal combination of biomarkers in a
personalised treatment recommendation, using randomised trial data: a regression approach that models outcome
using treatment by biomarker interactions; an approach proposed by Kraemer that forms a combined measure
from individual biomarker weights, calculated on all treated and control pairs; and a novel modification of
Kraemer's approach that utilises a prognostic score to sample matched treated and control subjects. Using Monte
Carlo simulations under multiple data-generating models, we compare these approaches and draw conclusions
based on a measure of improvement under a personalised treatment recommendation compared to a standard
treatment. The three methods are applied to data from a randomised trial of home-delivered pragmatic
rehabilitation versus treatment as usual for patients with chronic fatigue syndrome (the FINE trial). Prior analysis of
this data indicated some treatment effect heterogeneity from multiple, correlated biomarkers.

Results: The regression approach outperformed Kraemer's approach across all data-generating scenarios. The
modification of Kraemer's approach leads to improved treatment recommendations, except in the case where there
was a strong unobserved prognostic biomarker. In the FINE example, the regression method indicated a weak
improvement under its personalised treatment recommendation algorithm.

Conclusions: The method proposed by Kraemer does not perform better than a regression approach for
combining multiple biomarkers. All methods are sensitive to misspecification of the parametric models.
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Background

One of the primary aims of the modern paradigm of
stratified medicine is to move beyond a one-size-fits-all
approach that allocates treatment based on population
average responses, towards identifying patient subgroups
for whom a given treatment is beneficial and those for
whom it is not. Given a patient population with hetero-
geneous treatment response, it might be possible to pro-
duce an algorithm for clinical use that provides a
recommendation for treatment based on measurable
traits (biomarkers). For these purposes, it is necessary to
separate biomarkers into those that predict treatment re-
sponse (moderating biomarkers) and those that predict
the outcome, regardless of treatment (prognostic bio-
markers). When the treatment choice is binary (the situ-
ation considered in this paper), the algorithm may
recommend a treatment over an alternative for values of
a single moderating biomarker, or a weighted combin-
ation of multiple moderating biomarkers. Such an algo-
rithm is referred to as a personalised treatment
recommendation (PTR).

In many disease areas, it might be that a combin-
ation of multiple biomarkers is more effective in iden-
tifying subgroups with a beneficial treatment outcome
than any single biomarker [1]. Finding the optimal
combination of biomarkers in a PTR algorithm is a
challenging prediction problem. In order to avoid the
confounding between treatment assignment and out-
come, it is considered optimal that PTR’s are esti-
mated from randomised controlled trial (RCT) data.
A method used to estimate a PTR is to fit a regres-
sion model with treatment by biomarker interaction
terms [2, 3]. Kraemer [4] proposes an alternative
method that uses a parametric model fitted to all
pairwise combinations of treated and control subjects.
The method assigns a weight to each moderator from
the correlation between pair’s average moderator
value and the difference in their outcomes. A com-
posite moderator is then derived from the individual
moderator weights and used to derive a PTR.

In this paper, we expand the Kraemer method by uti-
lising a prognostic score to sample matched pairs of
treated and control subjects, rather than using all pair-
wise combinations. This prognostic score is the esti-
mated treatment-free outcome in all subjects, regardless
of treatment assignment. We use Monte Carlo simula-
tions to compare the Kraemer method, its proposed
modification and the regression method with respect to
estimating a PTR. Their respective utility is measured
using an estimate of the expected change in outcome
under the PTR compared to a non-stratified approach.
The comparisons are made under a range of data-
generating mechanisms and sample sizes. The methods
are then applied to data from a randomised controlled
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trial of pragmatic rehabilitation versus treatment as
usual, for patients with chronic fatigue syndrome [5].

Methods Constructing a personalised treatment
recommendation

Following a randomised controlled trial, for a continu-
ous outcome Y and binary treatment A (following
Kraemer, treatment is effect-coded as +1/2 for treated
and -1/2 for control), the outcome for the ith subject
might be described by the linear model:

Yi:ao+aXi+Ai(ﬁ0 +/3)Zz) + e (1)

where a represents parameters for the prognostic vari-
ables in vector X (determining treatment-free outcome)
and f5 are parameters for the moderator variables in vec-
tor Z (determining treatment effect heterogeneity). S
represents the effect of treatment at the average value of
the moderators.

Kraemer method for creating a ‘composite moderator’

In order to estimate the overall moderating effect of
multiple biomarkers, Kraemer proposes a method for
creating a ‘composite moderator’ from a weighted sum
of moderating biomarkers [4, 6]. In the first step, a data-
set is constructed from all possible pairwise combina-
tions of treated and untreated subjects. From the
parameterisation in Eq. 1, the change in outcome be-
tween the jth pair of treated (superscript 7) and control
(superscript C) subjects is equivalent to:

T o\ T
YT -y = a(X].T—X]C)T +By +/3<Zj ;Z’) + (e -€f)
which can be re-expressed as:
A(Y)) = ad(X;) + By + Bu(Z;) + Ale))

where A represents the within-pair difference and u
represents the within-pair mean. Intuitively, if a single
variable Z had a strong moderating effect, then we
would expect the within-pair difference A(Y;) would in-
crease in line with the average value of the moderator.
Similarly, if a single variable X had a strong prognostic
effect, then we would expect that large within-pair dif-
ferences in that variable would result in large within-pair
differences in the outcome. Kraemer formally shows
that, for a single marker, the moderator effect size is
characterised by the correlation between A(Y) and u(2)
and the prognostic effect size is characterised by the cor-
relation between A(Y) and A(X).

We can account for multiple, correlated moderating
variables by regressing the average moderator value for

K variables on the change in outcome A(Y) = S Xw;u(Z)
to calculate moderator-specific weights wy, w,, ...wi.
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A combined moderator is obtained by the sum of the
K

individual moderator weights: Z; =Y wiZy . This
1

combined moderator can be used to separate sub-
groups based on their expected treatment response
(see below) [6].

Modified Kraemer approach: matching on a prognostic
score

We modify Kraemer’s approach to determine whether
considering only treated and control pairs that have
similar values of a ‘prognostic score’ improves its per-
formance. A prognostic score is an estimate of the
treatment-free outcome. This is calculated by fitting a
regression model to the subjects in the control group
only (thus excluding any moderators):

Y, A= -1/2) =ag +aX'

The resulting model can be used to predict the out-
come under the control condition, for subjects in both
the control and treatment groups.

The resulting estimates are referred to as prognostic
scores and have been used in observational research to
control for confounding [7].

We propose modifying Kraemer’s approach so that the
composite moderator is derived using a sample of
treated and control pairs that only have similar values of
their prognostic scores. In our implementation, we use a
single nearest neighbour matching algorithm, with re-
placement, and with a calliper such that, for each treated
subject, a control is sought that is within 0.1 times the
standard deviation of the prognostic score. The calliper
width is arbitrary and was set prior to any
implementation.

The rationale for this modification is to minimise the
contribution to A(Y) by variables that are irrelevant to
treatment effect modification. There is a trade-off be-
tween minimising this variance and losing treated and
control pairs who do not fit the matching criteria. We
investigate whether this modification results in an im-
provement on the Kraemer approach by applying these
techniques to simulated datasets. First, we establish how
to measure improvement in the context of determining
a personalised treatment recommendation.

Constructing a personalised treatment recommendation
(PTR)

A PTR uses biomarker values to recommend whether a
patient should be treated or not. For example, statins are
recommended in the UK if a person is aged over 40 and
if their estimated CVD risk is at least 10% over a 10-year
period [8]. Formally, this can be represented as: PTR =1
{age=40&CVD risk>10%}, where I indicates that treat-
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ment (statins) is recommended over the alternative (no
statins) when the bracketed expression is true.

Assuming higher values of a continuous outcome are
advantageous, an optimal PTR is one that recommends
treatment when, conditional on a set of moderating bio-
markers Z, the mean outcome under treatment y(A =1/
2,7) is greater than the mean outcome under control
uA=-1/2,2):

PTR=I{u(A=1/2,Z2)-u(A = -1/2,Z) > 0}
Under the parametrisation in Eq. (1):

{u(A=1/2,2)-p(A= -1/2,2) >0} =I{B, + BZ" > 0}
(2)

The parameters Sy and 8 can be estimated using or-
dinary least squares regression with treatment by moder-
ator interaction terms [2, 3]. This we refer to as the
regression approach.

A PTR can be constructed using the Kraemer or modi-
fied Kraemer method using the following steps: (1) calcu-
late the combined moderator; (2) regress the outcome on
a model with treatment, the combined moderator and
their interaction with treatment: 4(A4,Z*) = ap + aZ* + A
(Bo +B°Z*) (where Z is the combined moderator and 3,
+f" are the average effect of treatment and the moderated
effect, respectively); and (3) use these parameters to calcu-
late the PTR: PTR = I{(8; + B Z*) > 0}.

Measuring the performance of a personalised treatment
recommendations

Under randomisation, an unbiased estimate of the popu-
lation mean outcome under a PTR is provided by the
mean of the observed outcome in those receiving the
treatment they were recommended weighted by the
probability of being randomised to their respective group
(m) [9-11]:

(A+1/2)- (PTR+1/2)

wirrry =57 .
L (1/2-4) - (1/2- PTR) Y)

1-7m

This can be contrasted with the average outcome
under treatment u{A =1/2} = %Z"(’”TI/Z Y) or control
u{A=-1/2} = %Z"(l/z_A Y) to get the parameters:

1-7m

O7=u{PTR} - u{A=1/2 } and Oc=u{PTR} - u{A= -1/
2 }. These are interpreted as the expected change in out-
come under a PTR compared to a policy where every-
body receives treatment or everybody receives control.

In a simulation study, an additional measure of the
performance of a PTR is the rate of misclassification;
that is, the proportion of subjects whose PTR conflicts

with their known optimal treatment: P(PTR(X) =
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PTR®PY, where PTRP" indicates treatment if the simu-
lated outcome under treatment is greater than the simu-
lated outcome under control.

Simulations comparing approaches

Monte Carlo simulations were constructed to compare
the regression, Kraemer and modified Kraemer ap-
proaches to estimating a PTR. Training datasets were
simulated with sample sizes 75, 200 and 300 with 1:1
randomisation. These datasets were generated under a
range of scenarios (shown in Table 1). PTRs were esti-
mated using all three approaches and applied to a test
dataset of the same size and generated using the same
specifications as the training dataset. For each PTR, we
use the test dataset to calculate the change under PTR
(87) and the misclassification rate. For each data-
generating scenario, 5000 simulations were carried out
and we evaluate each method by averaging 67 and the
misclassification across simulations.

Application to randomised trial data

The three approaches to constructing a PTR were ap-
plied to data from the Fatigue Intervention Nurses
Evaluation (FINE) randomised trial [12]. This trial ran-
domised 296 patients diagnosed with Chronic Fatigue
Syndrome to three groups: home-delivered pragmatic re-
habilitation, supportive listening or treatment as usual. It
found marginal evidence that home-delivered pragmatic
rehabilitation reduced fatigue scores, compared to treat-
ment as usual (effect estimate - 1.18, 95% confidence
interval — 2.18 to — 0.18; 2-sided p value = 0.021) [5]. An
exploratory secondary analysis considered individual
moderators of this effect for those randomised to either
pragmatic rehabilitation or treatment as usual (n =195)
using variables collected at baseline [13]. Here, we
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combine these moderators to identify whether a PTR
that recommends treatment to a subset improves on a
scenario where everybody receives treatment-as-usual
approach.

The original effect estimate was not enough to change
policy, given that the treatment was costly. Stratifying
the treatment so that it is provided to those who benefit
most might be more cost-effective than providing treat-
ment to everybody. For our analysis, variables were des-
ignated prognostic (in the regression or modified
Kraemer approaches) if they were identified as such in
the initial analysis [13]. The outcome variable was
change in fatigue score from baseline to follow-up (with
positive values indicating an improvement). Variables
were designated moderators if they had a univariate p
value in the initial analysis of less than 0.10. Moderating
variables were then excluded then if their p value was
greater than 0.3, in a multivariate model that included
all moderating variables. Three variables remained to in-
clude in the PTR: baseline fatigue score (p value for
interaction = 0.24), EQ-5D mobility (no problems, some
problems, severe problems, p=0.16) and score on the
Oslo Social Support scale, relating to concern (p = 0.15).
The data was randomly split in half between training
and test datasets (size n =98 and n = 97 respectively) and
then PTRs were evaluated on the test dataset using the
parameter Oc outlined above. Inference for this param-
eter was determined by drawing 1000 bootstrap samples
and using the normal approximation.

Results

Simulations

Across all data-generating scenarios and sample sizes,
the regression method was superior to both the Kraemer
and the modified Kraemer methods: on average, it was

Table 1 Different scenarios for simulations, comparing approaches to combining multiple biomarkers to construct personalised

treatment recommendations

# Scenario Data generation model Variables in the prediction
model
1. Simple linear Y=3X,+2Z,—0573 1,—1.575 13 All variables
+AQ+27,-152,—-373 13) +€
2. Linear with weak moderators Y=3X;+2Z,—-0525 1,,— 1573 13 All variables
+AQR+057, — 057, - 02573 43) + e
3. Strong unobserved prognostic Y=12U, +3X, + 22, — 0575 1,,— 1573 13 Excluding U,
marker +AQR+27,-152,—375 13)+ e
4. Strong unobserved moderator Y=3X,+27, = 0575 1o —1.575 1,3+ AR+ 10U, + 27, — 1,57, — 375, Excluding U,
variables ) e
5. Misspecified prognostic part Y=3X, 427, — 0575 1y — 1575 13+ 2X° + 150X, — 1.5X,M; + All linear terms, excluding U,
05X121 23 w3
+AQ+27,-152,-373 13) +€
6. Misspecified moderator part Y=3X;+2Z,—0525 1,»— 1573 13 All linear terms, excluding U,
+AQ + 22, =152, =375 13+ 2217, — 152,2,U> + 052,2575 1,5) + €
7. Non-linear model Y=03X;+2Z, - 0575 1, — 1575 43) All as linear terms

+AQR+ 272, =152, =375 13)/(=2Z1 + 152, — 1573 13) + €
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Table 2 Results of simulation studies showing mean values of theta and misclassification rate across 5000 simulations under a range

of data-generating scenarios

Scenario Sample Parameter Method
size Regression Kraemer Modified Kraemer
Ta. Simple linear 50 0 (SD) 0.72 (0676) 046 (0.810) 062 (0.679)
Misclass. rate 0.05 0.21 0.14
200 6 (SD) 0.71 (0473) 0.58 (0.555) 0.68 (0.468)
Misclass. rate 0.04 0.15 0.09
300 6 (SD) 0.72 (0.337) 0.65 (0.397) 0.70 (0.335)
Misclass. rate 0.02 0.10 0.06
1b. Simple linear with correlated biomarkers 50 6 (SD) 0.73 (0.629) 0.50 (0.695) 0.59 (0.616)
Misclass. rate 0.05 0.21 0.17
200 0 (SD) 061 (0422) 048 (0.483) 0.56 (0.423)
Misclass. rate 0.05 0.17 0.11
300 6 (SD) 0.62 (0.276) 0.57 (0.331) 0.61 (0.278)
Misclass. rate 0.02 0.1 0.06
2. Linear with weak moderators 50 0 (SD) 0.71 (0.665) 045 (0.799) 061 (0.667)
Misclass. rate 0.05 0.21 0.13
200 6 (SD) 0.71 (0482) 0.56 (0.567) 0.66 (0.481)
Misclass. rate 0.04 0.15 0.09
300 6 (SD) 0.72 (0.336) 0.66 (0.401) 0.71 (0.336)
Misclass. rate 0.02 0.1 0.06
3. Strong unobserved prognostic marker 50 6 (SD) —0.23 (3.150) —0.24 (3.149) —031(3.115)
Misclass. rate 041 041 042
200 6 (SD) —0.23 (3.150) —024 (3.149) -031(3.115)
Misclass. rate 041 041 042
300 6 (SD) 0.07 (1.556) 0.06 (1.570) 0.01 (1.535)
Misclass. rate 032 032 0.34
4. Strong unobserved moderator variables 50 6 (SD) 0.22 (1.328) 0.16 (1.405) 0.14 (1.323)
Misclass. rate 042 045 045
200 0 (SD) 043 (0.893) 035 (0.946) 035 (0911)
Misclass. rate 042 043 044
300 6 (SD) 0.56 (0.606) 0.51 (0.654) 0.52 (0.620)
Misclass. rate 041 042 042
5. Misspecified prognostic part 50 0 (SD) 0.53 (0.866) 0.34 (1.010) 040 (0.882)
Misclass. rate 0.17 0.25 0.22
200 6 (SD) 0.62 (0.582) 049 (0.682) 0.57 (0.588)
Misclass. rate 0.12 0.18 0.15
300 6 (SD) 0.67 (0.406) 0.60 (0.495) 0.65 (0.407)
Misclass. rate 0.09 0.13 0.11
6. Misspecified moderator part 50 6 (SD) 0.70 (0.773) 044 (0.872) 0.58 (0.775)
Misclass. rate 0.16 0.25 0.21
200 6 (SD) 0.78 (0.559) 0.60 (0.651) 0.72 (0.558)
Misclass. rate 0.13 0.2 0.16
300 6 (SD) 0.80 (0.381) 0.72 (0.443) 0.77 (0.382)
Misclass. rate 0.12 0.16 0.14
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Table 2 Results of simulation studies showing mean values of theta and misclassification rate across 5000 simulations under a range

of data-generating scenarios (Continued)

Scenario Sample Parameter Method
size Regression Kraemer Modified Kraemer
7. Non-linear model 50 6 (SD) 211 (8414) 1.94 (8.606) 2.10 (8.566)
Misclass. rate 045 045 044
200 6 (SD) 2.89 (9.242) 2.84(10.822) 1.62 (10.261)
Misclass. rate 044 044 043
300 6 (SD) 0.31 (10.085) 0.06 (10.831) —0.30 (10.797)
Misclass. rate 044 044 043

both associated with higher values of 67 (the expected
benefit under PTR compared to treating everyone) and
the lowest misclassification rate (Table 2). The modifica-
tion of the Kraemer method, where treated and control
subjects are matched on their prognostic score, im-
proved on the Kraemer method across most data-
generating scenarios. The exception is the scenario with
a strong prognostic variable that is not included in the
regression model. This suggests that the prognostic
score is useful only when it captures sufficient variation
in the prognostic effects. Post hoc, we changed the size
of the calliper distance but this did not make any notifi-
able difference until it was <0.05 SD or>1.5 SD of the
prognostic score (Table 2).

In the scenario with a non-linear data-generating
model, no method, on average, constructed a PTR where
subjects had a better outcome compared to a policy
where everybody was treated. It is worth noting that, in
this scenario, if each simulated subject were allocated
the treatment they should have received, then their ex-
pected outcome would be, on average, 1.40 higher than
if everybody were treated.

Trial data

The results of the PTR algorithms and the estimated
change under a PTR, compared to a treatment-as-usual
approach, are shown in Table 3. There is weak evidence
that the regression method results in a PTR that results
in a greater reduction in chronic fatigue symptoms com-
pared to an approach where everybody receives treat-
ment as usual (6=1.92, 95% CI -0.65 to 4.49). There
was little evidence that a PTR estimated using the Krae-
mer method or the modified Kraemer method results in
an improvement compared to treatment as usual (p =

Table 3 Results of the analysis of FINE data

0.47 and p =0.13 respectively). Eight subjects were ex-
cluded when implementing the modified Kraemer ap-
proach because they did not have a match within the set
calliper distance of the prognostic score.

Discussion

This paper reported on a comparison of three methods
for constructing personalised treatment recommenda-
tions from randomised controlled trial data: the regres-
sion method that models outcome using treatment by
moderator biomarker interactions; a method proposed
by Kraemer that forms a combined moderator from in-
dividual moderator weights, calculated on all treated and
control pairs; and a modification of Kraemer’s approach
that utilises a prognostic score to sample pairs of treated
and control subjects. Across all simulations, the regres-
sion approach outperformed Kraemer’s approach. The
modification of Kraemer’s approach appeared to indicate
higher values of 6, except in the case where there was a
strong unobserved prognostic marker. The superiority of
the regression approach was replicated using real-world
data from a randomised trial of home-delivered
pragmatic rehabilitation for chronic fatigue patients;
however, for this example, no method conclusively dem-
onstrated that a PTR does better than a policy of ‘treat-
ment as usual’ despite there being several individual
moderators of treatment effect [13]. Therefore, in this
case, we conclude that forming a PTR is more difficult
than finding individual treatment effect moderators.

All three methods described here use linear param-
eterisation to model trial data, and therefore, the efficacy
of these methods relies on the models being correctly
specified. In many situations, non-linear models may be
more applicable and when there are many variables then

Method PTR algorithm 6 p value 95% Cl

Regression [(=2.020 + 1.709. baselinefat + 1.705. EQ5D + 1.685. concern < 0) 1.92 0.07 — 065 to 449
Kraemer I(—=2.342 + 0.633. baselinefat + 2.253. EQ5D + 2.069. concern < 0) -0.10 047 —226t0 206
Modified Kraemer [(=2.365 + 1.278. baselinefat + 1.568. EQ5D + 2.101. concern < 0) 0.69 013 - 049 to 1.87
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the likelihood of correctly specifying the model might be
low. For example, none of the approaches, on average,
indicated an improvement under PTR in the scenario
with a non-linear data-generating model. These simula-
tions were limited because they did not include any vari-
able selection or transformations of variables based on
model fit. Such processes require care and often require
knowledge of the variables at hand. In practice, re-
searchers will be insuring against model underfitting by
testing for non-linear terms and higher-order interac-
tions. Overfitting of these models could be counterba-
lanced using regularisation techniques, such as Lasso
regression. Additionally, methods exist that are more ro-
bust to model misspecification, for example methods
that seek to maximise the expected outcome under a
PTR using classification techniques [14—16].

The application to the FINE randomised control trial
showed that a PTR, as estimated using the regression ap-
proach, might result in an improvement over a recom-
mendation where everybody is provided treatment as
usual; however, the 95% confidence interval for all ap-
proaches included estimates where the PTR strategy is
associated with a small amount of harm. These results
should not be over-interpreted: the 95% confidence in-
tervals were wide, which indicates insufficient power to
detect a change. Data from another trial testing the use
of the PTR would be needed to confirm whether any
PTR results in an overall benefit. Another aspect that
should be considered is whether including cost informa-
tion in the measure of benefit has an effect on the deci-
sion to adopt a PTR strategy.

In the discussion to the paper, Kraemer says: ‘an irrele-
vant baseline factor and a non-specific predictor can
have no influence on making different choices between
[treatments]. We argue that this appears to be false,
based on our findings: information from a prognostic
score appears to result in a composite moderator that
more effectively discriminates between those who should
receive treatment and those that should not. Whilst the
Kraemer approach does not appear to improve on the
regression approach, it should be noted that the original
paper provides a useful example of how to judge the
relative effect sizes of multiple modifiers that would
form a useful exploratory analysis before forming a PTR.

Conclusion

Our simulations demonstrate that the parametric
method proposed by Kraemer does not result in a more
effective personalised treatment recommendation than a
method that uses a regression model. Utilising a prog-
nostic score improves the Kraemer method, however not
to an extent that it should be adopted over the regres-
sion method.
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