
STUDY PROTOCOL Open Access

Mechanical suppression of osteolytic bone
metastases in advanced breast cancer
patients: a randomised controlled study
protocol evaluating safety, feasibility and
preliminary efficacy of exercise as a
targeted medicine
Nicolas H. Hart1,2,3* , Daniel A. Galvão1,3, Christobel Saunders4,5,6, Dennis R. Taaffe1,3,10, Kynan T. Feeney1,3,4,7,
Nigel A. Spry1,3,6,8, Daphne Tsoi1,3,4,7, Hilary Martin9, Raphael Chee1,3,6,8, Tim Clay4,8, Andrew D. Redfern6,9 and
Robert U. Newton1,3,10

Abstract

Background: Skeletal metastases present a major challenge for clinicians, representing an advanced and typically
incurable stage of cancer. Bone is also the most common location for metastatic breast carcinoma, with skeletal
lesions identified in over 80% of patients with advanced breast cancer. Preclinical models have demonstrated the
ability of mechanical stimulation to suppress tumour formation and promote skeletal preservation at bone sites
with osteolytic lesions, generating modulatory interference of tumour-driven bone remodelling. Preclinical studies
have also demonstrated anti-cancer effects through exercise by minimising tumour hypoxia, normalising tumour
vasculature and increasing tumoural blood perfusion. This study proposes to explore the promising role of targeted
exercise to suppress tumour growth while concomitantly delivering broader health benefits in patients with
advanced breast cancer with osteolytic bone metastases.

Methods: This single-blinded, two-armed, randomised and controlled pilot study aims to establish the safety,
feasibility and efficacy of an individually tailored, modular multi-modal exercise programme incorporating spinal
isometric training (targeted muscle contraction) in 40 women with advanced breast cancer and stable osteolytic
spinal metastases. Participants will be randomly assigned to exercise or usual medical care. The intervention arm
will receive a 3-month clinically supervised exercise programme, which if proven to be safe and efficacious will be
offered to the control-arm patients following study completion. Primary endpoints (programme feasibility, safety,
tolerance and adherence) and secondary endpoints (tumour morphology, serum tumour biomarkers, bone
metabolism, inflammation, anthropometry, body composition, bone pain, physical function and patient-reported
outcomes) will be measured at baseline and following the intervention.
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Discussion: Exercise medicine may positively alter tumour biology through numerous mechanical and non-
mechanical mechanisms. This randomised controlled pilot trial will explore the preliminary effects of targeted
exercise on tumour morphology and circulating metastatic tumour biomarkers using an osteolytic skeletal
metastases model in patients with breast cancer. The study is principally aimed at establishing feasibility and safety.
If proven to be safe and feasible, results from this study could have important implications for the delivery of this
exercise programme to patients with advanced cancer and sclerotic skeletal metastases or with skeletal lesions
present in haematological cancers (such as osteolytic lesions in multiple myeloma), for which future research is
recommended.

Trial registration: anzctr.org.au, ACTRN-12616001368426. Registered on 4 October 2016.

Keywords: Tumour suppression, Tumour growth, Resistance training, Aerobic training, Isometric training, Muscle
activity, Exercise medicine, Advanced cancer, Bone metastases,

Background
Bone metastases are generally incurable and clinically
problematic, yet are present in over 80% of patients with
advanced breast cancer [1, 2], representing a debilitating
stage of disease with very poor patient prognoses during
palliation, and one of the leading causes of breast cancer
mortality among women worldwide [3–5]. Osteolytic
(lytic) bone metastases, in particular, present a consider-
able challenge to patients and clinicians due to rapid
microarchitectural deterioration of affected skeletal sites
through tumour-driven dysregulation of bone metabolic
activity in favour of excess resorption [1, 6, 7]. Metastatic
breast carcinomas commonly deposit in trabecular (can-
cellous) regions of bone [6, 8–10], such as the skull, ribs,
spine, pelvis and proximal and distal segments of long
bones, owing to their strong affinity to red bone marrow
[2, 7, 9, 11]. Of direct relevance, the majority of these skel-
etal structures are characteristically load-bearing [12–14],
thus any accelerated bone loss and heightened fragility fol-
lowing tumoural infiltration [8, 10, 15–17] has immediate
consequences for patients with cancer if left untreated or
unmanaged. Consequently, this destructive skeletal
process leads to increased patient morbidity and mortality,
with heightened fragility, increased risk of spinal compres-
sion, potential development of hypercalcaemia, increased
bone pain and increased fracture risk [7, 17–19]; whilst
simultaneously creating a localised microenvironment
conducive to tumoural growth and invasion within af-
fected bone sites [20–23].
Chemotherapy, hormone therapy, radiotherapy and

anti-resorptive medications are the primary therapeutic
agents used in breast cancer palliation to delay disease
progression, alleviate bone pain and associated symp-
toms, preserve skeletal integrity and extend survival
[24–32]. Whilst effective, these treatments produce
well-documented side effects to varying degrees, which
can lead to dose limitation or cessation, subsequently
restricting their full clinical utility. For example, patients
with advanced breast cancer with bone metastases are

provided with bone strengthening (anti-resorptive) med-
ications such as bisphosphonates or denosumab to for-
tify bone through induced sclerosis leading to
increments in bone density [33, 34]. While efficacious in
the mid-term; long-term use of these medications them-
selves eventually generate skeletal fragility in the absence
of a discontinuation period [35–37], which is not a clin-
ically viable option for patients with advanced cancer
and osteolytic bone metastases.
Bone is highly adaptive and osteogenically sensitive to

its mechanical environment, principally through muscu-
lar contraction of neighbouring muscle, but also from
impact and gravitational forces acting upon the skeleton
during human movement and from external loads [12,
38, 39]. Up-regulation of osteoblastic activity through
exercise may therefore allow mechanically driven regula-
tion of bone metabolism (i.e. osteocyte-mediated coup-
ling of osteoblast and osteoclast activity) to counteract
tumour-driven dysregulation which could have two key
benefits: (1) to preserve bone strength through anabolic
morphological (material and structural) adaptations; and
(2) to interfere with tumoural processes that blunt osteo-
blastic formation and promote osteoclastic resorption,
thus potentially suppressing tumour growth in affected
skeletal sites. Preclinical studies [8, 13, 40, 41] have ex-
plored this potential relationship in rodent orthotopic
models, implanting human breast cancer cells into tra-
becular skeletal tissue in order to induce osteolysis in
the load-bearing tibia. Impressively, when comparing
loaded and non-loaded tumour-affected tibiae within
host rodents, repeated bouts of externally controlled
mechanical compression preserved skeletal integrity (0%
versus 71% degradation for loaded and unloaded condi-
tions), blunted tumour-mediated osteolysis, and signifi-
cantly suppressed tumour growth by approximately 80%
[8, 13] in the absence of muscular influence. In addition
to osteocyte-driven osteogenic signalling, the inextric-
able anatomical, mechanical, metabolic and pleiotropic
link between muscle and bone [12, 38, 42, 43] provides
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another avenue of therapeutic osteogenic and anti-tumour
potential not yet explored [14, 44–47]. The voluntary acti-
vation of muscle surrounding skeletal lesions may deliver
anabolic cytokines and myokines (secretome cross-talk) to
lesion sites [14, 44, 45, 48] to countenance catabolic
tumour-mediated processes [46, 47, 49, 50]. Accordingly,
mechanical signals propagated by muscle contraction may
concurrently stimulate osteocyte-mediated metabolic activ-
ity and myokine-cytokine secretome cross-talk to promote
osteogenesis while modulating tumoural behaviour and
biology in order to slow tumour growth [14, 45, 48–51].
Human clinical trials have yet to be implemented in this

space, owing to a historical and misplaced belief that pa-
tients with advanced cancer and bone metastases should
be excluded from exercise programmes and synonymous
research due to increased risk of skeletal complications or
other potential adverse events [52–54]. Formative work by
Galvão and colleagues [51, 55–58] demonstrated the
safety and feasibility of delivering supervised exercise to
patients with advanced prostate cancer and bone metasta-
ses, avoiding exercises that placed direct or targeted stress
on bones with identified lesions. Separate work by Rief
and colleagues [59, 60] demonstrated the safety and feasi-
bility of physiotherapy-instructed spinal isometric training
in isolation for patients undergoing palliative radiation
therapy for spinal bone metastases, though in a small co-
hort of heterogeneous patients with cancer and disparate
lesion types. Taken together, these studies illustrate the
potential for preclinical studies to be translated to human
patients; specifically models of advanced breast cancer
with osteolytic bone metastatic disease. This is particularly
important as animal studies do not always translate to the
human condition, particularly in exercise-mediated bone
adaptation studies, often due to poorly designed human
trials for equivalency [12, 61–63].
Given that bone metastases remain one of the leading

causes of breast-cancer-related deaths worldwide, add-
itional and novel interventions to target osteolytic le-
sions in skeletal tissue are highly clinically relevant.
Expanding on our prior work, the aim of this study is to
(1) assess the safety and feasibility of a supervised and
individually tailored resistance, aerobic and flexibility ex-
ercise programme that includes targeted spinal isometric
training in patients with advanced breast cancer and
osteolytic bone metastases; (2) explore the preliminary
efficacy of the exercise programme to slow tumour
growth and tumour biomarker activity in target osteo-
lytic spinal lesions and (3) examine the broader efficacy
of the exercise programme to preserve muscle and bone
mass, improve physical fitness, enhance physical func-
tion, reduce cancer-related fatigue and increase quality
of life. It is the working hypothesis of this study that the
exercise programme will be safe and feasible; will show
signs of tumoural suppression and/or favourable

alterations in tumour biomarkers; and will lead to posi-
tive physical and psychosocial outcomes for patients. If
successful, the outcomes of this trial will be used to im-
prove clinical knowledge pertaining to exercise prescrip-
tions for patients with advanced cancer who have
metastatic carcinomas and high disease burden, and will
be used as a foundation for future phase II and phase III
efficacy-focused human clinical trials to establish the
anti-cancer effects of exercise. It is anticipated that this
new information will aid in the establishment and/or re-
newal of clinical exercise guidelines for the management
of cancer across the disease spectrum.

Methods
Study design
This single-blinded (investigators blinded to group al-
location), two-armed, randomised and controlled (su-
pervised exercise versus usual medical care)
explorative clinical trial will examine the feasibility,
safety and preliminary efficacy of combining targeted
spinal isometric training with modulatory,
multi-modal exercise (M3EP-SIT) in women with ad-
vanced breast cancer and stable osteolytic spinal bone
metastases. The exercise group (intervention arm) will
receive an individually tailored and supervised 12-week
exercise programme involving resistance, aerobic, flexibil-
ity and isometric exercises in addition to usual medical
care. The control group will receive usual medical care
only during this time and will be asked not to change their
baseline levels of physical activity. However, following the
trial, the control group will be offered the same exercise
programme if proven to be safe and efficacious. This pro-
cedure has been shown to be an effective strategy to min-
imise study contamination, patient withdrawal or loss of
patients to follow up in prior exercise oncology trials [14,
52, 64–68].

Recruitment
Patients will be recruited by invitation of their cancer spe-
cialist (surgeon, radiation oncologist or medical oncologist)
who will provide clinically eligible patients with a study in-
formation sheet and refer these patients to an independent
study coordinator. If patients are interested in participation
and their eligibility is confirmed, they will receive an in-
formed consent document to read and sign in the presence
of a study investigator and clinical research coordinator be-
fore undertaking baseline measurements prior to random-
isation (Fig. 1).

Randomisation
Patients will be randomly allocated in a ratio of 1:1 to the
two study arms: exercise or usual care, stratified by age (≤
60 years, > 60 years), hormone receptor (HR) status (HR+,
HR-) [69] and time since completion of palliative
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radiotherapy to target spinal lesions (< 3months, ≥ 3
months) and/or time since commencing or changing hor-
mone therapy and/or chemotherapy (< 3months, ≥ 3
months). A research officer with no patient contact will be
responsible for randomisation of patients into either group
using a computer-generated code through a
random-assignment programme. Study investigators and
exercise physiologists conducting testing procedures will be
blinded to group allocation. Only exercise physiologists out-
side the research team will be permitted to deliver the exer-
cise intervention to participants in order to maintain
integrity of the blinding process.

Participants
A total of 40 women (20 subjects per arm) with breast
cancer and stable osteolytic bone metastases in cervical,
thoracic and/or lumbar vertebrae will be invited to par-
ticipate. They will be included if they have not engaged
in regular exercise in the past 3 months (defined as
undertaking structured aerobic and/or resistance train-
ing two or more times per week). Due to the novelty of
this explorative clinical trial, our sample size is based on
previous preclinical animal studies [13, 70–72], human
pilot studies [14, 56, 58, 73, 74] and consideration of the
ability to recruit patients with advanced breast cancer

Fig. 1 Schematic overview of the study protocol. MRI, magnetic resonance imaging; DXA, dual-energy x-ray absorptiometry; pQCT, peripheral
quantitative computed tomography; 1RM, one-repetition maximum
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and osteolytic bone metastases during the trial. Specific-
ally, to achieve 80% power at an alpha level of 0.05 (two--
tailed), 16 subjects per group are required to demonstrate
a meaningful difference (effect size ≥ 1.0) at the comple-
tion of the study for the primary endpoint, and most sec-
ondary endpoints. To account for an attrition rate of up
to 25%, 40 subjects will be randomised equally between
the study arms (exercise, n = 20; control, n = 20).
Patients are permitted to receive radiotherapy for

non-spinal bone metastases while enrolled in this trial.
Patients require medical clearance prior to enrolment,
therefore must achieve an Eastern Cooperative Oncology
Group (ECOG) performance status ≤ 1, and must not
have any acute illness, significant bone pain or cardio-
vascular or neurological disorders that could inhibit ex-
ercise participation as judged by their managing
physician. All participants must provide written informed
consent prior to participation. Patients will be excluded
from this trial if they are receiving experimental treat-
ments. The protocol has been approved by the Human
Research Ethics Committee (HREC) of Edith Cowan Uni-
versity (ECU), Project ID 14266 NEWTON; St John of
God Hospitals (SJOG), Project ID 969 and Sir Charles
Gairdner and Osborne Park Health Group (SCGOPHG),
Project ID 2016–118. This trial is also registered with the
Australia and New Zealand Clinical Trails Register
(ANZCTR), Trial ID ACTRN-1261600136842.

Measurements
Primary and secondary endpoints will be measured at
baseline (week 0), post-intervention (week 13) and
through-out the 12-week on-trial period (Table 1).

Primary Endpoint

Feasibility Study and programme feasibility will be
quantified through a series of multi-item categories in-
cluding patient recruitment and trial completion, patient
safety and tolerance and program adherence and compli-
ance (Table 2). Programme safety will be assessed by re-
cording the incidence and severity (grading) of adverse
events and/or skeletal complications [18] throughout the
on-trial period for the intervention and control arms in
accordance with the common terminology criteria for
adverse events (CTCAE) v5.0 criteria. Skeletal complica-
tions will include heightened bone pain at sites of known
bone metastases and/or pathological skeletal fractures.
The nature, severity and impact of bone pain will be ex-
amined using the Functional Assessment of Chronic Ill-
ness Therapy (FACIT) bone pain questionnaire at
baseline and post intervention.
Programme tolerance, adherence and compliance will

be assessed in the intervention arm only. Specifically,
programme tolerance will be quantified by routinely

measuring pre-session bone pain, muscle soreness and
general fatigue at each exercise session by visual
analogue scale (VAS, 0–10) and by recording
post-session rating of perceived exertion (Borg scale, 0–
10) and post-session tolerance (VAS, 0–10) after each
exercise session. Programme adherence and compliance
will be assessed using an exercise diary completed by the
patient at all clinic-based and home-based exercise ses-
sions to record volume of resistance training (weight
lifted (kilogrammes), sets and repetitions), aerobic train-
ing (intensity (level), duration (minutes), speed (revolu-
tions per minute), heart rate (maximum and average)
and rating of perceived exertion), flexibility training
(repetitions and hold time (duration)) and isometric
training (repetitions and hold time (duration)) com-
pleted. These data will be compared to the prescribed
and individualised exercise programme provided to each
patient in order to establish programme adherence
(completed versus missed sessions) and compliance (pre-
scribed versus actual exercise completed for each train-
ing mode (resistance, aerobic, flexibility and isometric)).

Secondary endpoints

Tumour morphology Location of metastatic lesions will
be initially identified through bone scans provided by
the managing oncologist prior to referral to this study.
Tumour morphology will be measured using axial
T1-weighted magnetic resonance imaging (MRI) (1.5 T,
Magnetom Essenza, Siemens, Victoria, Australia) in lo-
cations where osteolytic lesions have been identified in
patients with bone metastases at either thoracic or lum-
bar spinal regions [75–78]. All patients will be scanned
by the same radiologist using the same MRI machine
and a standardised sequence and routine for scout and
primary scan acquisition. Specifically, spinal bone metas-
tases will be identified and confirmed using three pre-
liminary axial scout scans in the sagittal plane to view
the cervical, thoracic and lumbar regions, respectively
(T2-weighted; imaging frequency = 63.66 Hz; slice thick-
ness = 3.0–4.0 mm; spacing between slices = 3.6–6.0 mm;
echo train length = 16–21; flip angle = 140–150°; acquisi-
tion matrix = 256\0\0\192 (cervical), 448\0\0\358 (thor-
acic) and 320\0\0\320 (lumbar)).
Primary scans of each affected vertebra will be per-

formed in the transverse plane, capturing the vertebrae
above and below to produce an image with three verte-
brae in total (T1-weighted; imaging frequency = 63.66
Hz; slice thickness = 4.0 mm; space between slices = 4.2
mm; echo train length = 3; flip angle = 150°; acquisition
matrix = 384\0\0\307). Following the acquisition of im-
ages, tumour morphology (volume (cubic millimetres)
and intensity (watts per steradian (W/sr))) will be exam-
ined for each slice using ITK-Snap (V3.6.0) image
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analysis software [79] (Fig. 2). All images will be exam-
ined at the conclusion of the study by two independent
researchers for consistency in analysis and to establish
intra-rater and inter-rater reliability coefficients.

Biomarkers Metastatic tumour biomarkers,
hypoxia-inducible factor 1-alpha (HIF-1α) and trans-
formation growth-like factor beta (TGF-β) will be sero-
logically examined to measure tumoural hypoxic activity
and growth activity respectively; identified as synergistic

drivers of metastatic tumour progression [45, 80–84].
Fasted serological and first-void samples for urianalysis
will also be collected within 48 h of baseline and
post-intervention testing sessions to measure bone
metabolic activity and systemic inflammation. Specific-
ally, bone formation marker, amino-terminal propeptide
of type 1 procollagen (P1NP); bone resorption marker,
amino-terminal collagen type-I telopeptide (NTx); bone
disorder marker, alkaline phosphatase (ALP), inflamma-
tion marker, C-reactive protein (CRP) and fasting glu-
cose and lipid profiles will be examined. All fasted
serological and first-void biomarkers will be collected in
the morning, and assessed by the same accredited la-
boratory (Australian Clinical Laboratories, Perth, West-
ern Australia).

Anthropometry Stature will be recorded to the nearest
0.1 cm using a wall-mounted stadiometer (Model 222,
Seca, Hamburg, Germany), with body mass recorded to
the nearest 0.1 kg using an electronic scale (AE Adams
CPW Plus-200, Adam Equipment Inc., CT, USA), with
body mass index (BMI) calculated as weight divided by
height in metres squared (kg/m2). Waist and hip circum-
ferences are defined as the mid-point between the 10th
rib and the iliac crest and the level of the greater tro-
chanter, respectively, with the waist-to-hip ratio calcu-
lated. Femoral length will be measured from the greater
trochanter to the knee-joint axis and tibial length will be
measured from the knee-joint axis to the medial malle-
olus. Waist circumference, hip circumference, femoral
length and tibial length will be measured to the nearest
0.1 cm using a constant-tension, retractable measuring
tape (Model 4414, Tech-Med Services, NY, USA). Stat-
ure, waist circumference and hip circumference will be
measured in triplicate in each participant, with the aver-
age of each variable retained for analysis.

Musculoskeletal health Whole-body, segmental (axial
and appendicular) and regional (spinal and total hip)
scans will be performed to examine bone area (BA),
areal bone mineral content (aBMC), areal bone mineral
density (aBMD) and lean mass using dual-energy x-ray
absorptiometry (DXA; Hologic Discovery A, Waltham,
MA, USA). Whole-body and appendicular segmenta-
tions will be analysed in accordance with Hart and col-
leagues [85]. Regional analyses (lumbar spine, total hip,
femoral neck, trochanter, Wards triangle) will be per-
formed in accordance with Hologic’s manufacturer spec-
ifications [86].
Appendicular, non-lesion control sites will be scanned

to quantify bone material, structure and strength using
peripheral quantitative computed tomography (pQCT;
XCT-3000, Stratec, Pzochienheim, Germany). Specific-
ally, trabecular, cortical, marrow and total volumetric

Table 1 Assessments of study feasibility

Measures Time of collection

Recruitment and completion

- Referred patients Trial completion

- Eligible patients Trial completion

- Enrolled patients Trial completion

- Eligibility rate Trial completion

- Recruitment rate Trial completion

- Trial completions Trial completion

- Patient withdrawals Trial completion

- Patient drop-outs Trial completion

- Trial contamination Trial completion

Patient safety (control arm)

- Number of adverse events Tri-weekly record

- Severity of adverse events Tri-weekly record

- Number of skeletal complications Tri-weekly record

Patient safety (intervention arm)

- Number of adverse events At each exercise
session

- Severity of adverse events At each exercise
session

- Number of skeletal complications At each exercise
session

Program tolerance (intervention arm)

- Pre-sessional bone pain At each exercise
session

- Pre-sessional fatigue At each exercise
session

- Sessional rating of perceived exertion At each exercise
session

- Sessional tolerance At each exercise
session

Program adherence (intervention arm)

- Number of completed sessions Post intervention

- Number of missed sessions Post intervention

Program compliance (intervention arm)

- Prescribed vs. actual exercise completed (for
each exercise mode).

Post intervention

- Percent of total volume completed (for each
exercise mode).

Post intervention
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density (Tb.vBMD, Ct.vBMD, Ma.vBMD, Tt.vBMD); tra-
becular, cortical, marrow and total cross-sectional area
(Tb.Ar, Ct.Ar, Ma.Ar, Tt.Ar); cortical thickness (Ct.Th);

stress-strain index (SSIPOL); absolute fracture load
(FL.Ab) and relative fracture load (FL.Rel) of the left
femur (4% and 33% slices) and left tibia (4%, 14%, 38%

Table 2 Schedule of assessments at baseline and post intervention

Measures Baseline Post intervention

Tumour morphology (off-site)

- MRI: T1-axial X X

Tumour biomarkers

- Blood: HIF-1α, TGF-β X X

Anthropometry

- Height (cm) X

- Weight (kg) X X

- Waist circumference (cm) X X

- Hip circumference (cm) X X

- Femoral length (mm) X

- Tibial length (mm) X

- Body mass index (kg/m2) X X

- Waist-to-hip ratio X X

Body composition

- DXA: whole-body, spinal, hip X X

- pQCT: femoral, tibial X X

Physical assessments

- NeuroCom Balance Test X X

- 1RM Strength Test (Leg Extension) X X

- 400 m Walk Test X X

- Timed Up and Go Test X X

Other biomarkers (off-site)

- Blood: P1NP, ALP, CRP, fasting glucose and lipids X X

- Urine: NTx X X

Questionnaires

- Demographic and health history X

- Concomitant medications X X

- Health-related quality of Life (SF-36) X X

- Cancer-specific quality of life (EORTC: QLQ30, BR23) X X

- Bone Pain (FACIT-BP) X X

- Brief Symptom Index (BSI-18) X X

- Insomnia Severity Index (ISI) X X

- Godin Leisure-time Exercise X X

Exercise programme

- Clinic exercise record sheet (prescribed vs. actual) At each exercise session

- Home exercise record sheet (prescribed vs. actual) At each exercise session

- Pre-session bone pain, muscle soreness and fatigue (VAS) At each exercise session

- Post-session rating of perceived exertion and tolerance (VAS) At each exercise session

Abbreviations: HIF-1α hypoxia-inducible factor 1-alpha, TGF-β transformation growth-like factor beta, DXA dual-energy x-ray absorptiometry, pQCT peripheral
quantitative computed tomography, P1NP amino-terminal propeptide of type 1 procollagen, NTx amino-terminal collagen type-1 telopeptide, ALP alkaline
phosphatase, CRP C-reactive protein, SF-36 Short Form-36, EORTC European Organisation for Research and Treatment of Cancer, FACIT-BP Functional Assessment of
Chronic Illness Therapy-Bone Pain, VAS visual analogue scale
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and 66% slices) will be measured and analysed in accord-
ance with Hart and colleagues [87, 88]. Muscle
cross-sectional area (Mu.Ar) will also be quantified.

Adiposity Whole-body, segmental and central subcuta-
neous adipose tissue (fat mass), central visceral adipose
tissue (VAT; area, mass and volume) and
android-to-gynoid ratio will be measured using DXA.
Whole-body and appendicular segmentations will be
generated in accordance with Hart and Colleagues [85].
Fat area (Fa.Ar) and muscle density (Mu.Den) of the
thigh and shank will be measured using pQCT [87, 88],
as an indication of subcutaneous and intramuscular fat
infiltration, respectively.

Objective measures of physical function Muscle
strength, aerobic capacity and physical function will be
assessed. Muscle strength will be measured using the
one repetition maximum (1RM) test for the leg exten-
sion exercise. This exercise was chosen as it can be
safely performed by all patients included in this study.
The 400 m walk test and Timed Up and Go test will be
used as measures for aerobic capacity and physical func-
tion, respectively. In addition, patients will also undergo
a comprehensive balance test (NeuroCom Smart Bal-
ance, Natus Medical Inc., USA).

Quality of life, anxiety, distress, insomnia and
physical activity Health-related quality of life outcomes
for general health, pain, vitality, social functioning, emo-
tional role and mental health will be measured using the
Short Form 36 (SF-36, IQOLA) survey. In addition, the
European Organisation for Research and Treatment of
Cancer (EORTC) Quality of Life Questionnaire, Module
3 (QLQ-30) (cancer) and EORTC Breast Cancer, Module
23 (BR-23) surveys will also be provided to measure
cancer-specific indices of quality of life. The FACIT
Bone Pain (FACIT-BP) questionnaire will be used to
examine bone pain, and the Brief Symptom Inventory
(BSI-18) will be used to assess psychological distress for
the anxiety, depression, somatisation and global distress
severity domains. The Insomnia Severity Index (ISI) will
be used to measure sleep quality disturbance, and the
Godin Leisure-Time Exercise questionnaire will be ap-
plied to examine self-reported physical activity levels.

Exercise programme
Participants assigned to the exercise arm will be required
to participate in a modular, multi-modal exercise
programme (M3EP), which includes spinal isometric
training (SIT) for 12 weeks. The combined M3EP-SIT
programme requires participants to attend three
clinic-based exercise sessions each week spanning 60
min in duration (including warm up and cool down), su-
pervised by an accredited exercise physiologist (AEP;

Fig. 2 Example of magnetic resonance imaging (MRI) image acquisition. Left: cervical, thoracic and lumbar scout views stitched together with
three osteolytic lesions identified at T5, T11 and L2. Top, middle: lumbar scout view at higher resolution with the L2 vertebra outlined. Bottom,
middle: example data outputs provided by regional analysis. Right: slice by slice, cephalad to caudal, transverse view at each level of the L2
lesion, with an example colour map and tumoural analysis of one slice in isolation

Hart et al. Trials          (2018) 19:695 Page 8 of 15



Exercise and Sport Science Australia). Participants will
also be asked to perform the SIT portion of the
programme during two additional home-based exercise
sessions each week spanning 15 min in duration. During
combined M3EP-SIT sessions, spinal isometric training
will be provided first, followed by the modular
multi-modal exercise programme (Table 3).
The M3EP component of the programme will com-

prise resistance, aerobic and flexibility exercises in ac-
cordance with Galvão and colleagues [48, 51, 55–58].
This M3EP component is designed to minimise loads on
affected skeletal sites throughout the body. Exercise pre-
scriptions for all activities will be modified based on the
location and extent of bone metastases (Table 4). Resist-
ance exercise will be set using repetition maximums
(RM). Participants will be asked to perform six different
resistance exercises using major muscle groups, subject
to the location and extent of bone metastases, at 10–12
RM for three sets per exercise to achieve moderate in-
tensity and volume. Aerobic exercise will be set using
age-predicted heart rate maximum (HRmax). Partici-
pants will engage in cardiovascular exercise using vari-
ous modes including treadmill, cycling and rowing
ergometers, performed at 60–85% HRmax for 20–30
min using heart rate monitors (Polar Electro Oy,
Finland). Flexibility exercise will involve static stretching
of muscles at all joints considered important for func-
tion, and for all muscles engaged during the session. All
stretches will involve 2–4 sets per muscle group with a
30–60 s hold per set.
The SIT component of the programme will comprise

exercises that isometrically load deep spinal muscles as
well as the larger superficial trunk musculature. These
will be performed five times per week. Three sessions
will be supervised by an AEP with the M3EP component
at an exercise clinic, with an additional two sessions
self-managed by the participant. This SIT component is
designed to directly target and stimulate spinal lesion
site(s) through muscular contraction, thus isometric ex-
ercises have been designed to activate the full spinal col-
umn due to the commonality of lesions in cervical,

thoracic and lumbar regions, the feasibility of which has
been demonstrated [59]. The SIT programme will re-
quire the participants to perform five exercises in whole
and partial weight-supported prone and supine positions
on the floor, whilst maintaining a neutral spine position
(isometrically) during gentle and dynamic accessory
movements. If floor exercises are contraindicated for the
patient due to physical restrictions, alternate seated and
standing isometric exercises will be provided. All pa-
tients will be initially provided with familiarisation of
breathing technique, trunk stabilisation and hip control.
Basic spinal isometric exercises will first be used to en-
sure safe and correct technique prior to progressing to
intermediate or more challenging exercises, which in-
clude less stability or dynamic accessory movements
[89]. Isometric progression of patients from beginner to
advanced exercises will be individually determined on
the basis of their physical capabilities and known contra-
indications. An assortment of spinal isometric exercises
canvassing beginner to advanced and floor to standing
are described in Additional files 1 and 2, respectively,
with photographic demonstration of prone and supine
exercises in Additional file 3.

Statistical analysis
Data will be analysed using SPSS (IBM Corporation;
Chicago, IL, USA). Normality of distribution of continu-
ous variables will be determined by Shapiro-Wilk test
and visual inspection of the data. Analyses will include
standard descriptive characteristics, the t test and
two-way (group × time) repeated measures analysis of
variance (ANOVA) (or analysis of covariance as appro-
priate) to examine differences between groups over time.
Any data that are not normally distributed will be
log-transformed or non-parametric tests will be used.
The Pearson chi-square test will be used to analyse cat-
egorical variables. An alpha level of p ≤ 0.05 will be ap-
plied to establish statistical significance. Effect sizes will
also be calculated in accordance with Hopkins [90]: d ≥
0.2 is small; d ≥ 0.6 is moderate; d ≥ 1.2 is large; d ≥ 2.0 is
very large. Incomplete data and missing values will be

Table 3 Weekly distribution of testing, M3EP and SIT exercise sessions across the exercise intervention

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Week 0 Baseline testing

Week 1 to Week 2 SIT – SIT – SIT REST REST

M3EP M3EP M3EP

Week 3 to Week 12 SIT SIT SIT SIT SIT REST REST

M3EP M3EP M3EP

Week 13 Post-Intervention Testing

Clinic exercise sessions occur on Monday, Wednesday and Friday; home isometric exercise sessions occur on Tuesday and Thursday. Spinal isometric exercises are
provided at the start of all clinic exercise sessions (following a general warm up). Home-based SIT starts from week 3 onwards to enable appropriate
familiarisation and training during the first 2 weeks of the programme
Abbreviations: SIT spinal isometric training (15 min), M3EP modular multi-modal exercise programme (60 min)
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primarily managed using an intention-to-treat approach
[91] with multiple imputation, specifically using max-
imum likelihood imputation of missing values. To en-
sure the robustness of our findings, a secondary
sensitivity analysis [92, 93] will be conducted using a
complete-cases approach.

Dissemination plan
Demonstrating the feasibility and safety of delivering tar-
geted exercise (controlled mechanical loads) to skeletal
sites with osteolytic lesions in patients with advanced
cancer will lead to potential changes in clinical practice.
Accordingly, if proven to be safe and feasible, the out-
comes of this pilot study will form the basis of future
phase II and III clinical trials to establish efficacy; will be
published in high-impact peer-reviewed journals; will be
presented at national and international conferences or
research meetings and will be delivered to the commu-
nity, consumer-led forums, local hospital departments
and university seminars. Evidence from this pilot study
may contribute to the renewal of current clinical exer-
cise oncology guidelines for patients with cancer, specif-
ically those in the advanced stages with a high disease
burden, within national and international exercise and
oncology associations.
Last, the National Breast Cancer Foundation is a char-

itable organisation dedicated to improving patient out-
comes for women and men with breast cancer. As the
funder of this pilot study, the National Breast Cancer
Foundation will assist with disseminating study out-
comes through their extensive clinical, academic and
consumer networks nationally. Similarly, the Cancer
Council of Western Australia is the premier cancer char-
ity in Western Australia, with wide-reaching connections
to clinicians, academics, cancer survivors and their fam-
ilies, and will also assist in disseminating study outcomes
through their state-wide networks.

Patient and public involvement
The Exercise Medicine Research Institute engages con-
sumer representatives (patients with cancer and their
families) throughout the conceptual design and develop-
ment of its research programme to ensure all research
questions directly address the needs of patients (in this
case, patients with advanced breast cancer), including
the engagement of prospective trial participants in a re-
spectful, ethical and impactful way. During the develop-
ment of this study protocol, authors NHH and RUN
presented at national and state breast cancer meetings
to patients and clinicians and sought feedback to con-
firm and optimise the study design. The National Breast
Cancer Foundation (the funder of the study), and other
cancer charities and associations (such as Breast Cancer
Network Australia, Breast Cancer Care Western
Australia and the Cancer Council of Western Australia)
will assist in the dissemination of findings to their cancer
support groups and the general public. Study partici-
pants will receive their individual results at the conclu-
sion of their involvement and overall study results at the
conclusion of the study.
The research team of this study protocol includes a

surgical oncologist (CS), radiation oncologists (NAS,
RC) and medical oncologists (KTF, DT, HM, TC, ADR)
who work with the target population on a daily basis,
from which patient priorities, experiences and prefer-
ences gleaned from this engagement helped inform the
development of the research questions and outcome
measures. Last, the broader research team (NHH, RUN,
DAG, DRT, NAS) have conducted research studies in
exercise oncology involving a large number of patients
over the course of the past 15 years, where participants
have provided feedback to investigators to help design
feasible, safe and effective exercise oncology clinical tri-
als. This sizeable interaction across the clinical and com-
munity landscape contributed substantially to the design
of this project.

Discussion
Complications arising from bone metastases present a
major clinical issue for patients and clinicians alike [18],
with bone metastases evident in over 80% of metastatic
breast carcinoma (advanced breast cancer) cases. Cur-
rently, it is a treatable, yet incurable stage of disease,
thus strategies that delay disease progression and extend
survival without an adverse impact on quality of life or
excessive clinical risk are highly sought after. Exercise
medicine is an emerging field in oncology (i.e. exercise
oncology), known for its neo-adjuvant and adjuvant role
for symptom control, reduction of treatment toxicity
and ability to improve the tolerance of and recovery
from intensive cancer treatment regimens [48, 52, 65,
94–103]. Recent insights are beginning to illustrate the

Table 4 Modular multi-modal exercise programme for patients
with bone metastases [48, 51, 56, 57]

Metastasis site Resistance Aerobic Flexibility

Upper Trunk Lower WB NWB Static

Pelvis √ √ √** √ √

Lumbar spine √ √ √ √***

Thoracic spine/ribs √* √ √ √ √***

Proximal femur √ √ √** √ √

All regions √* √** √ √***

Abbreviations: WB weight bearing (e.g. walking), NWB non-weight bearing
(e.g. cycling)
√ represents target exercise region
*Exclusion of shoulder flexion/extension/abduction/adduction - inclusion of
elbow flexion/extension
**Exclusion of hip extension/flexion - inclusion of knee extension/flexion
***Exclusion of spine/flexion/extension/rotation
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synergistic (assistive) and targeted (independent) role of
exercise medicine in patients with cancer throughout the
disease trajectory to assist with delaying disease progres-
sion and plausibly extending overall survival, largely
through preclinical studies ([13, 14, 47–51, 70–74, 83,
104–118]) or epidemiological associations [119–134].
Most promisingly, exercise seems to be able to favourably
modulate tumour biology towards improving cancer con-
trol, including skeletal orthotopic models, highlighting a
key candidate intervention for human, patient-focused
studies to target and pursue [14, 51, 135].
Exercise medicine may positively alter tumour biology

through numerous mechanical and non-mechanical mech-
anisms targeting local, neighbouring and systemic pathways
in response to various modes and dosages of activity
[70–74, 105, 110, 112, 113, 136]. Specifically, exercise
regulates endocrine-paracrine activity, systemic immune
function (pro-inflammatory and anti-inflammatory activ-
ity), blood glucose and blood cholesterol levels, insulin re-
sponse and body composition [97–101, 106, 116, 137, 138].
Exercise can also epigenetically modulate tumour vascula-
ture (morphology and permeability), tumour cell prolifera-
tion (growth and distribution), telomeres (length and
enzyme activity), platelet functions (cloaking and adhesion)
and oxidative stress capacity [49, 50, 113, 139–144]. Whilst
exercise concurrently acts across many of these regulatory
and modulatory pathways, the targeted suppression of
tumour formation, growth and invasion through mechanic-
ally driven epigenetic alterations, and muscle driven
endocrine-paracrine activity is of particular interest. Indeed,
biological alterations from biomechanical stimuli and bio-
chemical responses (an emerging field known as “mechano-
mics”, applied to exercise oncology) [8, 12, 118, 145, 146]
presents clinicians and allied health practitioners (such as
clinical exercise physiologists) with a unique opportunity to
suppress the growth and spread of metastatic breast carcin-
oma in bone through targeted exercise interventions.
Compelling new insights from metastatic orthotopic

animal models demonstrate the ability of mechanical
stimulation (i.e. repeated bouts of external compression)
to interfere with tumour-driven remodelling in skeletal
tissue containing human breast cancer cells [13, 41].
Exercise is a dose-dependent mechanical stimulant (with
evidence of dose-response) that can be safely prescribed
to patients with advanced prostate cancer and sclerotic
metastases [14, 48, 51, 55, 57, 58, 106]. It is of equal inter-
est to explore whether this can also be achieved in patients
with advanced breast cancer with osteolytic metastases,
who experience skeletal fragility at much faster rates than
their counterparts with sclerotic metastases. Furthermore,
it is of interest to explore whether skeletal integrity and
tumoural suppression are prevalent in humans, as preclin-
ical studies do not always translate to the human condi-
tion [61–63]. Indeed, it is not yet known whether

disease-affected bone sites adapt to mechanical stimuli to
the same order of magnitude or in the same morpho-
logical manner as unaffected healthy bone sites; nor is it
clear how muscle surrounding lesions may adapt given
the catabolic tumour microenvironment.
Accordingly, this study is our evaluation of the feasi-

bility, safety and preliminary efficacy of a modular,
multi-modal exercise programme, coupled with spinal
isometric training, to provide a non-invasive, low-cost,
innovative and scalable therapy in the management of
advanced breast cancer. Examination of the modulatory
potential of direct and targeted mechanical loading of
osteolytic spinal bone metastases will also be conducted
by quantifying tumour morphology and systemic activity
of metastatic biomarkers (HIF-1α, local hypoxia; TGF-β,
transformation growth-like factor), whilst also exploring
whether targeted exercise can reduce bone pain, pre-
serve neighbouring skeletal mass and structure (i.e. un-
affected vertebrae above and below affected lesion sites)
and reduce or avoid exacerbation of bone pain. Add-
itionally, this study will also examine the multifaceted
and broader effects of exercise participation by patients
with advanced breast cancer on muscle and bone health
(mass and strength), adiposity (subcutaneous and vis-
ceral), physical fitness and function and psychosocial
health (focusing on quality of life).
Outcomes of this study will inform future research into

sclerotic, osteolytic or mixed lesions across solid and haem-
atological malignancies (such as multiple myeloma), par-
ticularly in patients with cancer and extensive or
widespread bone metastases and high disease burdens who
would otherwise be contraindicated for exercise. Optimis-
tically, the generalisability of this exercise programme
across models seems achievable, given it is supervised, indi-
vidualised and tailored to each patient’s unique condition,
and thus auto-regulated accordingly [48, 51]. The mechan-
istic insights of this study may also inform the development
of effective pharmaceutical or medical treatments with ave-
nues to target bone metastases. Given the preliminary effi-
cacy (phase 1) nature of this pilot study, the results will be
used to pursue larger phase II and III clinical trials to deter-
mine the efficacy of the programme in tumour suppression
or regression in patients with osteolytic bone metastases
secondary to breast cancer, and to develop an exercise pro-
gram that can inevitably and immediately be delivered in
clinical and community settings by accredited or certified
clinical exercise physiologists.

Additional files

Additional file 1: Floor-based, spinal isometric exercise library for
patients with prostate cancer and spinal bone metastases, to cater for
varying physical capabilities and training progression rates. (PDF 554 kb)

Hart et al. Trials          (2018) 19:695 Page 11 of 15

https://doi.org/10.1186/s13063-018-3091-8


Additional file 2: Seated and standing, spinal isometric exercise library
for patients with prostate cancer and spinal bone metastases, to cater for
patients unable to perform floor-based exercises. (PDF 511 kb)

Additional file 3: Photographic examples of prone (left) and supine
(right) floor-based spinal isometric exercises, illustrating the start position
and final hold positions of each labelled exercise to assist exercise physi-
ologists and patients with cancer. The patient shown has signed a media
release consent form. (PDF 923 kb)

Additional file 4: SPIRIT 2013 Checklist: Recommended items to address
in a clinical trial protocol and related documents. (DOCX 51 kb)
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