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Abstract

Background: PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction
partners. Because of the involvement of PDZ domains in many important biological processes, several attempts
have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks.
Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach.
Since, they have been trained using experimental substrate specificity data for specific PDZ families, their
applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of
PDZ-peptide interaction interfaces.

Results: We have used a structure based approach to develop modPDZpep, a program to predict the interaction
partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts
interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores
using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide
binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for
binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks.
Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC
values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep
is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by
utilizing available experimental phage display data or by structure based predictions.

Conclusions: In summary, we have developed modPDZpep, a web-server for structure based analysis of human
PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html.

Reviewers: This article was reviewed by Michael Gromiha and Zoltán Gáspári.
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Background
PDZ domains are peptide recognition modules (PRMs)
which recognize short 5-6 residue peptides present in C-
terminal of their interaction partners. They are known
to be involved in many important biological processes
and disruption of PDZ domain mediated interactions
leads to several diseases like cancer and neurological dis-
orders [1]. Despite of having low affinity, they exhibit
high degree of specificity. Earlier they have been

classified into three classes based on their binding speci-
ficity: class1 (XϕXϕ), class2 (X[T/S]Xϕ) and class3 (X[E/
D]Xϕ), where ϕ represents any hydrophobic amino acid
[2, 3]. Their specificity landscape has been further ex-
plored by the phage display experiments using random
peptide libraries and these studies have defined 16 speci-
ficity classes of PDZ domains [4]. In view of the small
interaction interface mediated by peptides, they are
targets for intervention by small molecules or peptido-
mimetic modulators [5]. Even though available ex-
perimental data on peptide binding specificity of PDZ
domains have provided valuable clues for deciphering
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their complex specificity landscape, for prediction of
genome wide interaction partners of PDZ domains, it is
necessary to develop fast computational approaches
which can quickly scan large number of potential bind-
ing partners and will also permit analysis of structural
details of binding interfaces.
Among the computational tools currently available for

prediction of PDZ binding partners, PDZpepInt [6] uses
only sequence information of the substrate peptide and
it has been trained using experimental data on binding
specificity for 94 PDZ domains in total from human,
mouse, worm and fly obtained from PDZBase [7], 54 hu-
man PDZ domains from phage display data and also
additional data on mouse PDZ domains from microarray
studies [4, 8]. Based on clustering of sequence of the
query PDZ domain along with sequences of PDZ do-
mains used in training, PDZpepInt permits peptide bind-
ing prediction for other human PDZ domains as well.
However, out of 264 PDZ domains present in human
genome, PDZpepInt can predict substrates for only 105
human PDZ domains. In contrast to the sequence based
approach used in PDZpepInt, the POW server developed
by Hui et al [9] uses a structure based approach, but it
also utilizes machine learning and it has been trained
using experimental data on PDZ binding specificity of
25 human and 58 mouse PDZ domains [4, 8]. Even
though POW server of Hui et al can in principle predict
substrates for about 218 human PDZ domains, it has
not been benchmarked on newly available experimental
binding specificity data [10]. Secondly POW server does
not provide any tool for structural analysis of binding
interface, even if it uses a structure based approach for
prediction of PDZ substrates. In a recent work from our
group, we demonstrated that structure based approach
in combination with residue based statistical pair poten-
tials is a practical approach for genome wide scan of
PDZ interaction partners and prediction accuracy of this
approach was benchmarked using high throughput
proteome array data on 79 mouse PDZ domains and 217
mouse proteome derived C-terminus peptides [8, 11]. In
this work, we have developed modPDZpep web server to
predict the interaction partners of human PDZ domains
using a structure based approach and attempted to
benchmark prediction accuracy of this structure based
approach using phage display and other available experi-
mental data for human PDZ domains. Unlike PDZpepInt
and POW, modPDZpep does not require experimental
binding specificity data for training. Hence, all the avail-
able binding specificity data has been used as test set for
validating the structure based prediction approach used
in modPDZpep. modPDZpep provides user friendly
graphical user interfaces for structural analysis of mod-
eled PDZ peptide complexes. Secondly, since mod-
PDZpep uses statistical pair potentials for scoring of

binding energy, it is fast enough for genome scale analysis
of PDZ interaction networks. The backend databases of
modPDZpep have also stored experimental specificity data
on various human PDZ domains obtained from phage dis-
play studies. Using phage display data and structure based
prediction modPDZpep can also identify novel PDZ medi-
ated interactions in human protein-protein interaction
(PPI) network, many of which are not present in databases
like STRING [12].

Results and discussion
modPDZpep uses a homology modeling approach in
combination with statistical pair potentials
As depicted in Fig. 1, our structure based approach es-
sentially follows a homology modeling protocol. It re-
quires peptide bound structures of PDZ domains as
template for modeling the query peptide in complex
with a selected PDZ domain. The conformation of the
main chain of substrate peptide is retained same as tem-
plate and then side-chains are generated using SCWRL
rotamer library [13] as per the sequence of the query
peptide. Our approach is based on the assumption that
backbone structural variations both in the PDZ domains
and the bound peptides are minimal. Analysis of crystal
structures of PDZ domains and PDZ-peptide com-
plexes in earlier studies from our group as well as
others [11, 14] have revealed that, backbone RMSDs
of PDZ domains show good correlation with sequence
similarities. It has also been shown that backbones of
bound peptides superpose well when corresponding
PDZ domains are superimposed. Therefore, in coarse
grained modeling of PDZ peptide complexes for quick
screening of binding partners assumption about minimal
structural variations is justified. However, this does not
imply that conformational flexibility of PDZ-peptide com-
plexes have no role in peptide recognition.
After modeling the structure of the desired PDZ-

peptide complex, the binding energy of the peptide in
the PDZ pocket is scored using Betancourt-Thirumalai
(BT) residue based statistical pair potential matrix [15].
BT (Betancourt-Thirumalai) pair potential is a know-
ledge based scoring function derived from observed con-
tact frequencies between various amino acid residues
and is expressed as 20x20 contact potential matrix corre-
sponding to all possible amino acid pairs. The binding en-
ergy for each PDZ-peptide complex is scored as sum of
the interactions between all residue pairs between the
peptide and PDZ domain which are at a distance less than
4.5 Å. Residue based statistical pair potentials are less
compute intensive and allow the fast screening of poten-
tial peptide substrates of PDZ domains and are thus suit-
able for genome scale analysis of interaction network. A
number of different residue based statistical pair potentials
are available in the literature and they have been
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successfully used in several protein structure prediction
studies [16, 17]. They all have been derived from observed
contact frequency of different pairs of amino acids in a
non-redundant set of crystal structures in PDB. Basic as-
sumption in derivation of all these pair potentials is that
the observed contact frequency of an amino acid pair
when normalized with respect to the expected frequency
in a suitable reference state would present interaction en-
ergy between the residue pair. The major difference in
various pair potentials is in the choice of reference state.
Miyazawa-Jernigan (MJ) potential [18] was derived using
solvent as reference state while Betancourt-Thirumalai
(BT) pair potential used a solvent like molecule Thr as ref-
erence state. Therefore, it has been suggested that while
MJ matrix gives more weightage to hydrophobic interac-
tions, BT matrix can also represent hydrophilic interac-
tions more accurately [19]. In our earlier study BT matrix
was found superior to MJ matrix in identification of inter-
action partners of MHCs, kinases and mouse PDZ do-
mains [11, 20–22]. Therefore, we preferred to use BT pair
potential [15] for scoring PDZ-peptide complexes in
modPDZpep.

Structures of almost all human PDZ domains can be
modeled
For 16 human PDZ domains crystal structures were
available for PDZ-peptide complexes and hence for these
16 PDZ domains bound peptide of any given sequence
can be modeled by in silico mutation of side chains of
bound peptides. For 75 PDZ domains crystal structures
were available for PDZ domain alone, hence peptide
bound structures were modeled by superposition of the
PDZ domain on most similar PDZ-peptide crystal struc-
ture and by transforming the coordinates of the bound
peptide from crystal structure. For the remaining 169
PDZ domains for which no crystal structures were avail-
able, homology models were built using SWISS-MODEL
[23] and then peptide bound PDZ models were obtained
by coordinate transformation from most similar crystal
structures of PDZ-peptide complexes. This led to gener-
ation of template library of 260 PDZ-peptide complexes
out of 264 human PDZ domains obtained after mapping
the PDZ sequences retrieved from te Velthius et al. [24]
to Uniprot accession numbers [25]. These 260 PDZ-
peptide complexes can be used to model any peptide

Fig. 1 Overview of different features of modPDZpep. a modPDZpep has cataloged information on sequence, 3D structure and experimental
substrate specificity data for all human PDZ domains. It also provides links to STRING database and KEGG GENES for analyzing functional
interaction network. b PDmapper module aids in mapping of PDZ binding phage display peptides to UniProt AC and exploring new interactions
involving PDZ domains. c The peptide bound structure of any human PDZ domain with any query peptide can be modeled and binding energy
can be computed with modPDZpep

Sain and Mohanty Biology Direct  (2016) 11:48 Page 3 of 16



sequence in binding pocket of a given PDZ, but the
length of the bound peptide will be restricted to the
length of peptide present in the template PDZ-peptide
crystal structure (Figs. 2 and 3). However, since recogni-
tion motif for most PDZ domains being around 5 residues,
peptide length will not be a constraint in estimating bind-
ing energy of any peptide with these 260 human PDZ
domains. Thus our template library covers ~98 % of the
human PDZome and interactions for them can be
predicted using structure based approach. The human
PDZ-mediated interaction network can be structurally an-
notated using this template library.

Benchmarking of modPDZpep
modPDZpep has cataloged experimentally characterized
interaction data on 199 human PDZ domains with 2898
peptides by compiling data from various high through-
put studies reported in literature [4, 10, 26, 27]. Since
our method is not training-based, experimental data can
be solely used for testing the prediction accuracy of
modPDZpep. Therefore, we wanted to investigate the
predictive power of the statistical pair potential based
structural modeling approach for human PDZ domains
using this experimental specificity data. Out of these in-
teractions, a subset of PDZ domains for which both
positive and real negative interaction data were available
was used for benchmarking (see Methods). Receiver Op-
erating characteristic (ROC) and precision-recall (PR)
analysis were used to assess the performance of our ap-
proach. Since real negative dataset for PDZ domains will
be smaller in size compared to positive dataset of known

binders, one often deals with highly imbalanced data set
and several strategies have been proposed for ROC ana-
lysis of imbalanced dataset [28]. We carried out re-
sampling of the data by randomly selecting equal number
of positive and negative peptides in each set and comput-
ing separate area under curve (AUC) values for each set,
and finally average AUCs was recorded for each PDZ do-
main. Figure 4a shows typical ROC curve and Precision-
Recall (PR) plot for the predictions on MUPP1_1 PDZ
domain by modPDZpep and they have AUC values of
0.953 and 0.997 for ROC and PR respectively, indicating
high prediction accuracy. The AUC values of the ROC and
PR curves for the predictions on all the 43 different PDZ
domains by modPDZpep are shown in Fig. 4b and AUC
values for those plots are given in Table 1. In cases where
number of non-binders was much less compared to the
number of binders, AUC was calculated by dividing the
binders into multiple sets such that, approximately equal
number of binder and non-binder were in each set and
average AUC values are reported. The obtained average
values of ROC-AUC of ~0.71 and PR-AUC of ~0.75 for
this set of 43 PDZ domains indicate that it can successfully
predict the human PDZ-peptide interactions. We also cal-
culated other statistical parameters like sensitivity/specifi-
city, accuracy, false positive rate (FPR), positive prediction
value (PPV) and F1 score etc (Table 2) at a score cut off of
-2.11 by randomly selecting equal number of binder and
non-binder peptides (~290) for 34 domains having ROC-
AUC >0.6. For this balanced set of binder and non-binder
peptides from 34 PDZ domains, the average ROC-AUC
was 0.79 and PR-AUC was 0.8, thus indicating a good

Fig. 2 Generation of template library containing peptide bound PDZ domains. The set of 267 human PDZ domains identified by te Velthius et al.
[24] were mapped onto proteins in UniProt. UniProt ACs could be obtained for 264 PDZ domain containing proteins. For each of these 264 PDZ
domains a stretch of residues N-terminus to the domain sequences identified by te Velthius et al. [24] were also included as that region harbored
a structurally conserved β sheet. The structural models for each of these 264 PDZ domains in absence of the bound peptide were obtained from
SWISS-MODEL. Each of these 264 ligand free PDZ structural models were aligned with the available 38 peptide bound crystal structures of PDZ
domains and from nearest peptide bound PDZ domain, the peptide coordinates were transformed after optimal superposition of apo and holo
PDZ domain structures. Using this protocol peptide-bound structural model could be obtained for 260 human PDZ domains and remaining four
were excluded as they lacked complete 3D structure of the PDZ domain
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representative data set. It was encouraging to note that,
modPDZpep had sensitivity, specificity, accuracy and PPV
values close to 70 %.
The PDZ domains for which real negative interaction

data was not available, artificial negative data [9] ob-
tained by in silico approach was used. Additional file 1:
Table S1 shows AUC values for ROC- and PR-curves for
an additional set of 14 PDZ domains which were bench-
marked using artificial negative data. Since this set had
more number of artificial negative non-binders com-
pared to true binders for different PDZ domains, here
also AUC values for each PDZ domain was calculated by
randomly dividing the data into multiple sets, such that
each set has equal numbers of binders and non-binders.
The final AUC values listed in Additional file 1: Table S1
for each PDZ domain is calculated by averaging over
multiple sets. Thus out of the 260 human PDZ domains
for which substrates can be predicted by modPDZpep,
benchmarking of prediction accuracy could be done for
a total of 57 human PDZ domains showing good average
ROC-AUC of 0.7. It may be noted that, earlier studies
which have used machine learning approach have bench-
marked their method on around 27 human PDZ do-
mains [9, 29]. Thus modPDZpep has been benchmarked
on highest number of human PDZ domains. All the test
data used in the benchmarking are available under
benchmark section of modPDZpep web server.

Even though modPDZpep uses residue level scoring
scheme, it also provides coordinates of all atom models
for PDZ-peptide complexes for detailed analysis of inter-
actions in the binding pocket. These models can be used
for re-evaluation of binding energy using atomistically
detailed energy functions such as MM-PBSA analysis
[30]. modPDZpep uses static crystal structures as tem-
plates for modeling the peptides in the binding pocket of
PDZ domains and this is based on the assumption that
structural variations in the backbone of the PDZ do-
mains and peptide are minimal. We wanted to investi-
gate whether incorporating flexibility by refining the
PDZ-peptide using explicit solvent MD simulation can
improve the prediction performance. Therefore MD sim-
ulations for 5 ns each was performed on all PDZ-peptide
complexes for GRIP2_2 PDZ domain and MM-PBSA
analysis [30] was performed on MD trajectory to calcu-
late the binding energy values for these complexes. As
can be seen in case of GRIP2_2 PDZ domain ranking of
peptides based on their MM-PBSA energy values re-
sulted in improvement in ROC-AUC value to 0.63, com-
pared to the ROC-AUC value of 0.47 obtained from pair
potential ranking in modPDZpep (Fig. 4c).
Next, we wanted to find out the reason behind differ-

ences in prediction performance of our approach on
various PDZ domains. First, we analyzed the dependence
of substrate prediction performance of modPDZpep on

Fig. 3 Histograms showing quality of structural models obtained for human PDZ domains. a Number of models is plotted against the sequence
identity between the target and template PDZ sequences. 118 out of 169 PDZ domains have >40 % sequence identity to the PDZ domain structures
used as template for generating the structural models, while crystal structures were available for 91 human PDZ domains. b Number of models is
plotted against the RMSD of PDZ Structural models to the peptide bound templates calculated with TM-align. Most of the PDZ domains show <2.5
RMSD to the peptide bound templates
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sequence identity of the PDZ domain with the structural
templates. We did not find any correlation between the
performance of modPDZpep and sequence identity with
structural template (data not shown). However, as dis-
cussed earlier MM-PBSA results for GRIP2_2 peptide
complexes indicate that refinement of the PDZ-peptide
complex by inclusion of flexibility for both ligand and
receptor leads to better identification of binding pocket
residues and this helps in improving the prediction per-
formance. Therefore, it is possible that for certain PDZ
domains where conformational flexibility plays a crucial
role, modPDZpep (which uses static structures for bind-
ing affinity predictions) has low prediction accuracy.

modPDZpep can perform better on unseen data
modPDZpep was compared with POW (structure based
approach) [9] to analyze its predictive power. Predic-
tions can be carried out using modPDZpep for 260 out
of 264 human PDZ domains, while POW can predict
substrates for only 218 human PDZ domains. Thus
modPDZpep has higher coverage of human PDZ do-
mains. Additional file 1: Table S2 lists the 43 PDZ do-
mains used in benchmarking of modPDZpep and also
the PDZ domains used in training set by POW. Using
real negative data a fair comparison between POW and
modPDZpep can only be carried out for 33 PDZ do-
mains for which real negative data has not been used

Fig. 4 a ROC-curve for predictions of binder and non-binder peptides for MUPP1_1 PDZ domain is shown in upper panel with AUC (area under
curve) value of 0.953 and lower panel shows PR-curve for same domain with AUC value of 0.997. b Performance of modPDZpep for prediction of
binder and non-binder peptides for 43 human PDZ domains estimated using AUC values of ROC and PR curves. ROC and PR-AUC values for all
43 PDZ domains are present in Table 1. c Typical example (GRIP2_2 PDZ) of improvement in performance upon using atomistically detailed
MM-PBSA approach for scoring of binding energy
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by POW for training (Additional file 1: Table S2). In
addition we also included 19 PDZ domains for com-
parison using artificial negative data, even if artificial
negative data for these 19 PDZ domains had been in-
cluded in the training of POW.
Figure 5 shows that when phage display peptides re-

ported by Tonikian et al. [4] are used as binders along
with artificial negative data [9] as test set for 19 human
PDZ domains (red dashed line), POW had a ROC-AUC of
0.96. However, it must be noted that the same data was
used as training set in the POW, while modPDZpep does
not use any data for training and hence, achieved ROC-
AUC of 0.74. On the contrary, when benchmarking was
carried out using binder data for 33 PDZ domains from 4
publications [4, 10, 26, 27] and real negative data as non-
binders, modPDZpep outperforms with ROC-AUC of
0.71 as compared to POW which had ROC-AUC of 0.69.
The main reason for lower prediction accuracy by POW is
that, binding specificity data for these PDZ domains has
not been used in training of their method. On the other
hand, modPDZpep which is not a training based
method performs better on this dataset by using con-
served features of protein-peptide complexes. The pre-
diction of interacting partners can be further improved
by using all-atom energy functions on the structural
models obtained from modPDZpep as we have shown
for GRIP2_2 PDZ domain (Fig. 4c). Also incorporation
of training into structure based approach of mod-
PDZpep may lead to better performance as shown in a
recently published method MSM/D which predicts

Table 1 ROC-AUC and PR-AUC values for 43 Human PDZ
domains with real negative interaction data

Domain ROC-AUC PR-AUC #Binder #Non-binder

DLG4_1 0.53 0.52 71 5

DLG4_3 0.74 0.76 89 5

ErbinLAP2 0.79 0.84 43 13

GIPC1_TIP_2 0.64 0.60 26 13

GOPC 0.32 0.34 13 8

GRIP2_2 0.47 0.69 6 5

GRIP2_3 0.78 0.82 8 5

InaDl_1 0.66 0.74 48 7

InaDl_2 0.80 0.86 53 7

InaDl_3 0.71 0.74 67 7

InaDl_4 0.68 0.75 40 7

InaDl_5 0.67 0.64 43 7

InaDl_6 0.60 0.58 41 6

InaDl_7 0.56 0.54 36 7

InaDl_8 0.45 0.52 30 6

InaDl_9 0.43 0.52 31 7

LIN7B 0.14 0.31 11 6

MAGI1_3 0.86 0.86 53 27

MAGI1_5 0.75 0.70 14 30

MAGI2_1 0.84 0.86 22 10

MAGI2_4 0.68 0.78 21 15

MAGI2_5 0.68 0.73 20 16

MAGI2_6 0.77 0.79 21 9

MAGI3_1 0.68 0.64 11 12

MAGI3_2 0.78 0.82 11 9

MAGI3_3 0.77 0.82 19 11

MAGI3_4 0.90 0.93 30 12

MUPP1_10 0.69 0.68 39 5

MUPP1_11 0.78 0.83 18 8

MUPP1_12 0.81 0.81 25 8

MUPP1_13 0.86 0.86 42 6

MUPP1_1 0.97 0.98 79 5

MUPP1_2 0.93 0.94 53 5

MUPP1_3 0.94 0.95 53 5

MUPP1_4 0.93 0.95 19 5

MUPP1_5 0.94 0.96 37 5

MUPP1_6 0.8 0.88 12 5

MUPP1_7 0.94 0.96 32 5

MUPP1_8 0.85 0.85 18 6

MUPP1_9 0.93 0.95 37 6

PICK1 0.51 0.56 36 6

Table 1 ROC-AUC and PR-AUC values for 43 Human PDZ
domains with real negative interaction data (Continued)

PTPN13_PTPL1_PTP1E_1 0.53 0.62 15 5

PTPN13_PTPL1_PTP1E_2 0.63 0.64 35 8

Average 0.71 0.75 - -

In cases where number of non-binders was much less compared to the number
of binders, AUC was calculated by dividing the binders into multiple sets such
that, approximately equal number of binder and non-binder were in each set and
average AUC values are reported

Table 2 Performance of modPDZpep assessed using additional
statistical parameters on randomly selected set of equal number
of binder and non-binder peptides for 34 domains having
ROC-AUC >0.6

Statistical Parameter Value (Score Cutoff: -2.11)

Sensitivity (%) 68.62

Specificity (%) 70

False Positive Rate (FPR %) 30

Positive Predictive Value (PPV %) 69.58

Accuracy (%) 69.31

F1 Score 0.69
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SH2-peptide interactions utilizing the structural infor-
mation and machine learning approach [31].

Development of web interface for modPDZpep
An interactive web based user interface for modPDZpep
is available through the URL http://202.54.226.235/mod
PDZpep.html. It allows the user to model a set of pep-
tides in complex with a PDZ domain and rank them as
per their binding energy. Similarly binding affinity of a
set of human PDZ domains in complex with a given
peptide can also be evaluated. The C-terminal peptide
sequence of the putative PDZ interaction partner can be
directly entered into the search box or it can be ex-
tracted from the UniProt AC and peptide length given
as input by the user. The result page of modPDZpep in-
cludes a table with BT pair potential score [15] for mod-
eled PDZ-peptide complexes, table of binding pocket
residues for highest affinity interaction and download-
able structural models for the PDZ-peptide complexes.
It also provides links to SWISS-MODEL modeling re-
port page to get detailed information on template PDZ
structures which were used to model the selected PDZ-
peptide complex and model quality. modPDZpep also
provides option to select and visualize binding pocket
and atomic details of any PDZ-peptide structural model
using the OpenAstexViewer [32] and JSmol.
Apart from modeling any input peptide in complex

with human PDZ domains, as mentioned before mod-
PDZpep also provides graphical user interfaces for ana-
lyzing structural details of experimentally identified

PDZ-peptide interactions obtained from phage display
studies. Currently the known dataset consists of approxi-
mately 5400 interactions for 199 human PDZ domains.
modPDZpep also provides links to external databases
like UNIPROT [25], KEGG GENES [33] and STRING
[12] and this helps the user in analyzing additional in-
formation about functional interaction network of any
human PDZ domain or its putative interaction partner
predicted by modPDZpep. An extensive tutorial with de-
tailed explanation on usage of various modules and fea-
tures of modPDZpep is available on the website.

PDmapper interface reveals novel PDZ mediated
interactions in human protein interaction network
A large proportion of the experimentally identified inter-
action partners of human PDZ domains are phage
display peptides which may not always correspond to
human proteomic peptides. Therefore, PDmapper inter-
face of modPDZpep provides a tool for mapping phage
display peptides onto C-terminals of human proteome
in terms of exact match or by allowing few mismatches.
The PDmapper allows mismatches at any position of the
five residue peptide subject to the constraint that C-
terminal residue is hydrophobic. When we mapped the
human phage display data from Tonikian et al. [4] to C-
terminal regions of human proteins, we found exact
match for only 45 peptides (Additional file 1: Table S3).
Thus these human proteins showing C-terminal matches
to PDZ phage display data are bonafide interaction part-
ners of human PDZ domains. Mapping of these PDZ
interaction partners onto STRING database revealed 32
new PDZ mediated protein-protein interactions which
are not annotated as direct interaction in STRING [12]
(Fig. 6). If PDmapper search is carried out allowing one
mismatch in the five-residue stretch additional new PDZ
mediated interactions can be found in PPI networks.
Figure 7 shows examples of direct PDZ mediated in-
teractions between DLG1 and ARHGAP6, and also
ZO1 and YAP1 which are not depicted in STRING as dir-
ectly interacting pairs. This analysis can be done by mod-
PDZpep for any peptide (phage display or predicted
binder peptides) using the link to ‘Analyze experimentally
known PDZ-peptide interactions’ with variability of one
residue and ‘PDmapper’ with variability at any position of
5-residue peptide.

SNPs can also be visualized on human PDZ domains
using modPDZpep
Single amino acid polymorphisms (SAPs) available in
Uniprot were mapped to human PDZ domains (Fig. 8)
and we found 53 SAPs to be lying on 44 PDZ domains,
out of which 5 are disease-associated SNPs (Additional
file 1: Table S4). Even though all these SAPs may not be
present in the binding pockets of PDZ domains, they

Fig. 5 Comparison of performances of modPDZpep and POW
(structure based approach) on 33 (combined positive interaction
data + real negatives) and 19 PDZ domains (Phage display peptides +
artificial negatives). It shows the differential performance of training
based methods on the dataset used for training versus data not
included in training
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may indirectly affect PDZ-mediated interactions prob-
ably by allosteric mechanisms. One such example is of
HTRA2-PDZ Gly399Ser SAP which leads to reduced
serine protease activity of HTRA2 and neurodegenera-
tion [34].

Conclusions
modPDZpep provides a platform for structure based ana-
lysis of human PDZ domain mediated interaction net-
works. Given any peptide sequence as input and selecting
a human PDZ domain, modPDZpep can provide its mod-
eled structure highlighting the binding interface residues
and a score representing the binding affinity between the
peptide and the PDZ domain. modPDZPep can predict
substrates for 260 out of 264 human PDZ domains, thus it
has a better coverage of human PDZ domains compared
to other PDZ substrate prediction servers like PDZpepInt
and POW. Our detailed benchmarking studies using avail-
able experimental data indicate that, performance of mod-
PDZpep is comparable to other machine learning based
tools like POW, even if it does not use any data for train-
ing. We also demonstrate that performance of structural
modeling based approach like modPDZpep can be im-
proved further by using all-atom energy functions and in-
corporating flexibility to the models of PDZ-peptide
complexes. Major advantage of modPDZpep over tools
like PDZpepInt and POW is the user friendly graphical
user interfaces for analysis of interaction interfaces of the
modeled PDZ-peptide complexes. Since all the available
phage display data on human PDZ domains are stored in
backend databases of modPDZpep, the user can analyze
structural basis of recognition specificity for various hu-
man PDZ domains. It also provides interfaces for mapping

these peptides from phage display studies or other pre-
dicted substrate peptides to C-terminal peptides in human
proteome and searching the given PDZ-protein pair in
PPI databases like databases like STRING. Using this ap-
proach, we have identified several novel PDZ mediated in-
teractions in human PPI network. modPDZpep also
facilitates analysis of SNPs associated with any human
PDZ domains using information from external databases.
In summary, modPDZpep will complement the available
tools for prediction and analysis of human PDZ networks.
In this work, we have focused on the most prevalent

mode of interaction of PDZ domains i.e., C-terminal
peptide recognition. While most PDZ domains recognize
C-terminus peptides, there are certain PDZ domains
which recognize internal peptides [35, 36]. Similarly tan-
demly occurring multiple PDZ domains on a single poly-
peptide constitute PDZ supramodules and play important
structural and functional role [37]. In case of supramo-
dules interactions between adjacent PDZ domains can
affect peptide recognition of constituent PDZ domains
because of allosteric regulations. Current version of mod-
PDZpep is not capable of predicting the peptide ligand
interaction with PDZ supramodules or binding modes of
internal peptides.

Methods
Generation of template library for modPDZpep
The sequence of all the PDZ domains in humans were
obtained from earlier work by te Velthius et al. [24] for
generating the structural templates for all human PDZ-
peptide complexes. However, domain boundaries of hu-
man PDZ domains were corrected by adding sequence
of the N-terminus first β-sheet and 20 residues long

Fig. 6 PDZ-protein interaction networks representing novel PDZ mediated interactions identified with PDmapper module of modPDZpep. Red
colored nodes depict the PDZ domains and blue colored nodes are the ligand proteins harboring PDZ recognition motifs in the C-terminus
based on exact match with PDZ phage display peptides
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extended C-terminal region from Uniprot [25] as
these regions were not present in sequences compiled
by te Velthius et al. [24]. It has been suggested that
the C-terminal extension of PDZ domains often have
impact on their interactions [38], therefore the 20
residues stretch at the C-terminus is also included in
their sequence which may be useful in detailed struc-
tural analysis.

PDZ domain structures were modeled using automated
mode of SWISS MODEL [23] if they were not available in
PDB. For obtaining the peptide bound models, peptide co-
ordinates were transformed from most similar peptide
bound PDZ structure after superimposition of the two
structures. It is important to accurately align the two
structures for efficient transformation of the coordinates,
hence this step is performed with TM-align [39] which

Fig. 7 Snapshots depicting utility of modPDZpep in identifying novel direct physical interactions mediated by PDZ domains in Protein-Protein
interaction networks available in STRING database. XXXXXFETLV and VTYWLFSTWL were two peptides found to be interacting with first PDZ domains
of DLG1 and ZO1 respectively according to phage display data. When the last five residues of these peptides were searched in human C-terminal
proteome, both peptides got two hits with one residue mismatch. In case of DLG1_PDZ1, out of the two interaction partners predicted by PDmapper
module of modPDZpep, ARHG8 (NET1) is the known interactor present (link indicated by P) in STRING database, but RHG06 (ARHGAP6) which did not
have a direct link with DLG1 in STRING is predicted as a new interaction partner of DLG1_PDZ1. Similarly, in case of ZO1 PDZ1 in addition to the
known interaction WWTR1, YAP1 is predicted as a new PDZ mediated interaction partner
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can detect fold level similarity. The binding pocket resi-
dues of PDZ domain interacting with the peptide were
identified from the peptide bound PDZ structure using a
distance cutoff of 4.5 Å between any two atoms of a resi-
due pair belonging to peptide and PDZ domain.

Compilation of high throughput data on substrate
specificity of human PDZ domains and compilation of
dataset for benchmarking
The high throughput data sets on substrate specificity of
human PDZ domains were compiled from phage display
studies reported in literature as well as data available in
various protein interaction databases [4, 10, 26, 27]. In
total, these datasets consist of 5400 interactions for 2898
peptides with 199 human PDZ domains and constitute
the positive or binder data. However, after removal of re-
dundant data and exclusion of binder peptides which

accommodated any amino acid in any of the terminal
five positions, a dataset of 4187 positive interactions for
1907 peptides and 199 PDZ domains was obtained. They
have all been stored in backend databases of modPDZpep
and are available through ‘Analyze experimentally known
PDZ-peptide interaction’ interface in modPDZpep home-
page. The majority of the experimental data available for
PDZ binding peptides are binary. All the data used for
benchmarking in the current study are binary values for
binders and non-binders.
The real negative interaction data was taken from the

study reported by Luck et al. [40] where they had com-
piled information from published literature. It provided
the 121 non-binder peptides for 79 human PDZ domains
defining a total of 573 negative interactions. Both
positive and negative data was available for only 66 PDZ
domains. However, for benchmarking the prediction

Fig. 8 Screenshot depicting SNP analysis of PDZ domains. a Upon selecting a PDZ domain, if the non-synonymous SNPs resulting in single
amino acid polymorphisms (SAP) are known to occur on the corresponding PDZ domain, modPDZpep shows relevant information i.e. mutation,
amino acid position and disease association etc from dbSNP and OMIM. b Histogram showing number of single amino acid polymorphisms
(SAP) present on various PDZ domains
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accuracy of modPDZpep a dataset of 43 PDZ domains
having more than and equal to five binder and non-
binder peptides were considered.

Performance evaluation
We have evaluated prediction accuracy by ROC analysis
which involves calculating TP, TN, FP and FN at differ-
ent values of computed binding energy score cut offs.
For this, BT score for every peptide in the dataset was
used as cutoff to compute TPR and FPR values. TPR vs
FPR curve was plotted and the area under the curve
(AUC) value was used as performance measure, with
higher AUCs indicating better prediction accuracy. AUC
value of 1 represents an ideal predictor and 0.5 a ran-
dom predictor. Apart from ROC curve, Precision-Recall
curve was also plotted to assess the performance of
modPDZpep. Precision-Recall curve as its name sug-
gests is a curve of precision and recall taken at Y-axis
and X-axis respectively.
TPR (True positive rate/Sensitivity/Recall) = TP/

(TP + FN)
FPR (False positive rate) = FP/(FP + TN)
Specificity = 1-FPR
Positive predictive value (precision) = TP/(TP + FP)
Accuracy = (TP + TN)/(TP + FP + TN + FN)
F1 score = 2(Precision)(Recall)/(Precision + Recall)
Where TP = True positives, FP = False positives,

TN = True negatives and FN = False negatives. The AUC
values were computed by PRROC [41] and ROCR [42]
package of R.

Molecular dynamics simulations and MM-PBSA analysis
The GRIP2_2 PDZ-peptide complexes of all 11 binder
and non-binder were subjected to molecular dynamics
(MD) simulations using ff03 force field of AMBER 12
[43]. Water molecules were used to solvate the com-
plexes in a rectangular box of 8 Å extending from outer-
most atoms of protein. Then they were minimized by
steepest descent algorithm using convergence criteria of
0.001 kcal/mole/Å as RMS gradient of potential energy
and equilibrated in two steps. In first step, temperature
was increased gradually to 300 K under NVT conditions
using langevin temperature equilibration scheme and
next pressure was equilibrated for 100 ps. Production
dynamics was performed for 5 ns at 2 fs time step under
NVT conditions. Particle Mesh Ewald (PME) approach
was used to calculate the non-bonded interactions and
long-range electrostatic interactions at cutoff of 10 Å.
Last 1 ns of simulation was used to extract the snap-
shots and get the average binding affinity from the tra-
jectories using python script of MM-PBSA analysis [30].
The binding free energy is computed as: ΔGbinding =

Gcomplex - Gpdz - Gpeptide, Where Gcomplex is the free energy

for the PDZ-peptide complex, Gpdz and Gpeptide are for the
PDZ and peptide respectively.

Creating human C-terminal proteome
The human C-terminal proteome was generated by
downloading the human reference proteome from Uni-
Prot [25] and extracting the last five residues of all pro-
tein sequences.

Mapping SAPs on PDZ domains
For SNP analysis, humsavar.txt (release: 2015_08 of 22-
Jul-2015) is downloaded from the UniProt [25] which
has listed ~71795 single amino acid polymorphisms
(SAPs) in human proteins. This document also provides
whether a SAP is known to be associated with disease or
not. They were mapped to all 264 human PDZ domains.

Reviewers’ comments
Reviewer’s report 1: Michael Gromiha, Indian Institute of
Technology Madras, India
Reviewer comments
Reviewer summary In this work, the authors developed
a method for predicting the interaction patterns of hu-
man PDZ domains using structure based approaches.
The structures of complexes have been utilized to pre-
dict interaction partners and evaluating binding energy
using statistical pair potentials. A web server has been
developed for the structure based analysis for application
point of view. The manuscript is well written and suffi-
cient details are provided for the analysis and prediction.
Reviewer recommendations to authors
It could be strengthened by incorporating the following
suggestions.
1. The residue pair potentials have been used to compute

the binding energy. It will be helpful to provide the details
about BT potentials, obtaining the binding energy from BT
pair potentials and the contributions in DGbinding.
Author’s response: BT (Betancourt-Thirumalai) pair

potential is a knowledge based scoring function derived
from observed contact frequencies between various amino
acid residues and expressed as 20x20 contact potential
matrix corresponding to all possible amino acid pairs.
The binding energy for each PDZ-peptide complex is
scored as sum of the interactions between all residue
pairs between the peptide and PDZ domain which are at
a distance less than 4.5 Å. The binding energy score
computed using residue based pair potential is assumed
to correlate with binding free energy in a low resolution
model, thus it is a suitable scoring function for discrim-
inating potential binders from non-binder peptides.
However, our earlier studies have indicated that high
resolution models with atomistic scoring functions are
required for quantitative correlation with experimental
binding free energies.
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2. It is not clear whether the experimental data are
binary or real values. If the real values are known the
performance may assessed with correlation coefficient
and mean absolute error. It seems the binding energy
data are in numerical values and it will be better to ex-
plain the procedure to convert into binaries (any cutoff
values) to compute TP, TN, FP and FN.
Author’s response: The majority of the experimental

data available for PDZ binding peptides are binary. All
the data used for benchmarking in the current study are
binary values for binders and non-binders. Real values of
binding affinities are available only for few PDZ domains
and in an earlier study from our group we have used
that data to evaluate correlation coefficient between pre-
dicted and experimental binding energies.
We have evaluated prediction accuracy by ROC ana-

lysis which involves calculating TP, TN, FP and FN at
different values of computed binding energy score cut offs.
For this, BT score for every peptide in the dataset was
used as cutoff to compute TPR (=TP/TP + FN) and FPR
(=FP/FP + TN) values. TPR vs FPR curve was plotted
and the area under the curve (AUC) value was used as
performance measure, with higher AUCs indicating bet-
ter prediction accuracy. AUC value of 1 represents an
ideal predictor and 0.5 a random predictor.
3. Several decimal points are not necessary in Table 1.
Author’s response: We have modified Table 1 and

rounded off values to two digits after decimal.
4. Experimental data should be given at the website.
Author’s response: We have provided the experimental

data compiled for this study under the link ‘Analyze ex-
perimentally known PDZ-peptide interactions’ in mod-
PDZpep web server.
5. The performance may be compared with other

methods in the literature although they use experimental
data for training.
Author’s response: The performance of modPDZpep

has been compared with the other structure based
method POW [9] which uses experimental data for train-
ing. These results are shown in Fig. 5. modPDZpep is
found to have better performance on unseen data, while
on datasets which have been used for training of POW,
the performance of POW was higher compared to
modPDZpep.
6. Molecular dynamics simulations have also been per-

formed to obtain the binding energy. It is not clear
about the applications of MD in prediction.
Author’s response: modPDZpep uses static crystal

structures as templates for modeling the peptides in the
binding pocket of PDZ domains and this is based on the
assumption that structural variations in the backbone of
the PDZ domains and peptide are minimal. We wanted
to investigate whether incorporating flexibility by refining
the PDZ-peptide using explicit solvent MD simulation

can improve the prediction performance. Therefore MD
simulations for 5 ns each was performed on all PDZ-
peptide complexes for GRIP2_2 PDZ domain and MM-
PBSA analysis was performed on MD trajectory to calcu-
late the binding energy values for these complexes. Rank-
ing of peptides based on their MM-PBSA energy values
resulted in improvement in ROC-AUC value for GRIP2_2
PDZ domain compared to the ROC-AUC values ob-
tained from pair potential ranking in modPDZpep.

Reviewer’s report 2: Zoltán Gáspári, Pazmany University,
Budapest
Reviewer comments
Reviewer summary The manuscript describes a method
to estimate the binding affinities of peptides to human
PDZ domains. The method is based on structural mod-
eling of the complexes. The approach is interesting and
combines previous results in a meaningful and usable
manner. The corresponding web service is well designed
and offers useful functionality. Overall I think that the
workflow has its merits and is of importance in its field.
Reviewer recommendations to authors
I have remarks about the presentation and discussion of
the results.
- The study implies that backbone structural variations

both in the PDZ domain and the bound peptide are neg-
ligible. It would be advisable to provide a justification of
this premise.
Author’s response: Our approach is based on the as-

sumption that backbone structural variations both in the
PDZ domains and the bound peptides are minimal. Ana-
lysis of crystal structures of PDZ domains and PDZ-
peptide complexes in earlier studies from our group as well
as others [11, 14] have revealed that, backbone RMSDs of
PDZ domains show good correlation with sequence simi-
larities. It has also been shown that backbones of bound
peptides superpose well when corresponding PDZ do-
mains are superimposed. Therefore, in coarse grained
modeling of PDZ peptide complexes for quick screening of
binding partners assumption about minimal structural
variations is justified. However, this does not imply that
conformational flexibility of PDZ-peptide complexes have
no role in peptide recognition. As explained in answer to
the next question, for certain PDZ domains where per-
formance of modPDZpep is not good, conformational
flexibility might be playing a significant role.
- Can the authors offer any (structure-based) explan-

ation for the differences in performance on different
PDZ domains?
Author’s response: Our structure based approach relies

on accurate modeling of the structure of the PDZ do-
mains and identification of the correct binding pocket
residues. We have analyzed the dependence of substrate
prediction performance of modPDZpep on sequence
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identity of the PDZ domain with the structural tem-
plates. We did not find any correlation between the per-
formance of modPDZpep and sequence identity with
structural template (data not shown). However, when we
performed the MD simulation and MM-PBSA analysis
on one of the PDZ domains i.e., GRIP2_2 peptide com-
plexes, we noted improvement in ROC-AUC. This implies
that refinement of the PDZ-peptide complex by inclusion
of flexibility for both ligand and receptor leads to better
identification of binding pocket residues and this helps in
improving the prediction performance. Therefore, it is
possible that for certain PDZ domains where conform-
ational flexibility plays a crucial role, modPDZpep
(which uses static structures for binding affinity predic-
tions) has low prediction accuracy.
- Please comment on the relation of the approach and

known variations of PDZ:peptide binding modes, with
emphasis on PDZ-PDZ supramodules (e.g. Feng &
Zhang, 2009, Nat Rev Neurosci 10:87).
Author’s response: There are other known non-

canonical modes of recognition for PDZ domains like
interaction with internal peptides. While most PDZ do-
mains recognize C-terminus peptides, there are certain
PDZ domains which recognize internal peptides [35, 36].
Similarly, tandemly occurring multiple PDZ domains on
a single polypeptide constitute PDZ supramodules and
play important structural and functional role. In case of
supramodules interactions between adjacent PDZ do-
mains can affect peptide recognition of constituent PDZ
domains because of allosteric regulations [37]. In this
work, we have focused on the most prevalent mode of
interaction of PDZ domains i.e., C-terminal peptide
recognition. We generated the PDZ domain structural
models alone without considering the adjacent domains,
hence modPDZpep is not capable of predicting the pep-
tide ligand interaction with PDZ-PDZ or any other
supramodules. Similarly current version of modPDZpep
cannot model binding modes of internal peptides.
However, we have structures of some PDZ domains e.g.
ZO2_2, Periaxin etc. as homo-dimers in the template li-
brary which are known to dimerize through domain-
swapping.
- Please provide a more robust justification for using

the BT pair potential instead of referring to its applica-
tion in your previous work also.
Author’s response: Residue based statistical pair po-

tentials are less compute intensive and allow the fast
screening of potential peptide substrates of PDZ domains
and are thus suitable for genome scale analysis inter-
action network. A number of different residue based stat-
istical pair potentials are available in the literature and
they have all been derived from observed contact fre-
quency of different pairs of amino acids in a non-
redundant set of crystal structures in PDB. Basic

assumption in derivation of all these pair potentials is
that the observed contact frequency of an amino acid
pair when normalized with respect to the expected fre-
quency in a suitable reference state would present inter-
action energy between the residue pair. The major
difference in various pair potentials is in the choice of ref-
erence state. Miyazawa-Jernigan (MJ) potential was de-
rived using solvent as reference state while Betancourt-
Thirumalai (BT) pair potential used a solvent like mol-
ecule Thr as reference state. Therefore, it has been sug-
gested that while MJ matrix gives more weightage to
hydrophobic interactions, BT matrix can also represent
hydrophilic interactions more accurately. In our earlier
study BT matrix was found superior to MJ matrix in
identification of interaction partners of MHCs, kinases
and mouse PDZ domains.
Minor issues
- Please refrain from using the phrase “most homolo-

gous”, use “most similar” instead. Please comment on
whether here overall similarity or local similarity (in and
near the binding site) can yield more reliable results and
please state explicitly how you used and measured the
similarity in this respect.
Author’s response: The phrase “most homologous” has

been replaced by “most similar” throughout the manu-
script. We thank the reviewer for pointing this out.
In this work we have calculated sequence similarity

over the entire length of the PDZ domain. For a given hu-
man PDZ domain, the crystal structure having highest
sequence similarity has been used a template for struc-
tural modeling. Our work is based on the assumption
that high degree of overall sequence similarity also im-
plies high degree of local similarity in the binding pocket
region. Based on this assumption in case of PDZ crystal
structures lacking bound peptides, the peptide from the
structures having highest overall similarity have been
transformed after aligning the PDZ domains using TM-
align software.
However, we agree with the reviewer that binding

pocket similarity might be more useful and correlation
between overall similarity and binding pocket similarity
need to be analyzed for PDZ domains in details.
- Please explain in detail how exactly the 98 % estimate

of the human PDZome and its interactions potentially
covered by the approach was obtained.
Author’s response: The human PDZ sequences re-

trieved from te Velthius et al. [24] were mapped to Uni-
prot accession numbers and we found Uniprot accession
numbers for 264 human PDZ domains in total. Out of
these 264 human PDZ domains, structural models could
be built for 260 PDZ domains and modPDZpep server
can predict potential interaction partners for these 260
human PDZ domains using structure based approach.
Since modPDZpep can predict interaction partners for
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260 out of 264 human PDZ domains, we have mentioned
that it can predict interaction partners for ~98 % of hu-
man PDZome.
-In Additional file 1: Table S1, please give the mini-

mum and maximum ROC values and the standard devi-
ation besides the averaged value.
Author’s response: The values for maximum and mini-

mum AUC as well as corresponding standard deviations
have been added in Additional file 1: Table S1.
- I suggest to combine the Supplementary tables into a

single Excel file with multiple tabs.
Author’s response: All Supplementary tables have been

combined into EXCEL single file with multiple tabs.

Additional file

Additional file 1: All Supplementary tables are merged into single Excel
file. Table S1. ROC- and PR-AUC values for 14 Human PDZ domains with
artificial negative interaction data. Approximately equal number of binder
and nonbinder were considered in small sets and average AUC is calculated
for each domain. For SCRIBBLE1_LAP4_3, PSCDBP and NHERF2_2, equal
number of non-binder peptides were randomly selected and AUC is
calculated. This is repeated twice to get average AUC. Table S2. List of
43 PDZ domains included in modPDzpep testset. PDZ domains which
cannot be predicted by POW are marked as ‘N’, while those used in the
training are marked ‘T’. The list of test set peptides for these 43 PDZ
domains is available under Benchmark link of modPDZpep server.
Table S3. List of phage display peptides which showed exact match in
human C-terminal proteome Table S4. Amino acid variants present on
human PDZ domains. (XLS 55 kb)
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