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Abstract

Background: During embryogenesis, chemical (morphogen) and mechanical patterns develop within tissues in a
self-organized way. More than 60 years ago, Turing proposed his famous reaction-diffusion model for such processes,
assuming chemical interactions as the main driving force in tissue patterning. However, experimental identification of
corresponding molecular candidates is still incomplete. Recent results suggest that beside morphogens, also tissue
mechanics play a significant role in these patterning processes.

Results: Combining continuous finite strain with discrete cellular tissue models, we present and numerically
investigate mechanochemical processes, in which morphogen dynamics and tissue mechanics are coupled by
feedback loops. We consider three different mechanical cues involved in such feedbacks: strain, stress, and
compression. Based on experimental results, for each case, we present a feedback loop spontaneously creating robust
mechanochemical patterns. In contrast to Turing-type models, simple mechanochemical interaction terms are
sufficient to create de novo patterns.

Conclusions: Our results emphasize mechanochemical processes as possible candidates controlling different steps
of embryogenesis. To motivate further experimental research discovering related mechanisms in living tissues, we
also present predictive in silicio experiments.

Reviewers: Reviewer 1 - Marek Kimmel; Reviewer 2 - Konstantin Doubrovinski (nominated by Ned Wingreen);
Reviewer 3 - Jun Allard (nominated by William Hlavacek).

Keywords: Morphogens, Tissue morphogenesis, Development, Pattern formation, Mechanochemistry, Tissue
mechanics, Mechanotransduction, Reaction-diffusion, Long-range inhibition

Background
During embryonic development, a fertilized cell develops
step by step into a complex-patterned and shaped organ-
ism [15]. Themechanisms underlying these self-organized
patterning processes have been the focus of research since
several decades. The first relevant model goes back to the
seminal work of Alan Turing [53]. It is based on the obser-
vation that interactions between two diffusing chemical
species (termed ”morphogens”) with significantly differ-
ent diffusion rates may lead to symmetry breaking and
formation of periodic patterns. The most famous realiza-
tion of the Turing’s idea is the activator-inhibitor model
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proposed by Gierer and Meinhardt [14]. Its basic version
is given by two coupled reaction-diffusion equations [25]:

∂tc = ρc
(
c2/h − c

) + dc�c,
∂th = ρh

(
c2 − h

) + dh�h,

with zero-flux boundary conditions. Variables c and h
denote concentrations of two morphogens, called activa-
tor and inhibitor, respectively. The parameters ρc and ρh
are production/removal rates, and dc and dh denote the
diffusion coefficients.
Mathematical analysis of the equations provides expla-

nation for the phenomenon postulated by Turing, for
details see [33, 39]. The mechanism is related to a local
behavior of solutions of a reaction-diffusion system in
the neighborhood of a constant stationary solution that
is destabilized through diffusion. Patterns arise through a
bifurcation, called diffusion-driven instability (DDI). The
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specific choice of model kinetics and distinct different
diffusion rates dh >> dc are necessary to induce the
DDI (c.f., Fig. 5a). Consequently, after more than 60 years
of research, molecular identification of the Turing-type
molecules duringmorphological events remains an excep-
tion rather than a rule [16, 26]. Especially, appropriate
candidates for fast diffusing long range inhibitors are usu-
ally missing. Interestingly, recent results suggest that in
general the principle of “long-range inhibition/short range
activation” holds. However, specific realizations seem to
be versatile: e.g., primarily mechanical mechanisms have
been shown to produce periodic tissue patterns as well
(reviewed in [16]). Mechanical cues such as traction,
rigidity, or compression underlie functions in patterning
[7, 24, 40, 51], which have been ascribed to diffus-
ing morphogens within Turing-type models. The active
role of tissue mechanics in tissue patterning becomes
justified by the fact that an increasing amount of
data shows how gene expression and signaling cascades
sense and process mechanical cues (for reviews, c.f.
[5, 6, 12, 19, 30–32, 41, 44, 56, 57]). Taken together, these
data suggest that a close interplay between chemical and
mechanical processes within tissues may lead to pattern
formation in many cases.
Despite the large number of experimental data, mod-

eling approaches explaining de novo pattern formation
as results of mechanochemical processes are still rare.
Existing models integrate the tissue mechanics only in
a simplified way [36, 37, 52]. Thus, the need for new
modeling approaches has been recently stressed [18, 55].
A general challenge in such mechanochemical models
is the description of the mechanical part of possible
mechanisms, since it is non-intuitive from a model-
ing/numerical point of view. Already Turing suggested
in his seminal paper the consideration of mechanical
aspects in pattern formation, but restricted his own
study to the chemical processes, since ”...the interde-
pendence of the chemical and mechanical data adds
enormously to the difficulty” [53]. Currently, model-
ing and computation approaches describing mechani-
cal aspects of morphogenesis have reached an advanced
level (for reviews, c.f. [48, 58]), making the new models
feasible.
In the current study, we propose and investigate inte-

grated mechanochemical models to investigate tissue pat-
tern formation. The models are based on the finite strain
theory [17] and are extensions of the works as presented
in [1]. Based on experimental data, we model differ-
ent mechanochemical feedback loops by coupling dif-
fusing morphogens with different mechanical cues, such
as compression/stretch [5], strain/cell-shape [29, 56] or
stress [28, 41, 42]. We numerically investigate resulting
equilibrium patterns and their dependence on diffusion
rates, initial conditions or the system size. Finally, we

propose experimental approaches to decisively test analo-
gous mechanochemical interplays in vivo.

Results and discussion
In this section, we present and discuss several simulation
results which are based on the proposed mechanochemi-
cal tissue models. In particularly, we combine continuum-
based finite strain models with discrete models for bio-
logical cells. Furthermore, the simulated tissue geometry
is based on an annulus geometry, so that we consider a
thin loop of tissue confined to the plane. For more details
regarding the model geometry, the modeling and sim-
ulation approach, the underlying biological/biophysical
assumptions, as well as the detailed parameter setup, we
refer to the “Methods” section.

Mechanochemical pattern formation
In the simulation studies, we unraveled several different
feedback loops between mechanical cues and morphogen
dynamics, spontaneously leading to mechanical and
chemical pattern formation. In Fig. 1, simulation results
of three feedbacks based on strain (Fig. 1a), compression
(Fig. 1b), and stress (Fig. 1c) are shown. Starting with
either stochastically distributed morphogen (Fig. 1a, b)
or a prescribed morphogen gradient (Fig. 1c) within an
undeformed tissue loop, each feedback loop develops
symmetric and stable curvature and morphogen patterns.
Both types of initial conditions frequently appear in tissue
morphogenesis. For example, in Drosophila development
a prescribedmaternal gradient determines the orientation
of the body axis [20]. Other systems, from lower ani-
mals to organs of mammals, can regenerate spontaneously
from aggregates of randomly mixed cells [13, 21], and thus
have the capacity of de novo patterning.
We want to point out that the ability to form patterns in

all three mechanochemical feedback loops does not crit-
ically depend on the initial conditions: Each presented
feedback loop yields spontaneous emergence of stable pat-
terns starting from a stochastically as well as a gradually
distributed morphogen (results not shown).
In all presented simulations, we consider an apical or

a basal constriction as an active part of the deformation,
since such deformation processes appear to be frequently
involved in tissue morphogenesis [34, 38, 50]. However,
other possible active processes – such as isotropic or
anisotropic tissue growth – can also play an impor-
tant role in morphogenesis, especially in embryogene-
sis [2, 10], and are not considered in the models pre-
sented. Although detailed results are postponed to future
works, our first simulation studies indicate that also
here, different mechanochemical feedback loops sponta-
neously create robust patterns (results not shown). Thus,
mechanochemical pattern formation does not critically
depend on the exact nature of the active deformation.
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Fig. 1 Simulation snapshots of tissue pattern formation based on different mechanochemical feedback loops. a Strain-mediated feedback-loop,
starting from stochastic initial conditions; b Compression-mediated feedback loop, starting from stochastic initial conditions; c Stress-mediated
feedback loop, starting from a ”maternal gradient” as a chemical pre-pattern. Heat maps on the left-hand side show morphogen concentrations,
heat maps on the right-hand side show mechanical invariants used within the corresponding feedback-loop

Our simulation results furthermore reveal that the
resulting equilibrium patterns can qualitatively differ,
depending among others on the specific type of the
mechanical cue involved in the feedback. Most fre-
quent patterns show at least two morphogen/deformation
patches arranged in a symmetric manner, such as foot-
sole shapes (Fig. 1a, right) or ellipses (Fig. 1b, right), which
can be generated by each of the three feedback loops. But
also patterns with only one morphogen/curvature patch
are possible (Fig. 1c, right), resembling those appearing
during gastrulation event in embryogenesis [23]. Interest-
ingly, the latter geometry we only observed in the case
of the stress-mediated feedback loop, and starting with
a gradually distributed morphogen. Thus, the symmetry
and type of final patterns may critically depend on initial

conditions and the type of the mechanochemical feedback
loop.
It is worth mentioning that the patterns resulting from

simulation of tissues restricted to the 2D plane may dis-
tinctly differ from those of full 3D tissues, for several rea-
sons: From the mechanical point of view, we assume that
the 3D nature of a blastula coupling cells and introduction
of additional curvature may affect model outcomes. From
the chemical point of view, a process such as circumferen-
tial pattern formation lacks one dimension, which implies
that no distinction is made between stripes and spots.
Thus, the models investigated in this work can be treated
as test cases showing that a variety of stable patterns is
produced from mechanochemical feedback loops, while
for a comparison with experimentally observed structures
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3D models are needed. We postpone the extension to the
3D models to future research.

Mechanics versus diffusion in pattern formation
We emphasize the crucial role of tissue mechanics in
short-range activation and long-range inhibition in all
feedback loops considered: If cells are locally constricted
due to increased local morphogen abundance, two simul-
taneous events promote subsequent pattern formation, 1)
the local deformations induce an increased morphogen
production at the same place, which leads to even stronger
deformations and as a result we obtain a short-range acti-
vation of the morphogen; 2) the local deformations imme-
diately lead to stress/strain/compression at surrounding
tissue areas, which inhibits the local production of the
morphogen at these places. As a result, in this latter case
we obtain a mechanically mediated long-range inhibi-
tion, and local highmorphogen concentration patches can
inhibit other patches over long ranges.
In contrast to tissue mechanics, diffusing morphogens

play a mediating and thus subordinate role in pattern-
ing. The dominant role of mechanics becomes obvious
by considering for example the spatial scaling of the final
patterns, e.g., using the example of the compression-
mediated feedback (Fig. 2). Strong differences in diffusion
rates (Fig. 2 A results from 10 times more diffusion com-
pared to Fig. 2b) do not change the final number of
morphogen patches. In contrast, the number of patches
scales with the tissue thickness. As a result, with one-
quarter of the tissue thickness but the same diffusion
rate as in Fig. 2a, we obtain four morphogen patches
instead of two (Fig. 2c). However, we observe similar
effects of tissue thickness and diffusion on the scal-
ing of final patterns using the strain-mediated feedback
instead (results not shown). We thus assume that these
findings are robust to changes in the mechanochemical
feedback loop.

Predictive experiments
Experimental verification of mechanochemical feedback
loops in vivo related to those presented in this study is
a challenging task, and requires a joint manipulation and
analysis of both, chemical and mechanical cues. While
experiments including chemical (morphogen) manipula-
tions and measurements are well established [46, 49],
analogous techniques involving tissue mechanics are rel-
atively young, but also reached an advanced level during
recent years [48]. In the following, we propose and sim-
ulate possible techniques assessing the basic signaling
structure within mechanochemical feedback loops. Such
structure mainly consists of the two causal couplings,
connecting mechanics with morphogen dynamics. We
require

1. the existence of a morphogen locally changing tissue
mechanics, as well as

2. a reverse signal from mechanics back to chemistry,
e.g., a mechanical cue changing effective morphogen
spread and/or production.

Having selected a certain morphogen candidate,
each causality direction can be subsequently separately
assessed: To prove (1), the morphogen of interest could
be locally and ectopically over-expressed, with a subse-
quent search for the induction of colocalized mechanical
patterns (such as deformations, c.f. [45]). Although the
visualization of mechanical patterns different from defor-
mations (such as stress or compression) is still challenging
(e.g., [42]), recent technical developments are promising
[22, 48]. Analogously, to assess item (2), the tissue can be
actively deformed [11, 48], combined with a subsequent
screen for accordingly aligned morphogen expression
patterns.
To demonstrate a possible experimental outcome indi-

cating the existence of a mechanochemical feedback,
we have performed the above mentioned experiments

Fig. 2 Equilibrium patterns resulting from the compression-mediated feedback loop. a, b Increasing the diffusion does not change the number of
morphogen/curvature patches (a shows 10 times more diffusion compared to b). c In contrast, changing the mechanical properties of the system
e.g. by quartering the tissue thickness effects the final number of morphogen patches
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virtually (“predictive in silicio experiments”) using the
strain-mediated feedback loop as an example. Thus, the
mechanical cue under investigation is a local tissue strain
or bending. To mimic ectopic morphogen production,
we have locally added a constant morphogen produc-
tion term to the reaction-diffusion equation (schematic
view: Fig. 3a). To simulate, in contrast, a prescribed
external deformation at the same place (schematic view:
Fig. 3c), we have added a local outward-pulling force to
the structural equation (for more mathematical details,
c.f. Section “Methods”). Starting with stochastically dis-
tributed morphogen, we observe in both cases that
final mechanochemical patterns align to the source of
constant morphogen production and pulling, respectively
(Fig. 3b, d). Thus, comparable experimental readouts
indicate a possible interplay between the morphogen of
interest and tissue mechanics.

Conclusions
To summarize, in this publication we have presented and
investigated a class of models of pattern formation in
biological tissues, namely mechanochemical models. We
simulated three different simple feedback loops between
mechanical cues and morphogen dynamics. In all three
cases, we have shown that these type of interactions lead
to a de novo formation of stable chemical and mechani-
cal patterns. These results indicate that there are various
possible ways in which a tissue may produce patterns by
simple mechanochemical interplays. Furthermore, several

of our predictions from simulations appear to be robust
regarding changes in the mathematical model, such as
changes in the type of the mechanochemical feedback
loop (i.e., changes in the involved mechanical invariant
or active deformations process), or in the exact choice of
initial conditions.
Thus, mechanochemical patterning processes could be

a likely candidate for the realistic and often still unknown
processes underlying various developmental steps, for the
following main reasons:

• In contrast to the Turing-type models, within
presented feedback-loops, simple (linear) interaction
terms and moderate diffusion rates are sufficient to
produce robust de novo patterns. This makes the
evolution of such mechanisms more likely.

• Within presented mechanisms, mainly mechanical
cues undertake functions in short-range activation
and long-range inhibition, chemicals (morphogens)
play only a mediating and thus subordinate role. This
could explain why the experimental identification of
relevant molecular candidates is still missing in many
cases.

• Especially in developmental steps where tissue
deformations play an important role (e.g., during
gastrulation), presented feedback loops display a
natural and simple way for the tissue to control the
progress and success of deformations, since the latter
directly retroact on morphogen dynamics.

Fig. 3 Two coupled predictive in silicio experiments for the detection of a mechanochemical feedback-loop in tissues. a, b Ectopic overexpression of
the morphogen of interest leads to an alignment of resulting mechanical patterns relative to the chemical source. c, d An initial external mechanical
deformation leads to the alignment of resulting morphogen patterns relative to the mechanical cue. a, c schematic view, b, d simulation results
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One of the main aims of this paper is to motivate
further experimental research in order to validate
mechanochemical mechanisms for tissue pattern forma-
tion. Recent experimental observations [4], theoretical
results [37], as well as technical developments [22, 48] are
however promising. If mechanochemical mechanisms are
validated in tissues by direct experimentation (for exam-
ple similar to the methods as suggested in Fig. 3) this
will constitute an essential step in the understanding of
embryogenesis - one of the greatest current mysteries in
biology [23, 39].

Methods
Model geometry
As an example, we investigate a system resembling the
blastula stage of an embryo. Specifically, we parameterize
over annulus geometry, which means that we consider a
2D cross section through a blastula, i.e. a tissue loop with
a finite thickness which is confined to the 2D plane. This
loop represents one cell layer which is composed of 64
circumferentially arranged biological cells (Fig. 4b). The
outer radius of this tissue sphere constituting the outer
border of the annulus is 150μm, and the inner radius is
135μm, resulting in tissue thickness of 15μm.

Combining continuous and discrete tissue models
The presented modeling approach combines continuous
(finite strain) modeling techniques with a discrete model
for the shape and position of biological cells. The explicit
distinction of biological cells from numerical cells (finite
elements) is necessary to appropriately describe active
shape changes of biological cells, without being restricted
by the local resolution of continuous mechanical pro-
cesses determined by finite elements.
As an example, the active cell deformation processes

of apical or basal constriction (c.f., following subsec-
tions) cannot be described within a purely continuous

framework: although applied to the overall body, active
deformations (given by Fa, c.f. following subsections) here
also depend on the discrete model of biological cells in
the sense that the direction of deformation jumps at these
boundaries (c.f., Fig. 6a). These discontinuities represent
the fact that the cytoskeleton is pulling from both direc-
tions at the boundary regions between biological cells.
However, the overall deformation, F = FeFa, includes
also the simultaneous passive (elastic) response, maintain-
ing (among others) the continuity of the tissue. In terms
of biophysics, the discrete part of our model represents
the cytoskeleton associated with the plasma membrane
of each biological cell (actomyosin cortex), where active
deformations may be driven by myosin motor proteins. In
contrast, the continuous model part represents the body
of the cell lumina.

Deformation gradient decomposition andmodel equations
In finite strain theory, structural dynamics are expressed
in the Lagrangian or particle-centered framework (as
opposed to the Eulerian framework where a fixed point
x in space is observed): Let X be a particle in the unde-
formed configuration and x = x(X, t) be its current
position at time t. Then, the vector u(X, t) = x(X, t) −
X joining these positions is called displacement and the
deformation and its gradient are defined as:

T : 〈X, t〉 �→ X+u(X, t), F : =∇T =∇u+ I, J = det(F).

Local deformation processes will be incorporated using
the multiplicative deformation gradient decomposition
[47], splitting the deformation gradient into two parts:

F = FeFa(c), (1)

where Fa(c) is a prescribed active deformation depend-
ing on the morphogen concentration c and Fe is the

Fig. 4 Section of a simulation considering an evolving tissue loop after 15min, using the example of the compression-mediated feedback. a Finite
element discretization, b biological cells, cmechanical cue (here tissue compression quantified by det(F)), dmorphogen concentration φ
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passive elastic response to these active changes, which
ensures the continuity of the overall deformation F and
minimizes themechanical stress (see also Fig. 6a). Numer-
ically, this means to replace Fe by FF−1

a and to solve for
the overall deformation F, applied to the continuous tis-
sue body. Thus, although Fa may show discontinuities at
boundary regions between biological cells, the smooth-
ness of the overall deformation is naturally given by
the interplay between active and passive processes
leading to the smooth finite element solution determined
by F.
Furthermore, the active deformation Fa (influencing the

shape of the biological cells, c.f. Fig. 6a) is directly deter-
mined by morphogen concentrations c. This is a common
assumption in the mechanochemial modeling of tissue
morphogenesis [1, 36, 43], and is based on the idea that
morphogens locally induce remodeling of the cytoskele-
ton, which again determines the cell shape. In accordance,
various experimental results show that different active
deformation processes (such as cell-shape changes or local
tissue growth) can be directly induced by expression of
signaling molecules [9, 27, 35, 54]. However, the final tis-
sue shape is not entirely determined by Fa(c) but rather
by the interplay between Fa(c) and the elastic response
Fe (c.f., Fig. 6a). In this way, local morphogen concentra-
tions (respectively the resulting Fa(c)) can induce complex
patterns of stress, strain, and compression within the
surrounding tissue (Fig. 6b).
The shape of structural equations is determined by the

two principles of conservation of mass andmomentum. In
Eulerian coordinates they read:

ρ = Jρ0, as well as
ρ∂ttu = ρf + div(σe),

for current and initial mass distributions ρ(x, t), ρ0(x),
external forces f and surface forces σe. The divergence
comes up as their surface integral is transformed to
the volume by Gauss’ integration theorem. Finally, the
equation is transformed to the Lagrangian framework via
the Piola transform and the relation Fe�e = JeσeF−T

e .
We use the simple nonlinear St. Venant-Kirchhoff model
for compressible, hyperelastic materials to model the tis-
sue. It models the relation between the second Piola-
Kirchhoff stress tensor �e and the Green-Lagrangian
strain tensor E. Eventually, it is coupled with a reaction-
diffusion equation which accounts for modeling the mor-
phogen concentration by

∂tc − div (D∇c) − R = 0, (2)

which is transformed to the reference framework using
the divergence of the Piola transformation. Thus, the

final system reads: Find displacement u and morphogen
concentration c such that

ερ0∂ttu − div (Fe�e) = ρ0f and

Je∂tc − div
(
Je

(
FteFe

)−1 D∇c
)

− JeR = 0
(3)

hold, where

�=λ tr(Ee)I+2μEe, Ee=0.5
(
FTe Fe−I

)
, and Fe=FF−1

a ,

(4)

with the Lamé constants μ and λ. The reaction term
R = R(�e,Ee,Fe, c) will incorporate the feedback of the
mechanics on the morphogen level. With the exception of
the second predictive in silicio experiment which is pre-
sented further on, the right hand side is set to f = 0, i.e.
external forces are usually not considered.
We emphasize that we are interested in a quasi-

stationary state where the time derivative in the structural
equation is not considered. In practice however, the time
derivative multiplied by ε = 0.1 is used for stabilization of
the numerical scheme. The specific choice of ε does not
significantly change the final pattern. Furthermore, the
evolution equation with non-zero time derivative yields
uniqueness of the numerical solutions, since homoge-
neous Neumann boundary conditions are assumed (for
more details, we refer to the section “Finite element (FEM)
approximation”). Consequently, the solution of the quasi-
stationary system is unique up to translations and rigid
body rotations. Such solutions might affect the conver-
gence of the numerical scheme. Therefore, we consider
a small parameter ε to balance the oscillatory behavior
introduced by the time derivative with rigid body rota-
tions experienced in the quasi-stationary setup.With such
stabilization term, oscillations are largely over-damped
with a negligible loss of convergence speed.

Mechanochemical events
Active deformations Mechanochemical pattern forma-
tion requires an interplay between active and pas-
sive chemical and mechanical processes. Especially, the
morphogen concentration c couples into the structural
equation through the active part of the decomposed defor-
mation gradient (Eq. (1)).
In this study, we focus on an active deformation pro-

cess called an apical or a basal constriction, since this is a
common deformation process during tissue morphogen-
esis [34, 38, 50]. Mathematically, this kind of deformation
can be expressed by the active part of the deformation gra-
dient tensor. Discrete biological cells are now introduced
into a continuum-based model by a piecewise descrip-
tion of the active deformation gradient Fa. Each biological
cell is given a “material id” to distinguish between differ-
ent biological cells, and is furthermore represented by 64
finite elements. For a schematic view of the deformation
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gradient decomposition with apical constriction of dis-
crete biological cells we refer to Fig. 6. To define the active
deformation tensor Fa, we first introduce local coordinate
systems X̂ in the origin of every cell, oriented such, that
X̂1 points in the radial direction. ByT = ∂X̂

∂x we denote the
mapping from x to these parametric coordinates. Here,
the constriction tensor is defined as

F̂a :=
(
1 + kcX̂1 kcX̂0

0 1

)
, (5)

where k is a constant and
(
X̂0, X̂1

)
are the 2D coordinates

in the cell-wise reference system. For positive values of k,
this results in apical constriction and for negative values
in a basal one.
The complete active deformation tensor is combined

given as

Fa = T−1F̂aT. (6)
We point out that the elastic Green-Lagrangian strain

tensor Ee in Eq. 4 and subsequently the Cauchy stress
tensor σe remain symmetric, since

ET
e = 1

2

(
F−T
a FTFF−1

a − I
)T = 1

2

((
F−T
a FTFF−1

a

)
− I

)
= Ee

holds. Furthermore, the active deformation Fa is volume-
preserving which can be seen for the volume V of a single
biological cell by

Va =
∫
Va

dX1dX0 =
∫
V

| det(F̂a)|dX̂1dX̂0

=
∫
V
(1 + kcX̂1)dX̂1dX̂0 = V + kc

∫
V
X̂1dX̂1dX̂0︸ ︷︷ ︸

=0

,

where the last integral vanishes since integration over x1
cancels out.
Mechanotransduction The role of mechanosensitive

mechanisms controlling chemical cellular processes has
been extensively studied within the last decade [12, 30].
Different types of mechanical cues have been shown
to influence gene expression (such as morphogen pro-
duction), namely stress [28, 41, 42], compression/stretch
[5] but also geometrical constraints determining the
strain/cell-shape [29, 56]. In terms of continuummechan-
ics, these three cues can be expressed via invariants of
the corresponding tensors. Tensor invariants were cho-
sen since their values do not change with the rotation of
the coordinate system, which is equivalent to a rotation
of the initial morphogen concentration. Thus, using ten-
sor invariants, the feedback and consequently the solution
of our system will rotate accordingly to how the initial
conditions were rotated.
Since there are two tensor invariants available in 2D,

there are a total of six possible candidates resulting from
mechanical stress, compression/stretch and strain.

Appropriate feedback loops To obtain mechano-
chemical feedback loops leading to de novo pattern forma-
tion, we combine morphogen dynamics with experimen-
tally observed active strains and mechanotransduction
processes as motivated above. Appropriate feedback loops
leading to such pattern formation have been received by
extensive simulation studies of possible candidates, keep-
ing the general “long-range inhibition/short range acti-
vation” principle in mind. Here, we exemplarily present
three different feedback loops (c.f., Figs. 1 and 5b–d), each
representing one certain type of mechanotransduction.
Thus, each feedback loop uses a tensor invariant I, based
on a tensor representing one of the the three different
mechanical cues mentioned above, namely

1. the determinant of the deformation gradient
I = det(F), which has the physical interpretation of
compression or stretch. More precisely, det(F) = Va

V0
is the ratio of the deformed to the initial volume;

2. the isotropic strain, which is the trace of the
Green-Lagrangian strain tensor, i.e., I = tr(E). This
measure represents the hydrostatic strain which is
the displacement between particles in the principal
coordinate direction inside the tissue relative to a
reference length; and

3. the determinant of the elastic Cauchy tress tensor
I = det(σe) = det

(
J−1
e Fe�eFTe

)
. Let us note that σe

is used since the determinant of the antisymmetric
tensor �e is not an invariant. σe expresses the stress
which biological cells are experiencing as a result of
their active deformation.

Conceptually, stress is an internal force acting on a
boundary per unit area of this boundary, while strain or
compression are measures of deformation. For an illustra-
tion of the qualitative differences between these three dif-
ferent tensor invariants, we refer to Fig. 6b. It appears that
differences between compression and the strain invariant
are usually small and are apparent only at the boundaries
of biological cells.
In the following, we term the three corresponding

feedback loops as “compression-mediated feedback” (1),
"strain-mediated feedback” (2) and “stress-mediated feed-
back” (3), respectively.
The feedback of mechanics on morphogen dynamics is

incorporated by the reaction term R, as stated in Eq. (2).
Thereby, the tensor invariants I are included via the
Michaelis-Menten kinetics by

R = k2
max{I, 0}

km + max{I, 0} − k1c, (7)

with positive constants k1, k2, km > 0. Here, k1 is equal for
all three considered feedback loops and causes a constant
morphogen degradation in the entire tissue. The first term
on the right hand side of Eq. (7) represents the impact of
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Fig. 5 Proposed interactions in the context of different pattern formation models. a the Turing-type Gierer-Meinhardt model, b–d the three types
of mechanochemical feedback loops which are the examples considered in the present study. Continuous arrows indicate explicit model
assumptions, dotted arrows depict passive mechanical relationships

mechanics on the morphogen production: If the value of
the respective tensor invariant I is positive, morphogen is
produced. Else, no feedback is generated. For large values,
this term converges towards k2 which can consequently be
interpreted as the maximal morphogen production rate.
km is the Michaelis constant and is the value of I where
half of the maximal production rate k2 is reached.
Michaelis-Menten kinetics has been used to reflect the

fact that there exists a maximal expression rate of themor-
phogen promoter. Thus, morphogen production saturates
for large values of I, i.e., for large deformations, stresses,
or strains.
Finally, we combine the above mentioned active defor-

mations and mechanotransduction processes to simple
positive feedback loops by the following two assumptions
(c.f., Fig. 5b–d):

• local morphogen accumulation leads to local tissue
deformations (in terms of apical or basal
constriction), and

• different mechanical cues (such as compression,
strain, or stress) can induce the production of this
morphogen in turn.

Predictive in silicio experiments
To demonstrate a possible experimental outcome indicat-
ing the existence of a mechanochemical feedback within a
tissue, we have performed two predictive in silicio exper-
iments using the strain-mediated feedback loop as an
example. For the detailed motivation of the following two
experiments we kindly refer the reader to the Results and
discussion section.
First, to mimic experimental and local ectopic mor-

phogen production, we have added a constant production
term to Eq. (2) within a certain subset 
s ⊂ 
. In
particular, the equation now reads

∂tc − div (D∇c) =
{
R + (1 − c

cmax
)c if (r,φ) ∈ 
s

R else,
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Fig. 6 Scheme of the modeling approach. a The interplay between active deformations (applied to biological cells) and the passive response of the
tissue on these active deformations in order to maintain continuity and to minimize the mechanical stress. b Typical patterns of the three different
mechanical invariants as a result of a local active deformation

where cmax was set to 9 · 10−9mol m−2, since this was
about the highest concentration which was reached for
the unmodified strain-mediated feedback loop and thus
represents the natural maximal expression rate. 
s :=
{(r,φ) ∈ R

≥0 × R | 135μm ≤ r ≤ 150μm, 118 π ≤ φ <
13
8 π} is a circular sector in the polar coordinates, compare
also Fig. 3a.
Second, to simulate a prescribed external deformation,

we made the specific choice of an outward-pulling exter-
nal force as the right hand side of the structural Eq. (3) in
our system,

ερ0∂ttu − div (Fe�e) = ρ0f.

by defining f = (f0, f1)T as

f0 := 0, f1 :=
{ −0.5 · e−kxx20e−0.00025t if x1 < 0
0 else,

with kx = 9 · 109. The first component f0 of this volume
force is always zero. Since the center of the tissue is in the
origin, the second component, f1, constitutes a pull in neg-
ative x1 direction, i.e., downwards. The pull is localized
around x0 = 0 where it is strongest and decreases expo-
nentially for larger absolute values of x0; see also Fig. 3c.
Note that x1 < 0 excludes a second pull downwards on the
top of the tissue. Also, it is strongest in at the beginning
of the deformation process and decreases exponentially
in time.

Finite element (FEM) approximation
For discretization in space, different feedback loops
required different levels of mesh-refinement. On the one
hand, for the compression- and strain-mediated ones, the
entire domain 
 has been split into 4096 finite elements,
see Fig. 4a. Here, each biological cell is thus represented
by 64 finite elements. Especially, isoparametric Q1 finite
elements have been used (where Q1 depicts an approxi-
mation with polynomial ansatz functions of degree one).
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On the other hand, the stress-mediated feedback loop
depends not only on the smooth solution u but also on
the non-smooth measure F−1

a , which required a mesh of
at least 262144 cells in order to properly resolve the stress-
mediated feedback within theQ1 ansatz. It turned out that
shorter computation times were possible using Q2 finite
elements instead, i.e., with polynomial ansatz functions
of degree two. This approach, combined with local mesh
refinement, reduced the total amount of cells to a total
of 17944.
Discretization in time has been done using a simple

Theta-Time-Stepping method. Finally, for all simulations
we have used homogeneous Neumann boundary values

Fe�en = 0 on∂
,

where n is the unit vector in normal direction on the
boundary. It thus prescribes that the deformation gra-
dient times the Kirchhoff stress in normal direction on
the boundary is zero. All simulations are done using the
software library GASCOIGNE 3D [3] and its parallelized
multigrid method.

Parameter setup
Values of the Lamé constants are usually given in terms of
the Young’s modulus E and Poisson’s ratio ν. They can be
obtained by the conversion formulas

μ = E
2(1 + ν)

and λ = Eν

(1 + ν)(1 − 2ν)
.

For the following calculations we have used E = 100Pa
and ν = 0.4 , similar to the assumptions made in [8],
and ρ0 = 1000kgm−2 for the initial mass distribution.
Furthermore, we have always set: D ∼ 10−14m2s−1 for
the diffusion coefficient, k1 ∼ 10−4s−1 for the degrada-
tion rate of the morphogen level in the entire domain and
k2 ∼ 107mol m−2s−1 for the maximal morphogen pro-
duction rate. The Michaelis constant was set to km = 0.1
which means that for positive feedback I = km half of the
production rate k2 is reached.
Finally, uniformly distributed random concentrations

for each biological cells or a morphogen gradient were
used as initial conditions. In both cases, the mor-
phogen concentration was prescribed in the interval
c ∈ [ 0, 109]mol m−2. For visualization in the follow-
ing results, initial conditions were transformed into the
interval c ∈ [ 0, 1]mol m−2. The scale of the morphogen
does not influence results, since only the constant k
which determines how strong the morphogen concen-
tration couples into the active deformation gradient (see
Eq. (5)), has to scale in the same manner. It was set to
k ∼ 10−6 mol−1m.

Author’s response
Revision 1
Reviewer 1: Marek Kimmel – Rice University, Houston, Texas
Summary:
The manuscript presents a novel explanation of the

morphogen in pattern formation mechanisms in develop-
ment. It is proposed that since the putative purely chemi-
cal morphogens have been difficult to find, it is necessary
to look for other possibilities. One such possibility is
offered by mechanochemistry. Authors carefully demon-
strate, using a mathematical model, how tissue mechanics
provides a signaling modality. This is a clearly written and
interesting paper.

Suggestions:

1. I like the way the paper is written. The only
suggestion I may have is that since the readership of
Biology Direct may be somewhat less familiar with
specialized models of pattern formation, the authors
provide a descriptive, mathematical, or graphical
representation of the "classical" Gierer and
Meinhardt (or similar) model, so that the failure to
find the putative morphogen is explained using a
more specific example.
We have added a more detailed mathematical
description of the classical Gierer-Meinhardt model
as well as corresponding equations to the manuscript
(page 2, paragraph 1-2). Furthermore, we have added
a a graphical representation of these models to Fig. 5
(c.f., Fig. 5a).

Reviewer 2: Konstantin Doubrovinski (nominated by Ned
Wingreen) – Universität des Saarlandes, Saarbrücken,
Germany
Summary:
In their manuscript the authors present a mathemati-

cal model of morphogenesis that involves mechanosen-
sitivity, i.e. a model where the dynamics of morphogen
gradients depends on stress distribution in the tissue.
It has long been known that biochemical processes can
influence tissue mechanics, for example through control
of molecular motors. In the recent years it is becom-
ing increasingly realized that mechanical stresses can also
influence biochemistry. In particular, it has been exper-
imentally demonstrated that cell division rate and pla-
nar cell polarity in certain tissues can be influenced by
external forces applied to those tissues. The model pro-
posed by the authors is concisely summarized on page
8. The corresponding equations express conservation of
momentum in the tissue and conservation of mass of
the morphogen. Morphogen concentration drives tissue
deformation through a contribution to the active defor-
mation gradient (Eq. 3). Mechanosensitivity enters the
description through a source term in the equation that
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describes morphogen dynamics. This source is assumed
to be a function of some invariant of stress (or strain)
tensor. The authors consider three models that incorpo-
rate three possible scalar invariants that might influence
morphogen dynamics (listed on page 9). The paper dis-
cusses a subject of significant interest to biology commu-
nity and in my opinion is appropriate for the intended
readership.
On the technical side, there are a number of points that

I think require clarification.
Suggestions:

1. In the equation proposed by the authors the active
deformation is directly determined by morphogen
concentration. To me it appears more natural to
assume that stress (rather than deformation) is a
function of concentration. Could the authors
comment on this?
We have added a corresponding paragraph
including a discussion of this topic as well as
additional references to the manuscript (c.f., page 9).

2. It seems to me that active deformation (denoted by
Fa) is a tensor and should thus transform like one
(just like scalar invariants describing the coupling of
stress and morphogen concentration dynamics
transform like scalars). Equation 3, however, does not
appear an isotropic tensor to me. I would rather
expect this tensor to be a scalar multiple of identity
matrix, where the scalar factor may depend on
morphogen concentration. In any case, stress must
be a symmetric tensor. The authors must explicitly
show that their particular choice of Fa ensures that
stress transforms as a tensor and is symmetric.
The deformation gradient Fa itself must not be
symmetric or isotropic, it is just the gradient of any
active mapping. Considering isotropic growth,
Fa = cI would indeed be the correct choice. We have
added on page 11 a section explaining the setup of Fa
in the case of basal or apical constriction in detail.
Further, we have shown, that the elastic
Green-Lagrangian strain tensor E in Eq. (4) is always
symmetric, c.f. page 11. Hence, every stress tensor
derived from E will be symmetrix.

3. In an actual biological setting I would expect the
dynamics to be strongly overdamped implying that
the dv/dt term in momentum balance equation must
vanish. Was this true of the simulated regime?
We consider a quasi-stationary system by considering
dv/dt only as a stabilization term, providing
uniqueness of solutions. We have clarified this by
adding a corresponding paragraph to the manuscript
(c.f., page 10, last paragraph, as well as Eq. (3)). Actual
biological settings will be damped by various factors,
that are not present in our simplified models.

4. The section on the details of in-silicio simulation is
much too short to fully appreciate the details of the
implementation. I think this section must be
substantially extended.
As suggested by the referee, we have substantially
extended this section (c.f., page 13-14).

Reviewer 3: Jun Allard (nominated byWilliamHlavacek) –
University of California, Irvine
Summary:
Morphogenesis, the process by which a tissue obtains its

shape during development, is driven by both diffusing fac-
tors and mechanical cues, which effect morphogenesis by
influencing both growth and mechanical deformation. All
of these mechanisms have experimental support and have
been included in mathematical models. This manuscript
explores morphogenesis by mechanical cues acting on
mechanical deformation of the tissue using a mathemat-
ical model. Specifically, the authors simulate a thin loop
of tissue confined to a two-dimensional plane. The tissue
is assumed to be hyper-elastic and experiences an active
internal stress, which depends on a diffusing factor, whose
production in turn depends on local mechanics (strain or
stress). The authors investigate what shape the loop takes.
My two main concerns are

• clarity in describing their model, especially its
geometry, and

• the generality of their results. In addition,
• the conceptual distinction between the three

mechanical invariants should also be clarified.

Suggestions:

1. The authors should edit the text to clarify that this is
a thin loop of tissue confined to the plane. This is
important because the restricted geometry limits the
significance of the results. - Add a paragraph at the
beginning of “Results and discussion” stating the
model geometry. Two or three sentences would be
sufficient. - Delete phrases like “tissue sphere” (p.3),
which risk being misleading. - Change the
dimensionality language, for example at the top of
p.4. The tissue is quasi-1D in a 2D domain, so
describing it as 2D is ambiguous. The sentence “in
2D domains there is no difference between stripes
and spots” should be changed to something like, “In a
thin strip, there is no difference between stripes and
spots”. Figure 4 also risks being misleading, since the
model is strictly continuum-based, and at no point
are “biological cells” employed in the model. Indeed,
Fig. 4 could be removed completely.
As suggested by the referee, we have revised the
entire manuscript regarding the dimensionality
language (see for example page 5, second paragraph),
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we have added additional information to the
beginning of the “Results and discussion” section
(page 3, last paragraph), and have added information
to the “Model geometry” subsection at the beginning
of the “Methods” section (page 8, fist paragraph).
Biological cells play an important role in our
modeling approach, since our approach is not strictly
continuum based but combines continuous finite
strain models with discrete cellular approaches. To
clarify our approach, we have changed the following
points correspondingly in order to make
it clearer:

• We have added an additional Figure (Fig. 6a) to
the manuscript where we graphically present the
relationship of biological versus numerical cells;

• we have added a subsection to the manuscript
(“Combining continuous and discrete tissue
models”), where we provide detailed
information (page 8);

• we have added additional information to the
“Active deformations” subsection (page 11); and

• we have added a corresponding sentence to the
abstract.

2. The model (like all mathematical models) chooses
specific functional forms for, e.g., diffusing factor
production and active force response to the diffusing
factor. What results do the authors think are general,
and robust to changes in the specific form of Eq. 3 or
Eq. 4? What specific qualitative (or quantitative)
predictions are made? For example, do the authors
propose that, in general, strain-dependent feedback
does not give gastrulation-like invaginations, while
stress-mediated feedback does? Do the authors
propose that, in general, thinner tissues will have
more bumps, as in Fig. 2? In the absence of general
conclusions, it is difficult to evaluate the impact of
this work.
We are a little bit cautious with general conclusions,
since we know that patterns resulting from
simulation of tissues restricted to the 2D plane may
distinctly differ from those of full 3D tissues, for
several reasons (examples are give with the second
paragraph, page 5). However, we have added
information regarding the robustness ob observed
results at several places within the manuscript, e.g.
page 4 paragraph 2 (robustness regarding initial
conditions), page 4 paragraph 3 (robustness
regarding the type of active deformations), page 5,
last sentences (robustness regarding the mechanical
invariant used within the feedback), and page 5, first
paragraph (non-robustness of pattern symmetry).
Finally, we have added a corresponding sentence to
the Conclusions section (page 7).

3. It is difficult to intuitively understand the three
mechanical invariants (strain, compression and
stress). The authors should add heat maps showing
the three invariants somewhere. For example, the
twelve configurations in Fig. 1 could be accompanied
by duplicates with heat maps showing the invariant
used. It would also greatly enhance the accessibility
of the paper if the authors could add a conceptual
description of the difference between strain,
compression and stress in the text.
In order to address this point, we have added the
following information to the manuscript:

• We have added schematic graphical examples of
the different types of mechanical invariants
(Fig. 6b)

• We have added corresponding heat maps to
Fig. 1 (right-hand side).

• We have added a conceptual description of
these invariants to the manuscript (Page 12).

4. Tissue growth plays an important role in
morphogenesis, especially in embryogenesis. The
authors should state in the text that they are
neglecting tissue growth.
We have added a corresponding statement to the
manuscript (page 4, paragraph 3).

5. It is unusual that the authors consider inertia in their
model, because biological processes at this scale are
in the low-Reynolds, non-inertial regime. The
authors should state that the results do not depend
on mass-density or the inertia terms, or note if they
do. (Is there a separation of timescales between
extremely fast mechanics and slow diffusion,
production and degradation of the diffusing factor?)
This question is related to remark 3 of referee 2
(Konstantin Doubrovinski). Inertial effects do not
play a role in this model. However, instead of
completely removing this term and solving for the
stationary limit, we add the time derivative for
reasons of stability. Temporal scales however are
separated, which is realized by the parameter ε in
Eq. (3). Numerically, the specific choice of ε does not
change the final pattern.

6. Inconsistency: The main text says Fig. 2 is
compression-mediated, while the caption says it is
strain-mediated.
We have changed this

7. There are several grammatical and spelling errors.
For example, on p.11 Line 16, change “I turned out
that?” to “It turned out that?” There is also some
language usage that is unusually colloquially, notably:
“Anyway, the scale of the morphogen is not crucial,
since?”, suggest change to “The scale of the
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morphogen does not influence results, since?”
We have changed this

Revision 2
Reviewer 1: Marek Kimmel – Rice University, Houston, Texas
No additional comments on the manuscript.

Reviewer 2: Konstantin Doubrovinski (nominated by Ned
Wingreen) – Universität des Saarlandes, Saarbrücken,
Germany
The authors have adequately addressed my previous
concerns.

1. I believe in the text following reaction-diffusion
equations diffusion constants initially denoted with
d ’s are (erroneously?) referred to by μ’s.
We have changed this.

Reviewer 3: Jun Allard (nominated byWilliamHlavacek) –
University of California, Irvine
1. The manuscript is much improved and much clearer

in its description of the model. p.4 I suggest not using
the term "deformation" to include tissue growth.
Therefore, I suggest changing "However, other
possible active deformations" to "However, other
possible active processes". We have changed this.

2. From this version, it appears that the authors are
making the assumption that active deformation only
occurs at the boundaries of biological cells. This
assumption is reasonable but could be more clearly
stated? in its current writing, it?s easy to miss. I
suggest adding a sentence on p.8 saying explicitly
that active forces are only applied at the boundaries
of biological cells, and again near Eq. 1 (on p.9).
Actually this is not the case, we apologize that our
description was misleading. The active deformation
is applied to the whole tissue body rather than only at
the cell boundaries. However, the biological cell
boundaries play indeed a very special role during this
process, since the direction of deformation shows a
jump at these boundaries. This is a result of the
cytoskeleton pulling from both directions at the
boundary region, the latter separating biological cells.
To clarify this, we have added/changed
corresponding sentences at page 8 and page 9, as
suggested by the referee, and hope that this is clearer
now.

3. Minor corrections: pg 2, second sentence of
background - “pattering” change to “patterning” pg 3,
last sentence - “bophysical” change to “biophysical”
pg 8, second to last sentence - “cytosceleton” change
to “cytoskeleton”
We have corrected this.
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2D: two dimensional; 3D: three dimensional; FEM: finite element method.
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