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Abstract

laboratory experiments or modelling their 3D structures.

proteome (http://htp.enzim.hu).

by Dr Michael Galperin).

Background: Transmembrane proteins have important roles in cells, as they are involved in energy production,
signal transduction, cell-cell interaction, cell-cell communication and more. In human cells, they are frequently
targets for pharmaceuticals; therefore, knowledge about their properties and structure is crucial. Topology of
transmembrane proteins provide a low resolution structural information, which can be a starting point for either

Results: Here, we present a database of the human a-helical transmembrane proteome, including the predicted
and/or experimentally established topology of each transmembrane protein, together with the reliability of the
prediction. In order to distinguish transmembrane proteins in the proteome as well as for topology prediction, we
used a newly developed consensus method (CCTOP) that incorporates recent state of the art methods, with tested
accuracies on a novel human benchmark protein set. CCTOP utilizes all available structure and topology data as well
as bioinformatical evidences for topology prediction in a probabilistic framework provided by the hidden Markov
model. This method shows the highest accuracy (98.5 % for discrinimating between transmembrane and non-
transmembrane proteins and 84 % for per protein topology prediction) among the dozen tested topology prediction
methods. Analysis of the human proteome with the CCTOP indicates that it contains 4998 (26 %) transmembrane
proteins. Besides predicting topology, reliability of the predictions is estimated as well, and it is demonstrated that the
per protein prediction accuracies of more than 60 % of the predictions are over 98 % on the benchmark sets and most
probably on the predicted human transmembrane proteome too.

Conclusions: Here, we present the most accurate prediction of the human transmembrane proteome together with
the experimental topology data. These data, as well as various statistics about the human transmembrane proteins
and their topologies can be downloaded from and can be visualized at the website of the human transmembrane
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Background

The biological functions of transmembrane proteins
(TMPs) are widespread. They are involved in diverse
biological processes ranging from basic and primordial
life functions such as energy production to the most ad-
vanced molecular functions of a multicellular organism,
e.g. cell-cell communication or synaptic transmission.
Despite these important roles, there are only about a
hundred human TMPs with experimentally determined
3D structure [1-3]. Due to the difficulties inherent to
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membrane protein crystallography and the currently avail-
able rather laborious experimental methods for topology
determination, only several thousands of experimentally
established topology data are available [4]. Thus, computa-
tional approaches for predicting the 3D structure of TMPs
are highly required.

After completing the Human Genome Project [5, 6], it
was determined that about 25-30 % of the coded protein
in the human genome encode TMPs. This means that
there are 6—8 thousand TMPs in the human proteome.
Although the reported per protein transmembrane top-
ology prediction accuracies of the various algorithms
(see Additional file 1) were shown to be above 80 %, they
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reached rather low prediction accuracies on a human
benchmark set (see below). This may be because the
topology prediction algorithms were trained and tested
on benchmark sets containing mostly prokaryotic TMPs,
whose properties (e.g. amino acid composition, local
structure) differ from the properties of eukaryotic and
thus human TMPs. The accurate prediction of the top-
ology is a crucial step in the 3D structure prediction
process, since most 3D prediction algorithms start from
the predicted topologies. It is obvious that relying on a
wrong topology model will result in an inappropriate 3D
structure, like in the case of the proposed structure of
the human ABCG2 protein [7].

Predicting the presence of signal peptides before top-
ology prediction is important but often neglected. De-
tailed analysis revealed that topology prediction methods
often mistake signal peptides for transmembrane helices
(TMHs) due to their similar physical-chemical proper-
ties [8, 9]. Signal peptides control proper targeting of
proteins which are destined toward the secretory path-
way. Signal peptides are located at the N-terminus of
proteins and contain a hydrophobic region, which is very
similar to the TMHs both in length and in amino acid
composition [10, 11]. Cleavable signal peptides can be
identified by simple statistical means [12, 13] or modern
machine learning approaches such as Artificial Neural
Network, Hidden Markov Model or Support Vector
Machine with high sensitivity (95-98 %) and specificity
(93-98 %) [10, 11, 14, 15]. The presence of a signal pep-
tide on the N-terminus of a TMP indicates extra-
cytosolic location. One approach to reduce false predic-
tion of signal peptides as well as false prediction of
TMHs is the combination of signal peptide prediction
and transmembrane topology prediction [8, 16, 17].
However, signal peptide prediction and topology predic-
tion are two different tasks, therefore removing signal
peptides from the amino acid sequences before topology
prediction is a better approach [18, 19].

In addition to the computational approaches, there are
several high throughput biotechnological methods,
which were utilized to characterize transmembrane pro-
teins on a genomic scale. Investigation of the cell surface
proteome by means of biotinylation of surface proteins
and purifying the marked proteins by affinity chromatog-
raphy on avidin agarose resin and analyzing by SDS-PAGE
followed by liquid-chromatography mass spectrometry
(LC-MS/MS) became a routine task in molecular biology
laboratories. This was used for the analysis of the proto-
zoan Trichomonas vaginalis surface proteome [20], for the
investigation of the Entamoeba histolytica surface prote-
ome [21], and for the characterization of several human
cell lines including embryonic stem cells [22] and human
mesenchymal stromal cells [23]. Nowadays it is commonly
used to identify transmembrane proteins in various types
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of cancer in order to develop new antibody-based
therapies [24].

This high-throughput technique is useful in gene an-
notations, but does not produce usable topology infor-
mation about the TMPs. However, if the protein is
glycosylated, the results of high-throughput tech-
niques can indicate the localization of a certain part of
the amino acid sequence. Glycosylation is the most
common post-translational modification of TMPs and
extracellular proteins, in which the side chain of Asp
(N-Glycosylation) or of Ser/Thr/Trp (O-Glycosylation)
is modified by the attachment of a sugar component.
These modifications occur only at the extra-cytosolic
side of proteins, therefore knowledge about the se-
quential localization of these modifications presents
topological information about TMPs as well. Incorpor-
ating this information and other experimentally estab-
lished topological data into prediction methods can
highly increase the accuracy of the prediction [4, 25-28].
The extent of this increase was estimated to be at least
10% in whole-genome predictions using TMHMM
algorithm [29], constrained by limited experimental
information (such as the in/out location of a protein’s
C-terminus) [30].

In addition to the incorporation of experimental data
into the prediction methods, other information gener-
ated by computational methods can also be used as
constraints. For example, protein domains and se-
quence motifs, which are conservatively located on the
cytoplasmic or extra-cytoplasmic side of the membrane.
Such domains and motifs can be generated by merging
the data of the various domain and motif databases
with the topology information and may be used in the
same manner as the results of topology experiments.
Such a combination of domain/motif data with top-
ology data were used during the creation of the TOP-
DOM database [31] by a fully automated algorithm. It
was also shown, by identifying a set of 367 domains
from soluble proteins in the SMART database which
have compartment-specific localization of a type rele-
vant to membrane protein topology prediction, that
high-quality topology models can be provided utilizing
these domains as prediction constraints, for 11 % of the
membrane proteins extracted from 38 eukaryotic ge-
nomes [32].

Estimating the reliability of the prediction methods is
an important issue. There were several early attempts to
determine the reliability of topology prediction methods
on a genomic scale, which we could not directly access
before due to the unavailability of high throughput ex-
perimental topology data. Investigation of a subset of the
Escherichia coli genome [33] resulted in an interesting
observation, namely that the reliability of TM segment
prediction correlates positively with the number of
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prediction methods producing the same topology. Based
on these findings, Kill and Sonnhammer (2002) [34] de-
veloped a consensus prediction method to estimate the
reliability of the TM prediction on whole genome data
by counting how many methods agree in their consen-
sus predictions. However, their results can be inter-
preted that the five prediction methods agreed more on
the benchmark set than the various genomes. Accord-
ing to our view, this indicates that these methods were
trained and tested on similar benchmark sets, that
show high similarity to the small prokaryotic genomes
regarding the TMPs. Accordingly, the agreement of
these methods should correlate to how similar is the
data set (e.g. a genome) to the benchmark set, rather
than to the reliability of the prediction accuracies of
the methods. The problem of the overestimation of the
accuracy of a prediction on small prokaryote bench-
mark sets has also been reported by others [30]. In the
mentioned work, the reliability scores constructed for
the TMHMM algorithm [29] were tested using
prokaryote, and eukaryote whole genome data. The au-
thors found that the available test set is biased towards
high-scoring proteins when compared to genome-wide
data sets.

Here we report the Human Transmembrane Protein
(HTP) database containing structural information on
human a-helical TMPs. Structural information is classi-
fied into several evidence levels. The prediction accuracy
of the CCTOP consensus method used for creating the
database is the highest on a newly established bench-
mark set containing more than 450 human transmem-
brane proteins. We propose a novel algorithm as well to
distinguish between globular and TMPs using their
amino acid sequence only. This filtering algorithm was
tested on an assembled set consisting of globular and
human transmembrane proteins. We also suggest a way
to avoid the problem of misprediction of signal peptides
as transmembrane helices. In addition to these pro-
posed algorithms, we collected the results of high
throughput glycosylation sequence data in a recent
TOPDB update and used them together with the top-
ology data collected so far in the PDBTM, TOPDB, and
TOPDOM databases. We made the HTP database
available on the internet to download and to investigate
3D structure and/or topology data of TMPs online at
http://htp.enzim.hu.

Methods

Databases used

The human proteome has been downloaded from
UniProt [35] (UniRef 90 Human Proteome) in March,
2013. It comprises 19,584 sequences. In the current
version of the HTP database, we do not use the alter-
natively spliced protein sequences.
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Topology data were collected from three different
resources: the PDBTM (31/05/13), the TOPDB (ver-
sion 1), and the TOPDOM (version 1.089) databases.
The most reliable data can be found in the PDBTM
database [1-3], which contains the 3D structure of
TMPs together with the most likely membrane orien-
tation determined by the TMDET algorithm [36]. Be-
cause PDBTM does not contain topology information,
only the sequential localizations of the TMHs, top-
ology information was collected from the TOPDB
database [4].

The TOPDB database [4] was established 6 years
ago, containing the experimentally determined top-
ology data of TMPs. The initial database contains
23,164 topology data from about 1500 TMPs. We have
recently updated TOPDB from several sources. These
were i) topography information defined by the TMDET
algorithm using the 3D structure from PDBTM data-
base, extended by topology information from articles
containing the description of the original 3D struc-
tures; ii) experimental data published in the last couple
of years; iii) global topology analysis of yeast [37]; iv)
topology data generated by high throughput tech-
niques, like the sequential positions of N- or O- glyco-
sylations. More than 41,000 new topology data and
almost 2000 new TMPs have been collected, and now
TOPDB contains more than 65,000 topology data of
3436 TMPs.

The third resource was TOPDOM [31]. TOPDOM is a
collection of domains and sequence motifs located con-
servatively on the cytosolic or extra-cytosolic side of
TMPs.

Preparation of the benchmark data sets

The TOPDB database was split into two parts; the first
contains entries with known 3D structures, while the
second set contains entries with topologies confirmed
only by molecular biology experiments. Entries whose
reliability is above 99 and 95 % for bitopic and polyto-
pic transmembrane proteins, respectively, were se-
lected. For each sequence in the human proteome,
BLAST searching was performed against these two sets.
The resulting hits were aligned with the query se-
quences using high-scoring segment pairs (HSPs), and
those were kept, which i) had a sequence identity above
40 %, ii) the overlapping sequences covered all TM heli-
ces of the TOPDB entry, and iii) the length of the hit
sequence was above 80 % of the length of the query se-
quence. Finally, we filtered these sets by the CD-HIT al-
gorithm [38, 39] to 40 % sequence identity. This
resulted in 136 sequences, which have homologous
partner in the PDBTM database with known 3D struc-
ture (“3D benchmark set”), and 338 sequences, of
which the homologous partners are characterized by
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experimental topology data only (“experimental bench-
mark set”).

A third benchmark set was created for testing the dis-
criminating ability of the various methods. The merged
structural and experimental benchmark set was com-
bined with the sequences of globular proteins selected
randomly from the PDBSelect database [40] in a manner
that ensured that the ratio of the globular and TMP se-
quences will be the same as it was formerly predicted
for the human genome (25 % TMP). The final filtering
benchmark set contains 474 TMPs, 1422 non-TMPs,
altogether 1896 sequences.

As the best filtering method resulted in 467 true posi-
tives (see Table 2), these 467 proteins (134 in 3D bench-
mark set and 333 in experiment benchmark set) were
used to test the topology accuracies of the various pre-
diction methods.

Filtering transmembrane proteins

We tested eight prediction methods for their discrim-
inating ability, i. e. the ability to determine whether a
sequence codes a TMP or a non-TMP. These methods
are MEMSAT-SVM [41], Octopus [42], Philius [16],
Phobius [9, 16], Pro-TMHMM [43], Scampi-single
[44], Scampi-MSA [44] and TMHMM [29, 45]. These
methods were run on preprocessed sequences, i.e.
after the removal of transit and/or signal peptides
from the query sequences. As none of these method’s
accuracies were as high as desired, a simple consensus
approach was utilized to increase the prediction ac-
curacy. Dozens of combinations of these approaches
and parameters were tested and the best was chosen
for the final consensus algorithm. We reached the best
accuracies when three out of the eight methods,
namely Phobius, Scampi-single and TMHMM were
used for filtering, and at least two of these three
methods predicted at least one membrane region
(Additional file 2).

Constrained consensus topology prediction

We tested the accuracies of several prediction methods
on the benchmark sets (Additional file 1). After the test-
ing, ten methods were selected according to their pre-
diction accuracies, their availability and how they can be
integrated into a consensus method. We tried to select
methods that were based on different algorithm types.
The selected methods are: HMMTOP [25, 46], Mem-
brain [47], MEMSAT-SVM [48], Octopus [42], Philius
[16], Phobius [9], Pro-TMHMM [43], Prodiv-TMHMM
[43], Scampi-MSA [44] and TMHMM [29, 45]. In a re-
cent investigation of integral membrane channels and
carrier proteins five out of these ten methods were com-
pared, and three of them were applied in a novel
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program, TM-STATS, to tabulate topological predictions
for any subdivision of TCDB [49].

We searched for each TMP sequence with BLAST
against the TOPDB database with the parameter e-value
107'°. Hits were accepted if the following clauses were
all true: i) the hit’s length was above 80 % of the query
sequence’s length; ii) all TM helices were covered in the
homologous TOPDB entry by the alignment; iii) se-
quence identity was above 40 % within HSPs. Topology
data of the homologous proteins in the TOPDB database
were used in the constrained prediction by mirroring
their sequential positions according to the position of
the HSPs.

The search engine of the TOPDOM website was
used to locate domains/motifs in the human sequences
that were found earlier conservatively on the same side
of TMPs, and we used the position and topology
localization of the result(s) as constraint(s).

The newly developed consensus prediction algorithm
is based on the probabilistic framework provided by the
hidden Markov model, therefore the HMMTOP method
can be utilized for this task. Briefly, the results of the ten
prediction methods together with the available 3D or ex-
perimental topology data can be applied as weighted
constraints in the HMMTOP to obtain the constrained
consensus prediction result. The weights depend on the
per-protein topology or topography accuracies of the
methods.

The results of the i™ method are:

Pred; :ll,lz,...,ln,lﬁiﬁm, (1)

l] e{“]”’ “M”, “O”, “L”7 “un}7 1 Sj <n (2)

where m > 10 (the ten prediction methods and zero, one
or more 3D/experimental topology constraints), n is the
length of the query sequence and the “I”, “M”, “O”, “L”,
“U” labels correspond to cytoplasmic loops, membrane
spanning segments, non-cytoplasmic loops, membrane
re-entrant loops and unknown regions, respectively.

We calculated the per-protein topography (Accrp,)
and topology (Accr,p) accuracies of each method on the
“structure benchmark set”, and used these values as
weights for the constraints. These values are between 0
and 1. Accrpg was applied for the positions where the
prediction method resulted in transmembrane or re-
entrant loops (label “M” or “L”, respectively), otherwise
Accrop was used (for label “I” and “O”). In the case of
3D or experimental topology data, the weights were set
to 20. In the case of prediction methods, the results of
the given prediction were used as constraints, but only if
the prediction was valid, i.e. it contains at least one
transmembrane region:
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Accrop(i), if Pred;j e{“I”,“O"} and type(j) = prediction method

W,‘J' =
20, if type(j) = experimental results

These weights were normalized to one in each sequen-
tial position, and were used as constraints in the HMM,
as described by Bagos et al. [50]

m
Z Wi,j-A(k,Predi,j)
C]’k _ i:lm

N
Z Z W5J~A(/(7 Predi,,')

k=1 i=1

,1<j<n 1<k<N,

(4)

where N is the number of states in the hidden Markov
model and

1, if label(S,) = b

0, if label(S,)=b ’ 1<as<N,1<b<N,

(5)

where N = 4, the number of the main states (inside, out-
side, membrane and loop) and S denote states of the hid-
den Markov model. If MEMSAT-SVM or Octopus
methods resulted in re-entrant loop regions, or re-entrant
loop regions were used as 3D or experimental topology
constraints, a modified architecture for HMMTOP algo-
rithm was used, allowing the extra “language rule” for the
hidden Markov model.

Ala,b) = {

Measuring the reliability of the consensus prediction

The source code of the HMMTOP program has been
modified in order to calculate the sum of the posterior
probabilities along the Viterbi path. According to the
unique hidden structure of the HMMTOP, the posterior
probabilities were summed up for each main hidden
state type (inside, membrane, loop and outside) in each
position of the amino acid sequence, then these prob-
abilities were summed up along the most probable state
sequence provided by the Viterbi algorithm. We use this
sum divided by the length of the protein to measure the
reliability. Assuming the notations of Rabiner’s excellent
tutorial on hidden Markov models [51], the posterior
probabilities can be calculated from the forward and
backward variables:

_ a(i)B(0)

=0 1<t<n 1<i<N, (6)

where n is the sequence length, N is the number of
states in the hidden Markov model, O is the array of ob-
servation symbols (the amino acid sequence) and A is

Accrpg(i), if Pred;j e{“M”,“L”}, and type(j) = predictionmethod , 1<i<m, 1<j<n, (3)

the hidden Markov model. The posterior probability of
each main state can be calculated by summing up the
posterior probabilities, which have the same label as the
main state:

z

L) = >y, (kllabel(Sy) = j),1<j< N (7)
k=1

Reliability is the average of the posterior probabilities
along the most probably state path (q):

z": Iy(label(q,))

R=100.22 8
. (8)

Generating the human transmembrane proteome database
All transit peptides have been cleaved using UniProt an-
notations, then the signal peptides have been predicted
by SignalP 4.1 [11, 52]. This prediction was modified if a
homologous protein in the TOPDB database had an an-
notated signal peptide that was not predicted by SignalP,
or vice versa, if the corresponding TOPDB entry had not
contained a signal peptide, but it was predicted by
SignalP. In the next step, the TMPs were filtered by the
consensus filter method described in Methods. If the fil-
ter method resulted in TMP, CCTOP was used to create
the final topology of the TMP.

The HTP database is stored in the XML format. Every
entry contains not only the final prediction results, but
also the cross-references, the prediction results of the
ten selected methods, and the alignment used to mirror
the experimental topology data into the human se-
quence. The HTPs XSD Schema definition can be
downloaded from the HTP home page as well.

Comparing the human transmembrane proteome
database with other resources

Three resources were incorporated into the comparison:
i) proteins in the UniRef 90 Human Proteome which
have 2 or more transmembrane helices predicted by the
TMHMM method [53] (TMHMM set); ii) data from a
recently published human membrane protein analysis
system, called HMPAS [54] (HMPAS set); iii) human
membrane proteins, which have membrane subcellular
localization indicated in the UniProt database (UniProt
set). For the comparison and for creating a Venn diagram
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we used the Venny program [55] available at the URL
http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Website of the human transmembrane proteome

The website of the HTP database was written in C++,
using the Wt webtoolkit C++ programming library [56]
and the in-house made XBuilder library. Recently we
have created two complex web applications for investi-
gating protein 3D structures and residue-residue interac-
tions [57] and for the PDBTM database [1], where both
program libraries have been successfully utilized for
serving a graphical user interface through the web. The
C++ source code of the CCTOP prediction method can
be downloaded from the home page of the HTP database.

Results and discussion

Benchmark sets

Most of the topography and topology prediction
methods developed so far have been trained and/or
tested on small benchmark sets, mostly on the so-called
TMHMM 160 protein set [29], which contains three
types of data: entries originated from the Moller data
set; a prokaryote data set; and other individually col-
lected proteins. Here, we established a new benchmark
set, comprising sequences and topologies of human
TMPs only by searching sequences homologous to the
human sequences in the TOPDB database. The resulting
TMP set was divided into a “structure” and an “experi-
mental” benchmark set. The former part contains hu-
man TMP sequences, whose homologues in the TOPDB
database have a 3D structure, while the experiment
benchmark set contains human proteins whose homolo-
gous partner in the TOPDB database has experimentally
verified topological data only. In order to guarantee the
same topology for the human protein and the protein in
the TOPDB database the parameters of the BLAST
search were set very strictly. In the case of the structure
benchmark set, homologous proteins from the TOPDB
database were used, of which all TMHs were defined in
the corresponding PDB file.

These two benchmark sets were merged and then ex-
panded with globular proteins from the PDBSelect data-
set [40] to prepare a benchmark set for filtering purpose.
This “filtering benchmark set” models the human prote-
ome in the sense that it contains TMPs and globular
proteins in the same ratio as was shown earlier by other
studies (25 % TMP and 75 % non-TMP).

The topology and the sequences of these three bench-
mark sets can be downloaded from the website of the
HTP database.

The constrained consensus topology prediction method
The Constrained Consensus Topology prediction method
(referred as CCTOP hereinafter) is composed of three
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basic steps. The first step is the prediction of signal pep-
tides. Depending on the signal peptide prediction’s output,
in the case of a positive result the signal peptide is cut be-
fore any further investigation, because most of the top-
ology prediction methods confuse signal peptides and
TMHs. Next, CCTOP makes a decision as to whether the
investigated protein sequence encodes a TMP or a non-
TMP. The final step is the topology prediction. CCTOP,
as its name shows, utilizes several methods to perform
these tasks and incorporates the results of already known
topological data or bioinformatical evidences into the final
topology prediction as constraints. We describe the details
of these steps and the results of these predictions in the
following sections.

Signal peptide prediction

We have tested several prediction methods on the merged
human benchmark sets (structure and experiment). Be-
cause the prediction accuracies of these methods are high,
and because we cannot increase the accuracy by combin-
ing them, CCTOP utilizes SignalP prediction with a single
modification. That is, if there is a protein homologous
to the investigated one in the TOPDB database then
the signal peptide data from TOPDB are used instead
of SignalP results. Table 1 contains the results of the
various predictions.

Discrimitaning between transmembrane and non-
transmembrane proteins

Transmembrane topology prediction methods are com-
monly used to discrimitaning between TMPs and non-
TMPs. However, as we pointed out earlier, [18] it isn’t a
good practice, since most of the methods are trained
only on TMPs and not on mixed sets of TMP and non-
TMP sequences. Here we tested several methods on the
filtering benchmark set described in the previous section
and the best ones were combined in order to reach an
even better accuracy. As it can be seen in Table 2, the
specificity of each method tested is high, while their

Table 1 Results of the various signal peptide prediction
methods on the human benchmark set

Philius Phobius SignalP SPOctopus
TP 204 196 194 168
FP 24 21 14 22
TN 234 237 244 235
FN 12 20 22 49
Sensitivity 094 091 0.90 0.77
Specificity 091 092 095 091
McCC 0.84 083 0.85 0.70

TP: number of true positives; FP: number of false positives; TN: number of true
negatives; FN: number of false negatives; specificity is TN/(TN + FP); sensitivity
is TP/(TP + FN); MCC: Matthew’s Correlation Coeffitient is (TP*TN-FP*FN)/

sqrt (TP + FP)*(TP + FN)*(TN + FP)*(TN + FN))
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Table 2 Results of the various prediction methods for filtering TMPs on “filtering benchmark set”

MEMSAT-SVM Octopus Philius Phobius PRO Scampi-single Scampi-multi TMHMM CCTOP

TP 469 455 460 462 417 469 454 451 467
FP 51 40 24 20 28 26 40 21 21

TN 1371 1382 1398 1402 1394 1396 1382 1401 1401
FN 5 19 14 12 57 5 20 23 7

Sensitivity 0.99 0.96 097 0.97 0.88 0.99 0.96 0.95 0.99
Specificity 0.96 097 0.98 0.99 0.98 0.98 097 0.99 0.99
MCC 0.93 0.92 0.96 0.96 0.88 0.96 0.92 0.94 0.96

See legend of Table 1

sensitivities and Mathews correlations are somewhat
lower. However, we achieved higher accuracy by com-
bining the tested methods, and reached 99 % both for
sensitivity and specificity, respectively (Table 2, Column
CCTOP). PRODIV and HMMTOP were not tested, as
they are not able to distinguish transmembrane and
globular proteins, because the key hypothesis in these al-
gorithms is that the investigated protein is a TMP.

Topology prediction

We have also tested the topography and topology pre-
diction accuracies of the various methods available on
the internet either online or in locally executable form.
Although the prediction accuracies of most of these
methods were reported above 85-90 %, in the human
benchmark sets their accuracies are somewhat lower
(see Table 3 and Table 4). This could be the result of the
fact that these prediction methods were trained on sets
containing mostly prokaryote sequences. For compari-
son, we have tested another consensus based prediction
methods, TOPCONS, as well. The developed CCTOP
prediction method enhances the accuracy by utilizing
two phenomena. As it was shown by several publica-
tions, consensus approaches usually work better than
simple methods by eliminating the sporadic errors of in-
dividual methods. We checked the effect of the number
of the selected topology methods on the final accuracy of
the consensus method, and find that the accuracy is satu-
rated with the number of the used methods (Additional
file 3). Therefore, CCTOP is based on the prediction re-
sults of ten topography and/or topology prediction

methods. The novelty of CCTOP is that it incorporates
these results as constraints in a probabilistic framework
provided by hidden Markov models. Another way for en-
hancing prediction accuracies is the integration of the
already available topological data and other bioinformati-
cal evidences into the prediction as constraints in the
same probabilistic framework. As it is shown in Table 4,
by using these data the topology prediction accuracy raises
by more than 15 % on the experimental data set. By using
the reliability value calculated by the CCTOP algorithm,
the reliability of the individual predictions can be mea-
sured as well, and we are able to select the most accurately
predicted subset of the human transmembrane proteome
(see Reliability of the HTP database). This feature en-
hances the usability of the CCTOP even more.

The human transmembrane proteome

Using CCTOP as an accurate and precise filtering, signal
peptide and topology prediction method on human se-
quences, we investigated all human sequences in the hu-
man proteome defined by the UniProt database (version
UniRef90 2013, March). We filtered 4998 sequences as
TMPs, which is 26 % of the human proteome as ex-
pected from earlier studies.

The distributions of the number of TMHs in the ex-
perimental set and in the predicted human proteome are
very similar (Fig. 1). Notably, results on the benchmark
sets are similar to the results on the whole human trans-
membrane proteome. The most prevalent class is the
one TMH containing proteins. According to the GO an-
notation, proteins in this class are involved in cell

Table 3 Topology prediction results on the structure benchmark set

HMMTOP?  Membrain  MEMSAT-SVM  Octopus  Philius  Phobius  Pro  Prodiv  Scampi-Msa TMHMM  TOPCONS  CCTOP?
Sens/res 097 0.99 0.96 0.97 0.96 0.97 09 097 0.99 0.94 097 0.99
Spec/res 097 0.94 0.99 098 0.98 097 098 097 0.98 0.99 0.98 0.99
MCC/res 097 0.96 0.97 097 0.97 097 094 097 0.98 0.96 0.96 0.99
Accrpg/prot 84 76 80 83 81 79 66 82 89 76 78 93
Accrop/prot 81 0 68 82 74 77 51 67 88 70 76 92

Prediction accuracies of the various topology prediction methods on the structure benchmark set. Sens/res, Spec/res, and MCC/res mean per-residue sensitivity,
specificity, and Matthew correlation coefficient, respectively. Accr,g/prot and Accrop/prot mean per/-protein topography and topology accuracies multiplied 100,

respectively (*predictions were made without topological constraints)
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Table 4 Topology prediction results on the experimental benchmark set

HMMTOP?  Membrain  MEMSAT-SVM  Octopus  Philius  Phobius P

=

o Prodiv Scampi-Msa  TMHMM TOPCONS CCTOP? CCTOP

Sens/res 092 0.88 0.95 092 092
Spec/res 0.92 0.97 0.92 0.97 0.96
MCC/res 0.92 092 0.94 094 0.94
Accrpg/prot 66 67 70 73 72
Accrop/prot 57 0 59 63 68

0.92 09 083 0.94 0.88 093 0.96 0.96

094 09 094 091 0.97 0.94 0.96 0.97

093 093 083 092 092 091 0.96 0.96
68 67 57 64 67 64 82 85
64 52 44 60 60 59 80 84

Prediction accuracies of the various topology prediction methods on the experimental benchmark set. Sens/res, Spec/res, and MCC/res mean per-residue sensitivity,
specificity, and Matthew correlation coefficient, respectively. Accryg/prot and Accrop/prot mean per/-protein topography and topology accuracies multiplied 100,

respectively (*predictions were made without topological constraints)

adhesion, in biosynthetic and metabolic processes or func-
tion as receptors. According to the WEB-based GEne SeT
AnaLysis Toolkit, the most enriched diseases related to this
class of TMPs are various immune system diseases, virus
diseases, infections, necrosis and transplantations [58]. The
second most abundant class is the seven TMH class, which
contains the largest TMP family, namely the GPCR protein
family. The higher values of the even numbered TMH clas-
ses above ten indicate that the genes of these proteins
should be the results of tandem duplication. These results
are consistent with previous studies [28, 47], but slightly
differ in the number of 7 TMHs containing proteins. This
may be the results that MEMSAT-SVM has the lowest pre-
diction accuracy on those protein in the structure bench-
mark set which contains 7 TMHs.

In the HTP database, predictions were categorized into
five evidence levels according to the type of the used top-
ology data or the lack of this information. These evidence
levels are 3D, Experiment, TOPDOM, Exists and Prediction.
The most certain predictions are on the 3D level, where 3D
structure of the given human TMP has already been
determined, or a 3D structure of a homologous protein has

50

40

30

X
20
10
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
#TM

Fig. 1 Distribution of the number of transmembrane helices.
Distribution of the number of TMHs in TMPs in the experimental
benchmark set (blue) and the predicted human transmembrane
proteome (magenta)

already been solved. In the latter case, strict parameters are
used to generate an alignment and to mirror the topology
information from the known sequence into the unknown
human TMP, and the topology data of the homologous pro-
tein in the TOPDB database has been used as constraint in
the final prediction. The next evidence level is the Experi-
ment level, when the 3D structures of the protein itself or of
homologous proteins are not known, but some molecular
biology experiments were made. Entries are marked with
TOPDOM evidence level, if bioinformatic evidences can be
found that can be used as a strong argument to define the
topology of the full protein or some parts of it. The experi-
mental topology data is collected in TOPDB, while bioinfor-
matical evidence can be generated using the TOPDOM
database and its search engine. The Exist evidence level is
used when constraints do not exist at all in the TOPDB or
in the TOPDOM databases, but there is some evidence
that the protein exists. The last evidence level is the Pre-
diction level. In this case, there is no evidence of the exist-
ence of the protein; therefore, both the amino acid
sequence and the topology are predicted from the human
genome sequence. According to the distribution of the
evidence level in the HTP database (Fig. 2), almost half of

TOPDOM Exists Prediction

3D Experiment
Evidence levels

Fig. 2 Distribution of evidence levels. Distribution of evidence levels
in the predicted human transmembrane proteome
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the protein topologies belong to the 3D or Experiment
levels, which are the most reliable parts of the database.

Reliability of the HTP database

Besides the utilization of consensus prediction methods
and topology data as constraints, a unique feature of the
CCTOP algorithm is the calculation of the reliability of
the prediction. It is done by summing up the posterior
probabilities through the path of states of the final pre-
diction, determined by the Viterbi algorithm. By sorting
the predictions according to the calculated reliabilities,
the prediction accuracies on the most reliable subsets
are decreasing monotonously (Fig. 3, red). According to
this result, CCTOP can predict the topology with accur-
acy above 98 % for more than 60 % of the benchmark
set, and using the reliability values, we can identify these
most accurately predicted proteins, without knowing the
topology. The reliability-coverage curve shows similar
shape on the benchmark set and the whole human
transmembrane proteome (Fig. 3, blue and magenta),
therefore it is plausible that the predicted topologies in
HTP database may be as accurate as in the benchmark
set, i.e. more than 60 % of the predicted topologies” ac-
curacies may be over 98 %. Those entries, whose reliabil-
ities are above 85 % belong to this highly accurate
predicted subclass of the human transmembrane prote-
ome (see Fig. 3, dashed lines).

o o 100
\

L 804 480
= X
e <
£ >
8 2
:

60 5 60

40 T T T 40

0 20 40 60 80 100

Coverage (%)

Fig. 3 Correlation between accuracy and reliability. Predictions are
sorted by descending reliability order. Then the topology accuracy
were calculated for each subset containing predictions from the
most reliable to the least one. The x-axis measures the relative

size of the subset to the whole size of subset or of the human
transmembrane proteome, the y-axes measure the topology
accuracy measured on the subset and the least reliability value in
the same subset. Red and blue line are the topology accuracies and
smallest reliabilities measured on benchmark sets, respectively.
Magenta line is the smallest reliability measured in the subset of
human proteome. The vertical dashed line is at 60 % coverage and its
cross with the topology accuracy curve (red line) at 98 % and with the
reliability curve at 85 % are indicated with horizontal dashed lines
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Comparing the HTP database with other resources

We have compared three other human transmembrane
proteomes published so far with the data in our HTP data-
base (Fig. 4). For structural genomics of human o-helical
transmembrane proteome the Sali lab used a simple algo-
rithm to create an initial set for their purpose [52]. As it can
be seen in Fig. 4, there are only 14 proteins that are in this
TMHMM set, but were not identified by CCTOP algorithm
as TMP. However, the TMHMM set missed 2148 TMPs,
most of which have only one transmembrane region. As the
HMPAS data set contains 4500 more proteins than HTP,
because in this database every protein is listed that has any
association with the membrane, ie. contains the “mem-
brane” GO annotation. In the UniProt database there are
1342 entries containing “Subcellular location: membrane”
annotation, which we did not identify as TMP. However,
only 28 % of these entries have additional annotation in the
feature table (FT line), localizing the transmembrane region
in the sequence, and only three of them are based on ex-
perimental results, the others are based on predictions and/
or similarities. The transmembrane proteome published by
Faberger et al. is not presented on Fig. 4, because none of
the downloadable files contained the type of the proteins
they characterized, nor the topologies of TMPs.

The website of the human transmembrane proteome
database

The homepage of HTP database is available at the URL:
http://htp.enzim.hu. Besides the option to download the
raw data, we have created an interactive graphical user
interface (GUI) for the visualization of the collected top-
ology data as well as the results of the various prediction
methods for each protein. This information is shown on a
3D or 2D graphical interface or as raw xml files. All data are
searchable in simple mode or in advanced mode and the
search results can be visualized separately, or downloaded

HTP

UniProt

Fig. 4 Comparison of different predictions of the human
transmembrane proteome. Venn diagram of the various predicted

human transmembrane proteomes
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as one archive file. All functionalities of the HTP website
are described in detail in its user manual. A representative
screenshot of the HTP website can be seen on Fig. 5.

Future directions

We would like to update HTP database regularly, following
the three source databases’ (TOPDB, TOPDOM, UniProt)
update. During the preparation of HTP database UniProt
had released a new human proteome, containing the alter-
native splice variants of genes. We would like to incorpor-
ate these splice variants into the HTP database as well.

Conclusions

The CCTOP algorithm is a novel method for predicting
transmembrane protein topology. Besides utilizing 10
different state-of-arts methods, experimental and bio-
informatic information is incorporated into the predic-
tion from PDBTM, TOPDB and TOPDOM databases.
The CCTOP algorithm was tuned and benchmarked on
newly compiled human protein sets and was shown to
have the highest accuracy among other tested state-of-
art and consensus methods.

Using the CCTOP algorithm on the human proteome, it
predicted that 4998 (26 %) proteins contain TMH(s). The
gathered information was used to construct the HTP data-
base, which is available at the URL: http://htp.enzim.hu. It
contains all human a-helical transmembrane proteins, with
established topology by the CCTOP algorithm. In addition
to download the raw data, a graphical user interface was
created for the visualization of the collected information.
Various search and browse modes have been added in
order to simplify the gathering of the desired information.
We are planning to update the database regularly, follow-
ing the updates of UniProt, as well as to extend its content.

Reviewers’ comments
Reviewer comment 1: Dr. Sandor Pongor
Report form: In this manuscript Dobson et al. present a
new method for predicting the topologies of transmem-
brane proteins and the application of this approach on the
human proteome. Transmembrane proteins play important
roles in human body and are the target of half of the drugs
currently available on the market; meanwhile there are only
hundred TMP structures solved. Therefore, the computa-
tional approaches and curated databases, like the one pre-
sented in this manuscript, are highly needed. According to
the authors, there method has the highest accuracy among
the dozen or so currently available programs designed for
the purpose. However, some issues need to be addressed:
Authors’ response: We thank reviewer for this comment.
R1: Is the use of CCTOP for filtering of membrane
proteins significantly better than individual methods?
The authors need to describe how methods were chosen
for evaluation their consensus method.
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Authors’ response: We have prepared Additional File 3
by combining the results in a Venn diagram of methods
with Matthews correlation coefficients above 0.93. In
Additional File 3, the results of all triplet combinations of
the selected four methods can be found. As it expected, and
can be seen from these data, combining the various algo-
rithms decreases the false negative (FN) and false positive
(FP) ratios. However, the true positive (TP) ratio decreases
as well. Therefore, there should be an optimal number of
the combined methods. Using a simple majority decision
algorithm for three methods out of the selected four ones,
the highest accuracy could be reached if the three methods
were TMHMM, Scampi and Phobius.

Regarding the significance of our filtering algorithm, we
note that our aim was to predict the human transmem-
brane proteome as accurate as it could be. Since the size
of the human proteome is about 20,000, one percent dif-
ference between the prediction accuracies of two methods
would result two hundred incorrectly predicted proteins.

R1: Combined signal peptide and topology prediction
methods show better performance than applying them
individually. However, CCTOP algorithm separates these
two predictions. It would have resulted in better per-
formance, if CCTOP had used a hidden Markov archi-
tecture similar to Phobius or SPOctopus.

Authors’ response: In the human benchmark set the
performance of these two methods are lower, than of
Philius and SignalP4.0 (see Table 1) regarding the signal
peptide prediction accuracies. However, CCTOP algo-
rithm similarly to Phobius and SPOctopus, exploits the
result of the signal peptide prediction by utilizing an
extra-cytosolic constraint at the N-terminus of the se-
quence. We have to choose this solution, because CCTOP
and the other HMM based prediction methods apply dif-
ferent learning schema (unsupervised vs supervised, re-
spectively), therefore we cannot use a HMM architecture
developed for supervised learning.

R1: Are the prediction performances of the applied
single methods reliable or do they only show the similar-
ity between the training set used during their develop-
ment and the benchmark sets used in this manuscript?

Authors’ response: Since we could not retrain the indi-
vidual methods on our benchmark sets, we can answer
this question only indirectly. We have prepared a new set
from the Structure benchmark set by removing those pro-
teins, which have 40 % or higher sequence identity with
any sequence of the training sets used by the 10 predic-
tion methods. Altogether 61 proteins were removed. Then
we tested the prediction accuracies of the methods on this
smaller set. To estimate the effect of the smaller set, we
prepared hundred random set, by removing 61 proteins
randomly from the Structure benchmark set, and tested
the accuracy on these random sets as well. The following
diagrams show the results:
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As it can be seen, we did not get significantly better or
worse topology prediction accuracy by removing the 61
protein used for training the various methods, than in
random cases, indicating that the used methods are not
overfitted to the structure benchmark set.

R1: The used topology prediction methods are appar-
ently not cross-validated on the current experimental
and structure benchmark set. In this case, how can the

reliability of the performance of a consensus predictor
be estimated?

Authors’ response: See our answer to the previous
question. Moreover, the fraction of those TMPs in the
experimental benchmark set, which were used formerly
in training, is smaller, and removing these proteins
does not affect the prediction results at all. As the
weights for the various methods used for the final
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CCTOP prediction were calculated from the topology
prediction results on structure benchmark set, the ex-
perimental benchmark set can be regarded as an inde-
pendent test set.

Quality of written English: Acceptable

Quality of Figures: Acceptable.

Reviewer comment 2: Dr. Michael Galperin

Report form: The manuscript by Dobson and col-
leagues describes the newly created Human Transmem-
brane Proteome (HTP) database (http://htp.enzim.hu),
a potentially useful resource. However, the current ver-
sions of the database and of its description contain ser-
ious flaws and would be misleading for the readers and
the potential users. The database and the accompanying
manuscript must be carefully revised before this work
could be considered acceptable for publication in Biol-
ogy Direct.

I have checked the performance of the database using
the well-known family of G-protein coupled receptors
(GPCRs) whose members contain 7 transmembrane
(TM) segments. To my great surprise, the HTP re-
ported 5 TMs for GP148_HUMAN and 8 TMs for
EDNRB_HUMAN (in both cases UniProt predicts 7
TMs). A quick look at the underlying data showed that
for GP148_HUMAN, five TM prediction methods used
by HTP found 5 TMs, whereas other five predicted the
same 5 TMs plus two more for a (correct) total of
seven. In the case of EDNRB_HUMAN, again five
methods correctly predicted 7 TMs, and the other five
added an additional TM at the N-terminus, a likely sig-
naling peptide. The consensus method (CCTOP), de-
veloped by the authors, weighted results of 5 methods
against the results of other 5 methods and, in each case,
made the wrong choice. This result not only questions
the quality of the CCTOP tool, it also shows that a
naive user who would trust the HTP output would end
up with a worse prediction than the one available in
UniProt.

Authors’ response: We thank the reviewer for point-
ing out this flaw in the HTP database. After careful in-
vestigation of the CCTOP results for these and other
7TMHs proteins, we found a bug in our code, which
caused this type of misprediction. After eliminating this
bug, we recalculated the CCTOP’s topology prediction
for GPCRs and other affected proteins. Altogether 76
predictions were modified. We updated Fig. 1 as well.
Moreover, we prepared a GPCR test set from UniProt
database by selecting those human proteins that are
marked as ‘reviewed” in the UniProt file, contain the
“G protein coupled receptor” words in the file and fea-
tured in HTP database (870 proteins) then checked
how many cases can be found 7TMH in the UniProt
files themselves and in the prediction results of the
various methods:
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Method Acc(%)
SwissProt 90.23
HTP 89.89
ScampiMsa 8345
PRODIV 82.30
Philius 7793
MemBrain 70.57
TMHMM 7046
PRO 69.77
Phobius 6138
Memsat 49.20
Octopus 45.75
HMMTOP 4161

As it can be seen, now HTP database is as accurate as
Uniprot, regarding GPCR proteins.

R2: Therefore, I would strongly suggest showing, in-
stead of a single 4 of TM segments’ in the Summary
view, all the possible numbers of TMs predicted by vari-
ous tools. In addition, the 2D view should be made the
default one. In the current display of Search results, it is
not even explained that the user should click inside the
box to see the choice of 1D, 2D or 3D view.

Authors’ response: There is no default tab in the ser-
ver for the entry view, the last used tab is shown if a new
protein is selected from the search list or entered directly
by url. Therefore, if a user thinks that the 2D tab is more
useful than the Summary tab, the 2D tab simply can be
used as default. Despite of it is explained in the server
manual page (http://htp.enzim.hu/?_=/documents/sman/
sman_listviewer.html) at point D that “User can click to
the icon in order to open the Entry Viewer Panel.”, we
made this step more evident by putting a clickable arrow
behind the icon and make the headline of each search re-
sult clickable as well.

R2: Obviously, the above examples suggest that the
quality measures described in the manuscript are likely
to be biased. However, I would argue that these mea-
sures do not belong into this manuscript in the first
place.

Authors’ response: As we described above, there was a
bug in the source of the CCTOP prediction method caus-
ing this type of error. However, we would argue that the
reliability values calculated for each entry are worthy,
since the reliability values of both entries pointed by the
Referee were low, which call the attention of the potential
user, that the prediction is not certain. Since the HTP
database contains the prediction results of CCTOP algo-
rithm, it is evident that the prediction can make mis-
takes. As we shown in Fig. 3, the prediction accuracy for
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the 60 % of the entries are above 98 %, which reliability
value is above 86 %. For the two examples pointed by the
Referee the reliability values were below this limit, show-
ing the usability of the reliability value. Moreover, since
the CCTOP algorithm uses TOPDB and TOPDOM data-
bases, the updating of these two databases may cause a
change of CCTOP prediction on human proteins as well.
Therefore, we are planning to rerun CCTOP algorithm
from time to time after updating TOPDB, TOPDOM or
the UniProt proteome source.

R2: Basically, the reviewed manuscript combines two
distinct parts that do not fit together very well. One part
is the description of the tools for TM segment and top-
ology prediction that have been used in the HTP data-
base. I have no major complaints about this part,
although it would be useful to carefully examine all the
cases where different tools produce different results and
identify any potential sources of systematic error.

Authors’ response: Reliability values correlate well for
cases when the different prediction methods produce dif-
ferent results, and we could not detect any systematic
error of them.

R2: In my opinion, Table S1 makes much more sense
than any tables included in the main text (although one
could question whether SOSUI is really inferior to other
tools).

Authors’ response: As it is explained in Table S1, the
SOSULI server was instable during the development of
CCTOP algorithm; it froze several times and was un-
available for days or even weeks. This was the reason
that we finally omitted it from the CCTOP algorithm.

R2: As an example, the authors do not specify which
version of SignalP they have used. In fact, SignalP ver-
sion 4 has been specifically modified as compared to ver-
sion 3 to allow better discrimination between cleavable
signal peptides and uncleavable ones that stay in the
protein and form N-terminal TM segments. Our own
recent analysis showed that this change resulted in a
substantial improvement of signal peptide prediction by
version 4, as judged by proteogenomics-based identifica-
tion of signal peptides [Ivankov et al., Environ. Micro-
biol. 2013, 15 (4):983-990, PubMed ID: 23556536]. The
second part is a purely bioinformatics exercise that in-
cludes benchmarking of various programs and is sup-
posed to show the superior performance of the CCTOP
tool. As explained above, this section looks suspicious
and the CCTOP tool does not seem to add much value.

Authors’ response: We used SignalP version 4.1 in the
CCTOP algorithm, but indeed, this information was only
indirectly presented in the manuscript by citing the paper
describing the SignalP 4.0 version. Now we added this
info to the manuscript.

R2: In summary, the HTP database can be made into
a useful resource. To accomplish that it would need to
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be displaying all prediction results generated by various
tools instead of trying to arbitrarily select one result over
the other. The description of such a database would be a
welcome contribution, worthy of publication in Biology
Direct. In contrast, the description of the CCTOP tool
and its benchmarking should be made into a separate
paper that would be more suitable for a specialized bio-
informatics journal.

Authors’ response: We are planning to describe the
details of the CCTOP algorithm separately, but currently
this is not yet available. We think, the short description
of the algorithm in the present manuscript help under-
standing how the database was created.

Quality of written English: Acceptable

Quality of Figures: Acceptable.

Reviewer comment 3: Dr. Pascale Gaudet (nominated
by Dr Michael Galperin)

Report form: I have reviewed the paper by Dobson,
Reményi and Tusnddy entitled “The Human Transmem-
brane Proteome”. The paper describes a new database of
human transmembrane proteins. As described by the au-
thors, transmembrane domains are difficult to assess ex-
perimentally, so accurate methods for annotation of
transmembrane proteins based on experimental data
and predictions are very valuable.

Comments on the manuscript:

Please clarify the following points:

R3: In the Results section of the Abstract: authors
quantify the accuracy of their method using ‘filtering’
and ‘per protein topology prediction’ measures. Al-
though this is described in the main section of the paper,
these terms should be defined briefly, or removed. Also,
it is not clear to me whether the next sentence (“Besides
predicting topology, reliability of the predictions is esti-
mated as well, and it is demonstrated that the accuracies
of more than 60 % of the predictions are over 98 % on
the benchmark sets”) refers to the same measures. Please
clarify.

Authors’ response: We change filtering’ to ‘discrimin-
ating between transmembrane and non-transmembrane
proteins’. The ‘per protein topology prediction’ category is
commonly used in the field of transmembrane topology
prediction (see for example pmid:15215532). We modi-
fied the next sentence to clarify its meaning.

R3: In the Background section: It is not clear what
study this sentence refers to “Although the reported per
protein transmembrane topology prediction accuracies
of the various algorithms were shown to be above 80 %,
they reached rather low prediction accuracies on a hu-
man benchmark set (see below).”; please be more spe-
cific with respect to the source of this data.

Authors’ response: We meant the various state-of-the-
art prediction methods used by the CCTOP algorithm
and listed in Additional file 1. We have put in link to
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Additional file 1 in this sentence in order to clarify this
issue. The table in the Additional File 1 contains the ref-
erences to the reported high prediction accuracies.

R3: On p. 6, when describing the creation of the data-
base, the authors mention a “consensus method”. This
consensus method must be defined.

Authors’ response: We mean CCTOP here. We chan-
ged the sentence to make this point clearer.

R3: On p. 6, authors also mention a newly established
benchmark of more than 450 human proteins. How was
this benchmark defined? It is available for other re-
searchers to test their prediction algorithms?

Authors’ response: It is described in the “Methods,
Preparation of the benchmark data sets” section of the
manuscript. The benchmark sets can be downloaded
from the website of the HTP database.

R3: Methods: On page 7, the authors mention that
they used UniRef90 Human Proteome from March 2013.
Are the authors planning to re-run the analysis on a
more up-to-date version of the database?

Authors’ response: Yes, we are planning to update the
database regularly, as well as to extend its content. We
add this information to the end of “Conclusion”.

R3: On p. 7, the authors describe the use of PDBTM,
TOPDB and TOPDOM data. Please cite which version
was used for each of these databases.

Authors’ response: We added the appropriate version
numbers into the manuscript.

R3: On p. 9, authors mention that the consensus algo-
rithm was chosen by testing “dozens of combinations of
these approaches”. The actual consensus algorithm
should be described. It seems like the section “ Con-
strained Consensus Topology prediction” describes the
algorithm; it may be that adding a transition sentence
would clarify this point.

Authors’ response: We have prepared a new document
(AdditionalFile_3.doc), which describe the algorithm of
the discrimination between transmembrane and non-
transmembrane proteins, and linked this file to the sen-
tence cited by the Referee in the manuscript.

R3: p. 12, authors describe using Uniprot annotations
to detect (and cleave) signal peptides, and “then the sig-
nal peptides have been predicted by SignalP”. Is the Sig-
nal P prediction run *after* the data is processed from
UniProt ? Does that provide any additional signal pep-
tides? That would be surprising (unless different cut-offs
are used), since UniProt also uses SignalP to predict sig-
nal peptides.

Authors’ response: In the manuscript we wrote that
“All transit peptides have been cleaved using UniProt an-
notations, then the signal peptides have been predicted
by SignalP”. That is, we use UniProt only for removing
transit peptides and not for identifying signal peptides.
For signal peptide detection we use the SignalP method
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and the information from TOPDB database. This is now
made clearer in the manuscript.

R3: In that same section, that authors describe modify-
ing the prediction if an annotated signal was not pre-
dicted by SignalP; in UniProt there may be signal
sequences that have been shown experimentally, yet not
predicted by SignalP; I expect that extra step may create
both false positives and false negatives annotations.

Authors’ response: We use the information from the
TOPDB database to modify the result of SignalP, and not
from the UniProt, moreover the order is the opposite: first
we generate the SignalP prediction and this prediction is
modified, if the TOPDB database contain contradictory
data. In this way FP and FN are lower than simple use
of SignalP prediction.

R3: p. 14: Please provide a reference for the
TMHMM160 protein set.

Authors’ response: This set was compiled for the
TMHMM algorithm, and is described in ] Mol Biol
2001, 305:567-80. We inserted this reference.

R3: p. 18: It is misleading that the ‘Experiment level
evidence level contains both experimental data as well as
bioinformatics evidence. Is it possible to distinguish be-
tween these two categories?

Authors’ response: We thank the Referee for this sug-
gestion. We introduced a new evidence level, called TOP-
DOM for entries which contain cross reference(s) only to
the TOPDOM database and updated the text and Fig. 2
in the manuscript accordingly.

R3: Tables 1 and 2 are missing a legend.

Authors’ response: We insert the missing legends.

R3: Fig. 3 Title: Remove the two instances of “the”.

Authors’ response: We have amended the title of Fig. 3.

R3: Fig. 3 legend is not clear: what is the difference be-
tween the blue line and the red line? Please rephrase.

Authors’ response: We have rephrased the legend of
Fig. 3.

R3: Fig. 3: How is the reliability on the entire human
proteome evaluated?

Authors’ response: We did not evaluate the reliability
on the entire human proteome. Reliability was deter-
mined in each entry in the HTP database, and then en-
tries were sorted according to their reliability values in
descending order.

Grammatical and typological corrections

R3: Generally: The term ‘extracellular’ is more com-
monly used than ‘extracytoplasmic’ for protein segments
outside the cell. This is also the UniProt nomenclature,
see http://www.uniprot.org/help/topo_dom.

Authors’ response: We use extracytoplasmic not just
for protein segment outside the cell, but for every protein
segment that is the opposite site than the cytosol, i.e. the
inside of the various somes (endosomes, lysosomes, micro-
somes etc.), intermembrane space of mitochondrium,
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cysternal space of endoplasmic/sarcoplasmic reticulum. non-TMP. It may be more intuitive to name this
For details, see the various membrane types in the docu- parameter “discriminating ability”.

mentation on the website of TOPDB database (http:// — p. 14: Remove commas between “sequences” and
topdb.enzim.hu/?m=docs&mm=membranes). “and”, as well as between “only” and “by” in the

R3: - Generally: The authors seem to use ‘homepage’
to mean ‘website’.

Authors’ response: We have replaced ‘homepage’ by
‘website’ through the manuscript.

R3:

p. 3: Replace “should” by “must” or “may” in the
sentence “This should be because the topology
prediction (...)"

— p- 3: Remove comma in the sentence “Signal peptides
control proper targeting of proteins, which are
destined toward the secretory pathway”.

— p. 4: Delete “may” in the sentence “These
modifications may occur only at the extra-cytosolic
side of proteins”

— p- 4: Delete “the” in the phrase “experimentally
established topological data into the prediction
methods”

— p. 5: Period missing after “a fully automated
algorithm”.

— p. 5: Delete “which” in the phrase “domains in the
SMART database which were found in soluble
proteins”

— p- 5: Replace “kind” by “type” in the phrase “kind
relevant to membrane protein topology”

— p- 5: What is meant by “classed material” in the
phrase “unavailability of classed material.” ? Please
rephrase.

— p- 5: The meaning of the sentence “Their results
showed that the five prediction methods agreed
more on the 6 benchmark set than the various
genomes.” is not clear; please rephrase.

— p. 6: Delete “used” in the phrase “how similar is the
data set (e.g. a genome) to the used benchmark set”

— p. 6: Replace “They” by “The authors” in the phrase
“They found that the available test set”

— p. 6: Replace “of” by “on” in the phrase “information
of human ?-helical TMPs”

— p. 6: Replace “sequential” by “sequence” in the
phrase “glycosylation sequential data”

— p- 8, Remove comma between “hose” and “reliability”
in sentence “Entries, whose reliability is above 99
and 95 % for bitopic and polytopic transmembrane
proteins, respectively, were selected”.

— p- 8, the term “homologous partner’s structure” is
not clear; please rephrase.

— p- 8 “filtering accuracy” is mentioned, without

having been defined.

sentence “ Here, we established a new benchmark
set, comprising sequences, and topologies of human
TMPs only, by searching sequences homologous to
the human sequences in the TOPDB database”

— p. 14: Replace: “have solved 3D structure” by “have a
3D structure”.

— p. 14: Remove comma between “human proteins”
and "whose homologous partner”

— p. 15: Replace “by” by “of” in the phrase “is
composed by three basic steps”

— p- 15: Replace sentence “Next, CCTOP makes a
decision whether the investigated protein sequence
codes a TMP or non-TMP” by “Next, CCTOP
makes a decision as to whether the investigated pro-
tein sequence en codes a TMP or a non-TMP”

— p. 16: When describing the filtering step, the
authors state that “we achieved higher accuracy by
combining the tested methods, and reached 99 %
both for sensitivity and specificity, respectively
(Table 2)”. Where is the combined analysis shown in
Table 2 ?

— p.17: Sentence “This should be the results that
MEMSAT-SVM has the lowest prediction accuracy
on 7 TMHs proteins using the Structure benchmark
set” is not clear; please rephrase.

— p- 19: Change “monotonously decreasing” to
“decreasing linearly”.

Authors’ response: We have amended the manuscript

as suggested by the referee.

Quality of written English: Needs some language cor-

rections before being published

Quality of Figures: Acceptable.

Additional files

Additional file 1: Prediction accuracies of tested methods.
Description: The prediction accuracies of all tested methods were
measured using the structure benchmark set. MCC: Matthews Correlation
Coeffitient, Accrg: per protein topography accuracy, Accry: per protein
topology accuracy, Comment: reason, why a given method was not
suitable for inclusion in the final consensus method.

Additional file 2: Title: Discrimination accuracy of majority decision
algorithms. Description: Description and additional information for the
discrimination algorithm used int he CCTOP method.

Additional file 3: Dependence of prediction accuracy on the
number of used methods. Description: Per protein topology prediction
accuracies of the consensus algorithm are shown using the first n-best
methods (red line) and the first n-worst methods (black line).

Abbreviation
CCTOP: Constrained Consensus TOPology; HTP: Human Transmembrane
Proteome; HSP: High-scoring Segment Pair; HMM: Hidden Markov Model;

— p. 9 “ability to filter” is defined as “the ability to
determine whether a sequence codes a TMP or a
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