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Background
Microbial communities are highly dynamic. They undergo compositional changes in 
response to environmental factors, which can profoundly influence their functions. 
For example, antibiotic treatment can disturb the human gut microbiota, altering its 
effect on the host metabolism and immune system, and facilitating the invasion of 
pathogens [1]. Such microbiota shifts are difficult to predict as they often occur irreg-
ularly and in different contexts. However, when linked to recurrent or predetermined 
environmental changes, microbial communities can undergo consistent composi-
tional transitions, providing excellent opportunities to study ecological interactions 
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governing community shifts. For example, bacterioplankton communities in the 
ocean that depend on sunlight intensity [2–4], or gut microbial communities of ani-
mals that have a seasonal diet, or that hibernate during the winter months [5–8], 
turnover as a function of season. Similarly, the assembly of the human gut microbiota 
after birth follows a predictable pattern characterized by the succession of different 
microbial taxa during the first few months of life [9, 10].

Compositional changes associated with the turnover of microbial communities 
have mostly been studied at the genus- or species-level using 16S rRNA gene analysis. 
However, natural microbial communities usually harbor a large extent of strain-level 
diversity, with strains of the same species carrying distinct functions. In the human 
gut, strain-level differences can influence the metabolism of dietary compounds [11, 
12] or drugs [13] or modulate their interactions with the host immune system [14]. 
Moreover, several recent studies have suggested that strains of the same species can 
exhibit different dynamics and govern the eco-evolutionary dynamics in microbial 
communities [15–18]. However, if natural microbial communities undergo consistent 
compositional transitions at the strain level in response to environmental changes is 
less well understood.

Honeybees (Apis mellifera) can be useful models for studying strain-level dynam-
ics in host-associated microbial communities. They are eusocial animals that live in 
large colonies composed of a single queen, a few hundred male bees, and thousands 
of sterile female worker bees. They harbor a relatively simple, but highly specialized 
microbial community in their gut, composed of < 10 bacterial phylotypes (i.e., bacte-
ria sharing > 97% sequence identity in the 16S rRNA gene) [19, 20]. Most of these phy-
lotypes have diverged into sequence discrete populations (sequence clusters of > 95% 
ANI; hereafter referred to as species), each harboring a high degree of strain-level 
diversity and variation in functional gene content [21–26].

Using shotgun metagenomics, we have previously shown that while phylotypes, and 
species within phylotypes, co-exist in individual bees, strains within species segre-
gate, suggesting that each worker bee harbors a distinct community at the strain level 
[22]. These differences in strain-level composition could not be attributed to any vari-
ation in age, time of sampling, or colony affiliation. However, in our previous study, 
only a few colonies were sampled, and bees were exclusively sampled from within 
the hive between September and February (i.e., autumn and winter) raising the pos-
sibility that most microbiota samples originated from nurse bees or long-lived win-
ter bees. During the summer months, worker bees undergo an age-related behavioral 
maturation [27–29]. Young nurse bees feed on pollen and fulfill tasks inside the hive 
related to brood care, nest building, and food processing. However, when 2–3 weeks 
old, nurses transition to forager bees, which feed on honey, and collect pollen and 
nectar outside the hive. Besides the dramatic change in dietary intake, this behav-
ioral maturation is accompanied by a series of physiological changes, such as endo-
crine secretion, fat body metabolism, and brain activity [30, 31]. Community profiling 
based on 16S rRNA gene sequencing has shown that the nurse-to-forager transition 
is associated with a consistent change in gut microbiota composition [32, 33]. While 
the microbiota of both bee types is dominated by the same bacterial phylotypes, the 
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composition of the community shifts with a marked decrease in the absolute abun-
dance of most phylotypes in forager versus nurse bees.

Here, we tested if the gut microbiota of honeybees during the transition from nurse 
to forager bees also undergoes consistent compositional changes at the strain level. To 
this end, we analyzed shotgun metagenomics data from nurse and forager bees sam-
pled across 15 colonies in Western Switzerland. Our results show that the two behav-
ioral states harbor distinctive bacterial communities across colonies, characterized by 
consistent shifts in strain composition and functional gene content of major bacterial 
species. These findings show that strains are ecologically distinct units that undergo a 
predictable ecological transition when bees turn from nurses to foragers. We speculate 
that this microbiota shift is driven by nutrient availability disparities or physiological 
changes in the gut of foragers relative to nurses.

Results
Bacterial loads and species‑level community composition differ between nurse and forager 

bees

To investigate compositional changes with genomic resolution in the honeybee gut 
microbiota in response to behavioral state, we collected metagenomic samples from lar-
vae-feeding nurses and pollen foragers (Additional file 2: Table S1). Samples consisted 
of pooled honeybee guts to ensure representative sampling of the strain-level diversity 
for each colony. In total, we sampled 15 colonies from five different sampling locations 
(three each), to account for possible variation between sites and colonies, not related to 
behavioral state.

Due to the different dietary habits of the two behavioral states, the hindguts of nurses 
were usually pollen-filled, as indicated by the enlarged gut size, and the opacity and 
yellow color of the gut content. In contrast, the hindguts of foragers were smaller and 
contained mostly nectar based on their translucent appearance. Accordingly, nurse guts 
were on average 2.9 × heavier than their forager counterparts (p = 3.3e − 09, Wilcoxon 
signed-rank test, Additional file 1: Fig. S1).

To estimate the absolute abundance of bacteria relative to the amount of total DNA in 
each pooled gut sample, we performed qPCR on genomic DNA targeting the bacterial 
16S rRNA gene. This revealed that the bacterial loads in the forager samples were on 
average 2.6 × lower than the ones in the nurse samples (p = 1.83e − 04, Wilcoxon signed-
rank test, Fig. 1A), confirming previous results by Kešnerová et al. [33].

Shotgun metagenomics sequencing resulted in 58.4–76.7 million reads per sample. 
To compare the bacterial community composition of nurses and foragers, the metagen-
omic reads were mapped to a reference database of isolate genomes of strains from the 
gut microbiota of social bees, as in Ellegaard et  al. [34] and Ellegaard and Engel [22]. 
The non-redundant database was composed of 198 isolate genomes and encompassed 
all major community members described to be present in the honeybee gut microbi-
ota. Between 19.8 and 57.4% of all metagenomic reads mapped to the bacterial refer-
ence database. Of the remaining reads, 30.6–76.0% mapped to the host genome of A. 
mellifera, and only 4.2–20.8% of the reads could not be assigned (Additional file 1: Fig. 
S2A). Forager samples overall had a lower proportion of reads mapping to the bacte-
rial database than the nurse samples (forager average 35.6%, nurse average 50.8%, 
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p = 6.1e − 05, Wilcoxon signed-rank test), which is in line with the difference in bacte-
rial loads between the two behavioral states. Taxonomic profiling with mOTU2 [35] 
revealed that a large fraction of the unmapped reads originated from bacteria, especially 
from Bartonella, Snodgrassella, and Lactobacillus suggesting that some of the diversity 
of these core microbiota members is not covered in our reference database. However, 
also some accessory community members were detected among the unmapped reads 
such as Hafnia, Klebsiella, or Enterobacter, especially in nurse samples (Additional file 1: 
Fig. S2B).

We next determined the relative and absolute abundance of the major phylotypes and 
species in each sample based on the read coverage of single-copy core genes and the 
total number of 16 rRNA gene copies determined by qPCR. We will refer to different 
species within phylotypes using the previously established SDP (sequence-discrete pop-
ulation) numbering [22, 34], for reasons of readability but also because only for a subset 
of them proper species names have been established to date. A list with all SDPs and 
corresponding species names can be found in Additional file 2: Table S2. Both the phylo-
type and species-level composition were comparable to the community profiles detected 
in previous shotgun metagenomic analyses based on individual bees [22, 34]. Firmicutes 
(Bombilactobacilli and Lactobacilli) and Bifidobacteria dominated the community, and 
for the phylotypes Bombilactobacillus, Lactobacillus, Bifidobacterium, and Gilliamella, 
different species were detected in all samples (Fig. 1B, Additional file 1: Fig. S3). Consist-
ent with previous findings that social bees harbor host-specific communities [34, 36], 
most reads mapped to the genomes of bacterial isolates from A. mellifera. Only a few 

Fig. 1  Community composition analysis of the gut microbiota of nurse and forager bees. A Boxplot of the 
bacterial loads of each gut represented by the number of bacterial 16S rRNA gene copies relative to 1 ng 
of total DNA. B Stacked bar plot of the bacterial phylotype composition for each sample. White separators 
within a phylotype delineate the different species. C NMDS plot of the samples’ bacterial phylotype 
composition. D NMDS plot of the samples’ bacterial species composition. E Log2 fold change in total 
normalized absolute abundance of bacterial species in forager samples relative to nurse samples from 
the same hive. Asterisks mark species with significant differences between nurses and foragers (Wilcoxon 
signed-rank test of the normalized absolute abundance of each species in the foragers against the nurses, 
q-value < 0.05). Data points for species of the same phylotype are shown in the same color. Horizontal bars 
represent medians
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reads (0.15–3.1%) in nine samples mapped to bacteria from other bee species (including 
Lactobacilli isolated from Apis cerana, and Gilliamella isolated from bumble bees and 
Apis cerana; see Additional file 2: Table S3), which may be due to spurious mapping.

Non-metric multidimensional scaling (NMDS) using Bray–Curtis dissimilarity of the 
bacterial relative abundances separated nurse from forager samples at both the phy-
lotype- (PERMANOVA, Host—R2 = 0.40279, p-value = 0.001) and the species-level 
(PERMANOVA, Host—R2 = 0.45201, p-value = 0.001, Fig. 1C and D). Samples are also 
clustered by location (Additional file 1: Fig. S4). However, it is important to note that our 
study was not designed to test for this, as only three colonies were sampled per location 
with two samples per colony.

In terms of absolute abundances (as determined by multiplying the proportions of 
each community member by the total bacterial biomass in each sample, see the “Material 
and methods” section), most community members were less abundant in foragers than 
in nurse bees (Additional file 1: Fig. S5), a direct consequence of the lower total bacterial 
biomass present in the gut of foragers (Fig. 1A). However, there were clear differences in 
the strength of these changes between community members, even among species of the 
same phylotype (Fig. 1E). For example, the total abundances of Lactobacilli Firm5_1 and 
Firm5_4 changed to a lesser extent (average log2 fold change = -1.45 and − 0.71) than 
those of Firm5_2 and Firm5_3 (average log2 fold change =  − 2.82 and − 2.99) in foragers 
relative to nurses. This explains the consistent shift towards a less even species composi-
tion of this phylotype in foragers compared to nurses as determined with the Shannon 
diversity index (Wilcoxon signed-rank test, p-value = 8.8e − 06, Additional file  1: Fig. 
S3). Likewise, Bifido_1.2 was more affected (average log2 fold change =  − 2.32) than any 
of the other species of the Bifidobacterium phylotype (average log2 fold change across 
species of the Bifidobacterium phylotype =  − 0.37) by the behavioral state transition of 
the host (Additional file 1: Fig. S3). Notably, four community members (Bapis, Snod_1, 
Com_1 and Lkun) did not change in absolute bacterial load between nurses and for-
ager samples, suggesting that they are not affected in their abundance by the behavioral 
transition.

In summary, although the gut microbiota of forager and nurse bees were composed of 
the same community members, we found consistent differences in the absolute abun-
dance of many of them, not only at the phylotype level as previously shown [32, 33], 
but also at the species level. Moreover, some species of a given phylotype were more 
strongly affected than others suggesting species-specific responses to the nurse-to-for-
ager transition.

Consistent differences in strain‑level composition between nurse and forager bees

Previous studies have shown that most honeybee gut microbiota species harbor high 
levels of strain diversity and that the strain composition differs between individual bees 
[22, 34]. To assess strain-level differences between nurses or foragers, we mapped the 
metagenomic reads against a reduced reference database containing one genome per 
species and quantified the number of polymorphic sites in the reads mapped onto the 
single-copy core genes of these reference genomes.

We detected between 1.85 and 11.19% polymorphic sites per species per sam-
ple, with Firm4_2 showing the lowest, and Firm5_4 the highest average proportion of 



Page 6 of 21Baud et al. Genome Biology          (2023) 24:283 

polymorphic sites per sample (Fig. 2A). These differences in proportions of polymorphic 
sites among community members are comparable to those previously found by Elle-
gaard et al. [34] and Ellegaard and Engel [22]. To assess the total amount of strain-level 
diversity detected per species across all samples, we calculated cumulative proportions 
of polymorphic sites as a function of the number of bee samples. Firm4_2 showed the 
lowest (4.91%) and Bifido1_1 the highest (12.8%) level of total diversity across all samples 
(Fig. 2B). In all cases, we observed that the slope of the curves rapidly decreased with the 
addition of new samples, indicating that many of the polymorphic sites are shared across 
samples.

When comparing the two behavioral states, we found that five of the 17 analyzed 
species showed higher strain-level diversity in nurses than in foragers (Wilcoxon 
signed-rank test, Firm4_1: q-value = 4.20e − 3, Firm5_1: q-value = 6.45e − 3, Firm5_2: 
q-value = 1.08e − 2, Firm5_3: q-value = 3.56e − 4, Gilli_1: q-value = 6.45e − 3) whereas 
only two species showed lower strain-level diversity in nurses than in foragers (Wilcoxon 
signed-rank test, Gilli_2: q-value = 2.91e − 2, Snod_1: q-value = 2.91e − 2, Fig. 2A). The 

Fig. 2  Differences in strain-level diversity between nurse and forager bees. A Proportion of polymorphic sites 
in the single-copy core genes for each bacterial species, expressed as a percentage of the total single-copy 
core genome length. Asterisks symbolize a q-value < 0.05 for the Wilcoxon signed-rank test between the 
proportion of polymorphic sites between nurse and forager samples. B Curves of the cumulative proportions 
of polymorphic sites for each species. C Principal coordinate analysis plots based on the Jaccard distance 
shared polymorphic sites between each pair of samples for each of the species
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forager samples had on average 2.6 times lower bacterial load than nurse samples, but on 
average only 1.5 times smaller number of reads per sample. This means that a larger frac-
tion of the total bacterial population was analyzed for forager relative to nurse samples, 
a difference that could potentially affect diversity estimates. However, no significant cor-
relation was found between the proportion of polymorphic sites detected and the read 
coverage of our samples (Additional file 1: Fig. S6), suggesting that we had sufficiently 
deep coverage across the study.

Next, we assessed the difference in strain profiles between forager and nurse samples 
by comparing the distribution of single nucleotide variants (i.e., alleles) at the detected 
polymorphic sites for each species across samples. To do so, we computed the Jac-
card distances between all sample pairs based on the number of shared polymorphic 
sites. Principal coordinate analysis of these similarity indices resulted in clustering of 
the samples by host behavioral state for 11 of the 17 analyzed species (PERMANOVA, 
p-value < 0.05, Fig. 2C), including all species of Bifido_1 and Firm5, except for Bifido_1.5 
and Firm5_4, Firm4_1, Gilli_1, Gilli_2, and Snod_1. Notably, we also observed cluster-
ing by location in the principal coordinate analysis (PERMANOVA, p-value < 0.05, Addi-
tional file 1: Fig. S7). However, as already stated before, our study was not designed to 
test for the effect of location as two samples per location came from the same colony.

In summary, our analysis shows that nurse bees and foragers have distinct strain pro-
files for many bacterial species both in terms of the amount of diversity and type of vari-
ants detected.

Intraspecific differences in functional gene content between nurse and forager bees

Previous studies have shown that most species of the honeybee gut microbiota har-
bor large accessory gene pools and that individual bees vary in terms of the functional 
gene content encoded in a given species [22]. Because nurses and foragers have differ-
ent physiology and diet, we thus hypothesized that the observed changes in strain-level 
composition between the two behavioral states may be driven by functional differences 
among strains.

To identify strain-specific genes that may be enriched in one behavioral state or the 
other, we compared the read coverage of all genes assigned to a given species. Strain-
specific genes should have a lower read coverage than the single-copy core genes of a 
given species, and those that predominate in one behavioral state relative to the other 
should show a consistent coverage discrepancy between forager and nurse samples. 
To identify such genes, we assembled all reads not mapping to the host genome and 
binned the resulting contigs into bacterial species bins using our reference database (see 
the “Material and methods” section for details and Additional file 1: Fig. S8). Then, we 
clustered the ORFs encoded in the binned contigs into species-specific ortholog groups 
(OGs) and identified those OGs that showed consistent coverage discrepancy between 
forager and nurse samples. In total, 81.7% (65.3–90.9% per sample) of all assembled 
bases could be binned and 83.4% (73.2–86.1% per sample) of the non-host reads mapped 
to the binned contigs indicating that we had included most of the bacterial diversity pre-
sent in the samples. Out of 45,863 species-specific OGs, 1551 revealed significant differ-
ences between the nurse and forager samples (q-value < 0.05, Wilcoxon signed-rank test, 
and absolute log2 fold change > 1, Additional file 2: Table S4), which indicated that these 
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genes were more abundant in one host behavioral state versus the other. Notably, the 
number of differential abundant OGs substantially varied between species ranging from 
15 to 231 (Fig. 3A, Additional file 2: Table S4). For example, in Bifido_1.1, we detected 
very few consistent gene content differences between foragers and nurses (6 and 9 OGs, 
respectively). This species had the highest proportion of polymorphic sites across sam-
ples, but showed no clustering of the samples by behavioral state based on the number 
of shared polymorphic sites (Fig. 2C). The largest differences in gene content between 
nurses and foragers were found for three Lactobacillus Firm5 species (Firm5_2: 184 
OGs, Firm5_3: 131 OGs, Firm5_4: 177 OGs), two Gilliamella species (Gilli_1: 64 OGs, 
Gilli_2: 161 OGs), Snod_1 (197 OGs), and Bifido_1.2 (159 OGs). Consistent with these 
findings, all of these species, except for Firm5_4, also showed clustering by behavioral 
state based on the number of shared polymorphic sites (Fig. 2C). Interestingly, a larger 
fraction of the state-specific OGs were found in foragers than in nurses (in total 1019 
versus 445 significantly different OGs, respectively).

To determine the functions encoded by the behavioral state-specific gene content, we 
annotated all OGs using eggnog and used COG categories as a first level of functional 
characterization. Of all behavioral state-specific OGs, 33.1% had no COG annotation, 
while 17.3% of them fell into the COG category S (unknown function). For the rest of the 
significant OGs, we categorized 20.6% of them as metabolism-related; 11.7% as linked to 
cellular processes, signaling, and structure; and 18.3% as information storage and pro-
cessing (Fig. 3B). Among the significant categorized OGs (excluding COG S), category G 
(carbohydrate metabolism and transport) was the most important category, represent-
ing 11.4% of all significant OGs. However, the proportion of different COG categories 
contributing to the significant OGs varied between species (Fig. 3B). In case of Firm4_1, 
COG category H (coenzyme metabolism) was specifically enriched in the behavioral 
state-specific OGs relative to the total number of OGs per species (Fisher’s exact test 
q-value = 2.5e − 06, Additional file 2: Table S5).

Fig. 3  Differences in functional gene content within species of the gut microbiota between nurse and 
forager bees. A Number of orthologous groups (OGs) significantly differing in coverage for each of the 
species. B Repartition of the COG categories of the significant OGs, nurse-enriched and forager-enriched 
included. OGs that were not categorized or categorized as COG S were not included in the plot. C Figure 
adapted from [37]. Possible ethanolamine utilization pathway enabled by the operon shown in D. D Genomic 
island containing the ethanolamine utilization and vitamin B12 biosynthesis genes, and its presence in the 
isolate genomes of the bacterial genome database. Genes enriched in the forager samples are in bold and 
flagged with an asterisk
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Behavioral state-specific OGs of COG category G included many phosphotransferase 
system genes, in particular in Lactobacillus and Gilliamella species, but also glycoside 
hydrolases, sugar-binding, and metabolism proteins. In most species, these OGs were 
more abundant in foragers relative to nurses, except for Bifido_1.2 and Firm5_3, where 
the enrichment was in the nurse samples, or spread equally between nurse and forager 
samples (Additional file 2: Table S4).

The overrepresentation of the COG category H in Firm4_1 corresponded to 27 OGs 
involved in the biosynthesis of cobalamin (vitamin B12) and adenosylcobalamin (coen-
zyme B12), which had a higher coverage in forager than in nurse samples (see Additional 
file 2: Table S4). In the same species, we also found 18 genes for the utilization of ethan-
olamine among the OGs enriched in foragers versus nurses. Processing of ethanolamine 
by the enzyme ammonia-lyase is dependent on adenosylcobalamin (Fig. 3C). To further 
explore the possible link between the identified cobalamin biosynthesis and ethanola-
mine utilization OGs, we analyzed the available isolate genomes of Firm4. Homologs of 
the cobalamin biosynthesis and ethanol utilization pathways were only present in two 
(Hon2 and ESL0449) of the six Firm4_1 strains (Fig.  3D) confirming that these genes 
are strain-specific. Moreover, the genes of both pathways were encoded in the same 
genomic island, integrated into a conserved chromosomal region, providing further evi-
dence that they are functionally linked and have likely evolved together.

Another interesting set of behavioral state-specific OGs was identified in Gilli_1, 
Gilli_2, and Snod_1, and encoded various components of Type VI secretion systems 
(T6SSs) involved in interbacterial killing. This included genes annotated as effector 
proteins with PAAR or RHS domains and immunity proteins. In Gilli_2, several genes 
encoding the structural components of an entire T6SS were among the behavioral state-
specific OGs. They clustered in a genomic island which was present in only one (strain 
A7) out of 17 strains of Gilli_2 in our reference database (Additional file 1: Fig. S9). Strik-
ingly, all these behavioral state-specific T6SS-related OGs were more abundant in for-
ager than in nurse samples.

In Snod_1, we also found other surface structure-related functions than T6SS among 
the behavioral state-specific OGs, including genes encoding major subunits of Type IV 
pili, RTX toxins, and proteins involved in capsular polysaccharide biosynthesis (Addi-
tional file 2: Table S4).

Discussion
There is accumulating evidence that natural microbial communities harbor a high extent 
of strain-level diversity [38–41]. How such fine-scale diversity varies across space and 
time in nature is a key question in microbial ecology and evolution [15, 42, 43].

Here, we find that the strain composition of the honeybee gut microbiota undergoes a 
consistent ecological turnover when bees transition from nurses to foragers. The single 
nucleotide variant profiles of several community members clustered by behavioral state. 
Moreover, for most community members, we found consistent differences in intraspe-
cific gene content between nurses and foragers, which included functions related to 
nutrient utilization, vitamin biosynthesis, and cell–cell interactions.

In the human gut microbiota, strain-level variation in individual community mem-
bers has been linked to diet [44] or health state [43, 45–47]. Our results show that a 
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radical shift in host lifestyle can change the strain composition of a large fraction of 
the gut microbiota, demonstrating that strains represent ecologically distinct units and 
emphasizing the importance of studying diversity in host-microbe associations at the 
strain-level.

Previous shotgun metagenomics studies have linked variation in species- and strain-
level diversity in the gut microbiota to host traits, such as age, colony origin, or genotype, 
but not to behavioral state [22, 34, 48–50]. Some of these studies analyzed individual 
bees while others focused on pooled gut samples. In the current work, we analyzed 
pooled samples of 20 bees rather than individual bees. The advantage of pooling is that a 
larger number of colonies can be surveyed, increasing the statistical power of the study. 
However, pooling precludes the detection of variants present at low prevalence across 
the sampled bees explaining the overall lower levels of polymorphic sites observed in 
our samples as compared to previous studies [22, 34]. However, rare strains have likely a 
minor impact on the whole community or the host.

Another possible limitation of our study is that the sampled nurse and forager bees 
were not age-matched. As foragers are usually older than nurses, age could have been 
a confounding factor in our study. However, our previous findings have shown that the 
age of bees has little impact on the strain level composition of the gut microbiota [22]. 
Therefore, we are confident that most of the observed differences are due to the nurse 
to forager transition and the associated changes in dietary intake, physicochemical gut 
conditions, or host physiology.

In contrast to nurses, foragers do not consume pollen. This is likely the reason why 
foragers were found to harbor lower bacterial biomass in the gut than nurses and exhibit 
a consistent decrease of Bombilactobacillus, Lactobacillus, and Bifidobacterium relative 
to the other phylotypes. This was already reported by two previous studies based on 16S 
rRNA gene analysis [32, 33], one of which used age-matched forager and nurse bees, 
corroborating the results of our shotgun metagenomics analyses. Pollen constitutes an 
important nutrient source for bee gut-associated Bombilactobacillus, Lactobacillus, and 
Bifidobacterium explaining their decrease in absolute abundance. All three phylotypes 
harbor genes to degrade pollen-derived carbohydrates [21, 26, 51, 52], and they readily 
grow in minimal media supplement with pollen extract or entire pollen grains [53, 54]. 
Moreover, experimentally colonized bees kept on a sugar water diet harbor substantially 
fewer bacteria of these phylotypes in their gut than bees that also receive pollen [33, 53].

As previous studies were based on 16S rRNA gene sequencing, their analyses were lim-
ited to the phylotype level. Hence, a key finding of our study is that not only phylotypes, 
but also closely related species within phylotypes, and even different strains of the same 
species respond differently to the nurse-to-forager transition. For example, one spe-
cies of Lactobacillus Firm5 was similar in total abundance between foragers and nurses, 
while others significantly differed (> 8 times). Likewise, some species showed consistent 
changes in strain composition between nurses and foragers, while others did not. This 
suggests that some species and strains are more successful than others in thriving in the 
gut environment of one state versus the other. The reasons underlying these differences 
can be manifold. Some species and strains may be adapted to utilize specific pollen com-
pounds and hence have an advantage in the nurse gut. Others may not depend on pol-
len nutrients for growth that much or may be better at withstanding physicochemical 
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changes in the gut as bees transition from one state to the other, explaining why they 
persist in the forager gut. Also, the fact that we find changes in strain-level diversity in 
opposite directions between the two host states suggests that different ecological pro-
cesses are at play in different species. For example, in one species, the reduced nutrient 
availability in the forager gut may hinder strains to overgrow and dominate the commu-
nity, resulting in decreased total abundance but increased strain-level diversity in forag-
ers. For another species, the nutrient-rich pollen diet may expand ecological niches or 
open new ones that can be colonized by functionally divergent strains explaining the 
observed increase in strain-level diversity in nurses relative to foragers.

If the observed shifts in strain composition were due to changes in the ecological 
niches in the gut, we would expect to find functional differences between strains of 
the same species dominating in nurses versus foragers. Previous studies have success-
fully identified such condition-specific genes within host-associated bacterial species by 
comparing metagenomic datasets [17, 38, 44]. For example, strains of the human gut 
symbiont Prevotella copri harbored distinct gene repertoires for drug metabolism and 
complex carbohydrate degradation in Western and non-Western individuals [44]. Like-
wise, strains of an intracellular symbiont of Bathymodiolus deep-sea mussels showed 
substantial variation in gene content for nutrient and energy acquisition indicating adap-
tation to the local conditions present in the environment they were sampled from [38].

We detected strain-specific gene sets (i.e., OGs) associated with one of the two behav-
ioral states in almost all species of the gut microbiota. Carbohydrate transport and 
metabolism functions were prevalent among the behavioral state-specific gene con-
tent, which was somehow expected as most species carry large accessory gene sets of 
this functional category in their genomes [22, 51, 52]. Moreover, previous studies have 
shown that carbohydrate transport and metabolism are important for niche partition-
ing of diet-derived carbohydrates in Lactobacillus and Bifidobacterium and that many of 
these genes are differentially expressed when bees are fed pollen as compared to sugar 
water as diet [26, 53].

Somewhat more surprising was the finding that vitamin B12 biosynthesis and etha-
nolamine utilization genes of Bombilactobacillus were specifically enriched in forag-
ers versus nurses. Some of these genes have already been found to be variably present 
among individual bees in our previous study [22], but they could not be linked to any 
host differences. Vitamin B12 is an important co-factor that cannot be synthesized by 
honeybees (or other animals) [55], but needs to be taken up from the diet or synthe-
sized by bacterial symbionts [56]. It is possible that Bombilactobacillus strains synthesiz-
ing this vitamin compensate for the lack of vitamin B12 in the pollen-deprived diet of 
foragers. However, a more plausible explanation for the increased abundance of these 
genes in foragers may be that vitamin B12 is an essential co-factor for a major enzyme of 
the ethanolamine utilization pathway [55]. Ethanolamine is derived from the membrane 
phospholipid phosphatidylethanolamine and constitutes an important bacterial nitrogen 
and carbon source in the animal gut due to the high turnover of the host epithelium and 
the microbiota [57]. It is possible that ethanolamine accumulates in the forager gut due 
to the presence of dead bacterial material or increased epithelial shedding, providing a 
behavioral state-specific nutrient niche for the gut microbiota. The fact that the genes 
for utilizing ethanolamine are strain-specific indicates that they are costly to maintain, 
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and that host state-specific nutritional niches may contribute to the maintenance of 
strain-level diversity in the gut microbiota.

We also found genes mediating bacteria-host interactions and interbacterial killing 
among the behavioral state-specific gene content. Of particular interest was the finding 
of several T6SS genes associated with foragers in two of the three Gilliamella species 
and in Snodgrassella. The primary niche of these bacteria is the ileum, where they form 
multispecies biofilms on the host epithelium [58]. Diverse T6SS gene repertoires have 
been identified in almost all sequenced strains of Gilliamella and Snodgrassella indicat-
ing that they play key roles in interbacterial competition and niche establishment for 
these bacteria [59, 60]. Our findings suggest that the forager gut environment selects 
strains with expanded capabilities in interbacterial warfare, possibly as a consequence of 
the increased competition for nutrients and space. In Snodgrassella, we also found genes 
encoding other surface structures (Type IV pili, LPS modifying enzymes, RTX toxins) 
to be enriched in either nurses or foragers. Some of these genes are known colonization 
factors of Snodgrassella [61], likely because they enable host attachment and biofilm for-
mation. However, why these functions are specifically enriched in one of the two behav-
ioral states remains to be determined.

Conclusions
In summary, using shotgun metagenomics analysis, we show that the gut microbiota 
of honeybees undergoes consistent shifts in strain-level diversity when bees transition 
between two major behavioral states (i.e., from nurses to foragers). These strain-level dif-
ferences are associated with changes in intraspecific gene content of several bacterial 
species suggesting adaptation to host state-specific niches. The possibility of carrying 
out gnotobiotic bee experiments provides excellent opportunities for future research to 
probe the functional relevance of the link between strain-specific gene content and host 
state. Since the association of social bees with their microbiota is evolutionarily ancient, 
it will also be interesting to expand these analyses to closely related bee species which 
show similar division of labor and whose microbiota has diversified to similar extents as 
in A. mellifera.

Material and methods
Sampling

Adult female worker bees of A. mellifera were collected over the Summer 2019 from 15 
different colonies in 5 different locations across Western Switzerland (Additional file 2: 
Table S1). For each sampled hive, we collected 20 larvae-feeding nurses and 20 pollen 
foragers, in order to encompass most of the strain-level diversity within each colony. 
Samplings were performed between 7 and 9 AM, when worker bees were beginning to 
return from their foraging trips. Larvae-feeding nurses were identified as bees putting 
their heads in larvae-containing cells. Pollen foragers were identified as bees returning to 
their hive with pollen pellets on their corbiculae. The bees were anesthetized using CO2 
and put on ice. They were then dissected in sterile 1 × PBS to extract the entire hindgut 
(pylorus, ileum, rectum) with tools sterilized in 70% ethanol. Gut content was visually 
inspected to be consistent with the life stage, i.e., nurse guts had to be pollen-filled and 
forager guts had to be nectar-filled. Bees for which the gut content could not be verified 
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were excluded. Finally, the guts were pooled by hive of origin and host phenotype (nurse 
and forager, respectively) (Additional file 2: Table S1).

DNA extraction

DNA extraction from the pooled gut samples was performed using the Qiagen All-
prep Powerfecal DNA/RNA extraction kit (Qiagen) following the kit handbook except 
for the bead-beating steps. After dissection, the pooled guts were transferred into the 
kit’s bead-beating tubes. Lysis buffer and DDT were added following protocol instruc-
tions, and samples underwent two bead-beating steps of 4 s at 6 m/s on a FastPrep-24 
5G bead-beater (MP Biomedicals). Gut samples with a total weight over 220 mg were 
diluted to reach a concentration of 220 mg in 650 μl lysis buffer + 25 μl DDT; then, the 
excess volume was removed (i.e., for a gut weight of 440 mg, 337.5 μl was removed from 
the sample, and an identical volume of lysis buffer + 3.8% DDT 1 M was added to it). 
Subsequently, all samples underwent a third bead-beating step for 45  s at 6  m/s. All 
the remaining steps were performed following the manufacturer’s protocol. DNA was 
diluted in 2 × 30  μl Buffer EB, its concentration and quality were assessed with Qubit 
and Nanodrop, and samples were stored at − 20 °C until further processing.

Quantitative real‑time PCR

We assessed the bacterial loads of the DNA samples using quantitative real-time PCR 
(qPCR) following the methods of Ellegaard et al. [34]. We targeted both the V3-V4 region 
of the 16S rRNA bacterial gene and the actin gene of A. mellifera using the primers pub-
lished by Kešnerová et al. [54]. We performed each qPCR reaction using a reaction of 
1 μl extracted DNA (10 ng/ μl), 3.2 μl nuclease-free water, 5 μl SYBR Select Master Mix 
(Life Technologies), 0.2 μl forward primers (5 μM), and 0.2 μl reverse primers (5 μM) in 
96-well plates (MicroAmp Fast 96-well Reaction Plate, Applied Biosystems for Life Tech-
nologies). The reactions were performed in triplicates on a QuantStudio 5 Real-Time 
PCR System (Thermo Fischer Scientific) using the parameters from Kešnerová et al. [54].

The data was extracted using the QuantStudio Design & Analysis Software v1.4 
(Applied Biosystems) and exported in csv format.

We computed the absolute number of each gene copy using the formula:

Intercept and slope parameters were previously determined by our group [54].
In order to compare the microbial gut loads of the different samples, we normalized 

the number of 16S rRNA gene copies by the total DNA yield per sample. Normaliza-
tion by the number of host actin gene copies gave similar results. However, foragers had 
more actin gene copies than nurses. Therefore, we did not use this type of normalization 
in the final analysis (see Additional file 1: Fig. S10). The figures were generated using R 
(version 4.0) and the ggplot2 library.

Shotgun metagenomics sequencing

The libraries were prepared with the Illumina Nextera Flex library kit (Illumina) with 
unique dual indices (UDI) and sequenced on a HiSeq 4000 instrument (PE150) at the 

Gene copy number = 10
Ct−Intercept

Slope
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Genomic Technologies Facility (GTF) of the University of Lausanne. All samples were 
multiplexed together and sequenced on three lanes. The quality of the reads was assessed 
with FastQC (v0.11.4, Babraham Institute) and subsequently trimmed and filtered to 
remove low-quality sequences and short reads using the tool Trimmomatic v0.35 [62] 
with settings PE ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 TRAILING:20 SLIDING-
WINDOW:4:20 MINLEN:50.

Reference genome database

The reference genome database containing bacterial isolate genomes was constructed 
in the same way as in Ellegaard and Engel [22] and Ellegaard et al. [34]. A total of 198 
high-quality genomes of strains isolated from the gut of honeybees and other social 
bee species such as bumble bees and other Apis species were included in the database. 
Strains having more than 98.5% pairwise ANI with other already included strains were 
not added to the database to limit redundancy. The pairwise genomic ANI was com-
puted using fastANI [63]. In general, multiple genomes were included for each bacterial 
phylotype as listed in Additional file  2: Table  S2. Each genome includes a fasta file of 
nucleotide sequences of all contigs (.fna), nucleotide sequences (.ffn), and amino acid 
sequences (.faa) of predicted genes and concatenated (.fna) files where the contigs were 
concatenated into one sequence for each genome. Bed files were made to summarize the 
updated positions of genes in the concatenated files which were used for further analy-
sis. We predicted gene families of homologous genes using OrthoFinder (v2.3.5, [64]) 
and identified all single-copy core genes, i.e., genes present in one copy in all genomes 
of a given phylotype. The resulting files listing each single-copy core orthologous group 
and the constituent genes of each genome of that phylotype are included in the reference 
genome database along with reduced bed files for each genome indicating the location 
of these core genes to be used for further analysis. The total length of these single-copy 
core genes relative to the total genome length of a given species is given in Additional 
file 1: Fig. S11.

Community composition analysis

The community composition analysis was based on the work of Ellegaard and Engel 
[22]. We mapped the reads using bwa mem (v0.7.15-r1142-dirty) [65] against the ref-
erence genome database and used the samtools (v1.9) view –F 0 × 800 command [66] 
to remove chimeric alignments. Reads mapping to multiple locations were not included 
as bwa chooses one of the many alignments as primary and only includes those in the 
output. Alignments with 50 matches or fewer were removed using a custom perl script 
that parses alignment length from the CIGAR string. The read coverage information was 
extracted for each gene using the command samtools bedcov and summed up across 
all orthologs of each single-copy core gene family for genomes coming from the same 
species. Since genes located close to the origin of replication had higher coverage than 
genes located close to the terminus (as an indication of replicating bacteria [67]), the 
coverage at the terminus was inferred. To this end, the coverage of each gene family was 
plotted relative to its genomic position using one selected reference genome per spe-
cies and a segmented regression line was fitted. The relative abundance of each spe-
cies in each sample was determined by dividing the terminus coverage by the summed 
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terminus coverage of all species, respectively. For the species Bifido_1.1, Bifido_1.2, and 
Bifido_1.4, the segmented lines did not show a proper fit (terminus location inferred 
far from estimated breakpoint, or coverage at Ori lower than Ter). In these cases, the 
median coverage of all single-copy core gene families was used as an estimate for the 
relative abundance of that species.

Strain‑level analysis

To quantify strain-level diversity within species, we followed the approach established in 
Ellegaard and Engel [22]. In short, we mapped the metagenomic reads using bwa mem 
to a reduced version of the reference genome database, including only one represent-
ative member per species (see Additional file 2: Table S2). Then, we used samtools -F 
0 × 800 to remove chimeric alignments. Reads mapped with less than 50 matches regis-
tered in their CIGAR were also removed, as well as those whose number of mismatches 
was higher than 5 to reduce errors in variant calling. Only species with more than 
20 × terminus coverage were included. Genes with less than 10 × coverage as estimated 
in the community profiling pipeline were excluded. To perform variant calling, we used 
the tool FreeBayes (v1.3.1–19-g54bf409) [68] with options -–haplotype-length 0, --min-
alternate-fraction 0.1, –-min-coverage 10, -C 5, -I, -X, -u and –-pooled-continuous. We 
used the tools vcfbreakmulti and vcfallelicprimitives from the vcflib library [69] to split 
complex observations into multiple lines. The bed files containing gene positions of sin-
gle-copy core genes of each genome were subset to obtain the corresponding locations 
to be considered for each species. These filtered bed files were used to focus downstream 
analysis on the phylotype-core region for each species.

We computed the fraction of polymorphic sites for each bacterial species using the 
number of identified sites divided by the cumulative length of all single-copy core genes. 
An allele was considered detected if there was more than one read supporting the allele 
and the allele was at a frequency of at least 0.01. A position was considered polymor-
phic if more than one allele was detected within the metagenomic reads of that sample 
mapped to the reference regardless of what allele was in the reference genome. We also 
computed the cumulative number of polymorphic sites across samples for each species 
using 10 random orders of samples each time.

To assess the similarity between samples in terms of strain composition, we used 
the Jaccard index based on the proportion of shared polymorphic sites, i.e., sites that 
were polymorphic in at least one of the samples in each pair and where each sample 
had an allele and an alternate allele shared and at a frequency above the detection 
threshold (0.01) were considered shared between the two samples. So, for example, if 
the reference genome has the allele T at a given position, but sample 1 has the alleles 
C and G and sample 2 has the alleles T and C, then the two samples would share one 
allele (C) and they would have two non-shared alleles. This site would not be counted 
as shared. On the other hand, if sample 1 had the alleles C and T the polymorphic site 
would be considered shared with sample 2. This was implemented in a custom python 
script as cases where the site was polymorphic in at least one sample in the pair were 
scored and shared positions were those with an intersection > 1 in the set of detected 
alleles in the sample pair. The distance between all sample pairs was computed as 
Distance(S1, S2) = 1− Shared fraction(S1, S2) where shared fraction for a given pair of 
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samples was calculated as the number of shared polymorphic sites divided by the num-
ber of sites polymorphic in at least one of the two samples. The matrix of pairwise dis-
tances between the samples was plotted using principal coordinate analysis to identify 
samples that share similar polymorphic sites. We computed the principal coordinates 
using the ape R library (v5.6–2).

Functional gene content composition

For the functional profiling of the gene content of the microbiota, we first extracted all 
the reads which mapped to the bacterial database, plus those that did not map to the 
host genome (A. mellifera genome (PRJNA471592, version Amel_Hav3.1), using the 
picard tools (v2.7.1-SNAPSHOT) SamToFastq with parameters VALIDATION_STRIN-
GENCY = SILENT [70]. We merged those reads for each sample and assembled them 
using SPAdes [71] with parameters --meta and -t 20. The obtained contigs were filtered 
to keep only the ones with a length of at least 500 bp and a k-mer coverage of at least 1.

We predicted the open-reading frame (ORF) positions using Prodigal (version 2.6.3, 
Hyatt et  al.) [72] with parameters -m -p meta. The ORFs with the flag partial = 00 or 
length smaller than 300 bp were filtered out. We annotated the remaining ORFs using 
eggNOG (v1.0.3–40-g41a8498) [73, 74] with the script emapper.py and the options 
--annotate_hits_table --no_file_comments --cpu 20.

To assign the contigs to the major bacterial species of the bee gut microbiota, we 
blasted the predicted ORFs against a nucleotide database of all ORFs from our bacte-
rial database using the blastn tool (version 2.2.31 +) [75] (evalue < 1e − 05, pident > 50 
and qcovs > 50). Contigs were assigned to a given species when at least 80% of the ORFs 
were mapped against genes of that species, as well as when at least 10% of the ORFs 
were mapped against genes of that species and no mapping was found for any other spe-
cies. We filtered out all non-unanimous contigs (15,198 contigs out of a total of 257,015 
(5.9%), representing 13.6% of the bp).

For each species, we used the amino acid sequences from the ORFs and the genes 
from the database strains to compute orthologous groups (OG) using OrthoFinder [64]. 
We created a database of all ORF’s nucleotide sequences and mapped the reads against 
it using bwa mem (version 0.7.15-r1142-dirty) [65]. We removed chimeric alignments 
using samtools view option –F 0 × 800 (version 1.9) [66]. Alignments with less than 50 
matches were also removed. For each sample, we extracted the coverage using the sam-
tools coverage command (v1.15) and summed the coverage for the ORFs belonging to 
the same OG. We normalized the coverage information for every sample and every spe-
cies using the OGs containing single-copy core genes: for each species of each sample, 
the summed coverage of all single-copy core OGs was set to the same number (10000). 
To determine which OGs were underrepresented or overrepresented in either the nurses 
or the foragers, we computed the paired Wilcoxon signed rank test for each OG based on 
the normalized coverage values and then used q-values to correct for multiple compari-
sons. We also computed the fold-change by dividing the mean forager normalized cover-
age value by the nurse counterpart. To be considered as significantly different between 
the treatments, an ORF had to have both an absolute log2 fold change of at least 1, and a 
q-value < 0.05. We finally annotated the ORFs belonging to the significant OGs using the 
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tool eggnog-mapper (1.0.3–40-g41a8498) [73, 74]. The whole analysis workflow is sum-
marized in Additional file 1: Fig. S8.

Statistics and data visualization

We performed the statistical analyses in R (v4.2.1) using the libraries ape (v5.6–2), data.
table (v1.14.8), and vegan (v2.6–4) and in python (v3.10.11) using the package scipy 
(v1.11.1). We used the package qvalue (v2.28.0) to adjust p-values to q-values where 
stated. Shannon indices were calculated using the vegan package. For PERMANOVA, 
we used the function adonis2 from the vegan package using the model “Dis-
tance ~ Host + Location” with 999 permutations and set to estimate the marginal effects 
of the terms. R2 values were adjusted using the function adonisOmegaSq implemented 
in the MicEco package (https://​github.​com/​Russe​l88/​MicEco, commit 91f8e6f ).

We generated all plots using R and the following R libraries: ggplot2 (v3.3.6), reshape 
(v0.8.9), gridExtra (v2.3), ggrepel (v0.9.1), RColorBrewer (v1.1–3), and scales (v1.2.1) and 
in python (v3.10.11) using the package matplotlib (v3.7.1) and seaborn (v0.12.2). Figures 
have been generated using Inkscape (v1.1) or Adobe Illustrator. A comprehensive list of 
all packages used and their version is available in the GitHub repository (https://​github.​
com/​Aiswa​rya-​prasad/​Publi​cation_​Baud_​metaG_​NvsF_​2023) [76].
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Additional file 1: Fig. S1. Per sample average gut mass, computed as each sample’s gut pool mass, divided by 
the number of guts in the pool. Fig. S2. (A) Stacked bar plot of the proportions of reads mapping to the bacterial 
genome database and to the A. mellifera genome, as well as non-mapped reads, for each of the samples. (B) Taxo-
nomic profiling of the unmapped reads at the species-level with mOTU2. Colors correspond to genera. Percentages 
below each distribution show fraction of unmapped reads in each sample (also see panel A). Fig. S3. Stacked bar 
plots of the proportions of the different species and corresponding Shannon diversity index across nurse and forager 
samples for the four multi-species phylotypes (A) Bifidobacterium, (B) Lactobacillus, (C) Bombilactobacillus, and (D) 
Gilliamella. Fig S4. NMDS plot of the samples’ bacterial phylotype composition (A) and species composition (B). 
Samples are colored according to sampling location. PERMANOVA results: Phylotype-level, Location – R2=0.40279, 
p-value=0.001; Species-level, Location – R2=0. 40642, p-value=0.001.Fig. S5. Absolute abundance of the different 
species detected in the samples approximated by the normalized estimated number of 16S rRNA gene copies. 
Asterisks indicate q-values < 0.05. Fig. S6. Pearson correlation coefficient and non-corrected p-value for the correla-
tion of the percentage of polymorphic sites per species with the coverage of the species normalized by the bacterial 
load for each sample. Fig. S7. Principal Coordinate Analyses of the Jaccard distance between all samples for the 
different species based on proportions of shared polymorphic sites. The color scheme shows information on the 
sampling sites of the different samples. The connecting lines indicates the two samples from the same colony. Fig. 
S8 Workflow used for the functional gene content analysis. Fig. S9. Genomic island of Gilli_2 encoding T6SS genes 
enriched in forager versus nurse samples. The genomic island is only present in strain A7 of Gilli_2 in our genome 
database and is integrated in a conserved genomic region. Genes in green indicate T6SS genes, genes in pink depict 
strain-specific genes beloning to the same genomic island, and genes in grey are other other genes present in the 
flanking regions of genomes of Gilli_2. Genes enriched in forager samples are labeled in bold and flagged with an 
asterisk. Fig. S10 (A) Actin gene copies in 10ng of each sample. (B) 16S rRNA gene copy number per actin gene copy 
per sample. (C) rRNA gene copy number per actin gene copy per ng of total DNA. The normalization with actin gene 
copies amplifies the differences between the two groups, as there are fewer copies in foragers than in nurses. Fig. 
S11. Cumulative length of all single-copy core genes (Core genome length, in green) relative to the total genome 
length of the reference strain (Total genome length, in blue) of each species. Reference strain is the strain used in the 
reduced reference database. The filtered core genome length represents the portion of the core genes which were 
used for the SNV analysis as they had >10x read coverage across all samples.

Additional file 2: Table S1. Sample collection information. Table S2. Table of all strain genomes included in the ref-
erence database, their Species/SDP abbreviation used in this study, their corresponding full species name (if existing) 
and the host where they were isolated. Genomes used as representative in the reduced database are marked by ‘y’ 
in the last column. Table S3. Proportions of reads mapping to species isolated in non-A. mellifera hosts. The propor-
tions are computed as the number of reads mapping to the species, divided by the number of reads mapping to the 
same phylotype for this sample.Table S4. Table of differentially abundant orthogroups showing which behavioral 
state they were enriched in along with the associated fold-change, p-values, their COG category and functional 
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annotation. Table S5. Matrix of the counts of the OGs annotated as H category significantly enriched in the forager 
samples compared to the al OGs and all COG categories.
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