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Abstract 

Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous 
SNVs are previously considered to be “silent,” but mounting evidence has revealed 
that these variants can cause RNA and protein changes and are implicated in over 85 
human diseases and cancers. Recent improvements in computational platforms have 
led to the development of numerous machine-learning tools, which can be used to 
advance synonymous SNV research. In this review, we discuss tools that should be used 
to investigate synonymous variants. We provide supportive examples from seminal 
studies that demonstrate how these tools have driven new discoveries of functional 
synonymous SNVs.

Background
The primary source for evolutionary diversity is genetic variation [1, 2]. Single nucleo-
tide variants (SNVs) make up only ~ 0.1% of the entire human genome but are respon-
sible for differences in the human population, including disease susceptibility and 
response to drugs [3]. SNVs can be divided into nonsynonymous variants, which alter 
the encoded amino acids, or synonymous variants that alter the codon sequence, but 
preserve the native amino acid structure. While the effects of nonsynonymous variants 
are evident, synonymous variants have been assumed to be neutral and yield minimal 
functional consequences. Compelling evidence over the last decade has disputed this 
view, and both in silico and experimental studies have revealed a variety of effects of 
synonymous variants, spanning from alterations to RNA structure to changes in protein 
expression and function to engendering adaptive evolution [4–7]. In fact, synonymous 
variants have now been implicated in cancers [8] and over 85 genetic diseases [9] and are 
responsible for many cellular disruptions at both the RNA and protein levels [7, 10]. The 
most prominent effects include changes to RNA structure/stability [11], splicing [12, 13], 
and miRNA binding [14, 15]. As these mechanisms mostly result from direct changes to 
the nucleotide sequence, in silico tools have been applied in both the discovery of patho-
genic synonymous variants and in their characterization [16, 17]. To date, many notable 
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studies on synonymous variants have implemented a dual strategy: first, using in silico 
tools to screen and predict for functional variants, and second, applying sensitive experi-
mental techniques to validate these in silico predictions [7, 9, 11, 18–20]. Undoubtedly, 
the rising incorporation of computational approaches in biological research has driven 
a significant increase in discoveries of functional and pathogenic synonymous variants 
[21]. Though still in its infancy, many in silico variant predictors represent promising 
methods to distinguish between pathogenic and benign synonymous variants [22–24].

In addition, the computational field has also undergone a significant transformation. 
Through machine-learning (ML) and deep learning (DL) platforms, in silico tools have 
evolved to better integrate biological factors and experimental data into their algorithms 
[25]. Many tools use publicly available genetic datasets to train the ML systems to bet-
ter predict functional variants [26–28]. New tools continue to be developed with unprec-
edented improvements in predictability and accuracy, and in many cases, substantial 
updates have been released, which have refined many popular existing tools. As research-
ers continue to acknowledge the importance of sequence properties, such as codon usage 
and GC content, in determining protein characteristics and new metrics and resources 
have been adopted for their evaluation [29–33], these dimensions have further enriched 
prediction models. Currently, well over a hundred tools have been used to characterize 
variants, each with their own specific predictive algorithms, but also with limitations that 
must be accounted for. While in silico tools have advanced research, their rapid develop-
ment has also posed a conundrum of whether a single tool is preeminent or if multiple 
tools should be used. To realize the full potential of these in silico tools in synonymous 
variant research, further integration of these tools into a consistent workflow and sub-
stantiation of the predicted results through experimental data are required.

In this review, we highlight the process by which in silico tools should be used to effec-
tively characterize synonymous variants (Fig.  1), while providing numerous examples 
from studies that have successfully implemented these methods. We characterize the 
differences among in silico tools by sorting them into sections based on their intended 
functions and provide a framework for how these tools should be optimally used to 
investigate various effects of synonymous variants. This review will discuss the most 
commonly utilized tools and introduce many that were more recently developed to pro-
vide a thorough resource for applying in silico tools in the study of synonymous variants.

In silico resources for assessing codon usage and sequence properties 
of synonymous variants
Genomes of most organisms are degenerate with multiple different codons translated 
into the same amino acid. However, synonymous codons are not used in a uniform 
fashion and genomes are biased to favor particular codons. Sharp and Li characterized 
this codon usage bias (CUB) in Escherichia coli and Salmonella typhimurium genes 
by introducing two metrics, Codon Adaptation Index (CAI) and Relative Synonymous 
Codon Usage (RSCU) [34]. Around the same time, another popular measure of CUB 
was devised called the expected number of codons (ENC), quantifying how far a gene’s 
codon usage deviates from equal usage of synonymous codons [35]. These metrics 
formed the original systems to score gene level CUB, computing the difference between 
scores assigned to wildtype sequences and sequences containing synonymous variants.
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Today, while these methods continue to be used extensively, new insights into trans-
lational processes have led to the creation of additional methods to quantify CUB. 
Commonly used codons are thought to correlate with more abundant tRNAs [36–38], 
leading to the development of the tRNA Adaptation Index (tAI) based on tRNA usages 
[39] and a species-specific tAI calculator (stAIcalc) that infers organism-specific tAI wob-
ble weights for 100 different species [40]. In addition, non-random codon biases have 
been found to impact translation kinetics and co-translational folding [31–33, 41–44]. 
Moura et al. reported that both missense and synonymous mutations are under selective 

Fig. 1  Workflow schematic for how to optimally use in silico tools to investigate synonymous variants. 
Genetic sequences containing synonymous variants can cause many different functional effects, including 
alterations to codon usage biases, mRNA structure, splicing, miRNA binding, disease pathogenesis, and 
protein characteristics. After (1) identifying a functional mechanism of interest, (2) a variety of different in 
silico tools can be chosen and applied to evaluate the sequence containing synonymous variants. After 
the sequence has been processed, (3) outputs of these tools can be analyzed to form predictions. For 
proper evaluation, most tools will require input of a short nucleotide sequence containing the synonymous 
variant. The wild-type sequence for the identical region encompassing the synonymous variant should be 
processed for comparison. Examples of potential outputs for tools highlighted in row 2 are shown in row 
3. CodonStatsDB determines codon preferences based on RSCU values. UNAFold can generate predicted 
mRNA structures and calculate differences in mRNA stability. NNSplice will reveal any new or lost splice sites. 
Paccmit-CDS is able to capture changes to miRNA binding sites. usDSM is able to predict the pathogenicity of 
the variant. Outputs may vary depending on the algorithms and structure of the tools. It is highly beneficial 
to analyze the sequence through multiple tools and to validate the results through experimental methods
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pressure to maintain usage of codon multiples in bacteria, archaea, and eukaryotes [45]. 
Codon pairs, two adjacent codons (i.e., bicodon), also exhibit usage biases that have 
been found to impact translational efficiencies [46]. Others have reported that codon 
pair frequencies provide no additional information towards predicting expression than 
single codon frequencies in S. cerevisiae [47] and that viral codon pair usage bias is dic-
tated primarily by avoiding certain dinucleotides [48]. By distinguishing rare or optimal 
codons, many metrics can be used to identify synonymous variants that impact protein 
properties through disrupting translational kinetics and co-translational folding [49]. 
For this purpose, Rodriguez et al. developed the %MinMax tool to calculate synonymous 
codon usage with a focus on measuring deviations in optimal cotranslational folding 
patterns [29].

Furthermore, in multicellular organisms, CUB can vary across different tissue con-
texts. Plotkin et al. reported tissue-specific codon usage patterns by comparing groups 
of human genes previously reported to be expressed in specific tissues [50]. Similarly, 
Qingpo Liu found differences in codon usage between tissue-specific genes in rice [51]. 
tRNA expression differs among human tissues [52]. Therefore, CUB metrics should 
incorporate tissue-specific contexts into its calculations. In recent years, two databases 
have been assembled to aid in these tissue-specific calculations: TissueCoCoPUTs, 
which uses transcriptomic data from different tissue contexts to compute a weighted 
average codon usage in several different tissue contexts [32] and CancerCoCoPUTs, 
which reports differences in codon usage across several different solid tumor types [33]. 
These resources, along with large databases, such as the Codon Statistics Database [53], 
have made it remarkably effortless to evaluate CUB and sequence properties of synony-
mous variants.

In silico tools for assessing the effect of synonymous variants on mRNA 
structure and stability
Synonymous variants can have functional and disease consequences through alter-
ing mRNA secondary structure and stability. Encoded within the primary mRNA 
sequence is the information to establish local mRNA secondary structure motifs and 
dictate RNA stability of individual regions, which can determine the accessibility of 
ribosome binding sites and speed of local translation [54–56]. One seminal discov-
ery in the field of synonymous variants was the observation that in the mutated CFTR 
gene (c.1520_1522delTCT), which causes cystic fibrosis, a single synonymous variant 
(c.507 T > A) [18, 57, 58] caused the formation of two enlarged loops in the mRNA struc-
ture [18]. This deviation correlated with a reduction in translational rate and reduced 
expression of the CFTR protein [18]. While this finding was validated experimentally 
through RNA folding assays and circular dichroism analysis, like many other studies, its 
initial discovery was uncovered through molecular modeling.

In essence, RNA structure and its folding process have been found to be deeply rooted 
in a couple of principles, which has inspired the development of RNA structure pre-
diction tools. First, RNA secondary structure evolutionarily favors stability, except for 
select situations where unstable areas in the transcript, such as at the 5′ end, supports 
translational initiation [59–61]. Stable RNA provides many benefits, including increased 
half-life, fine-tuning of translational speed, and establishing favorable binding sites for 
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RNA-binding proteins and miRNAs [62, 63]. mRNA conforms to structures that more 
easily maintain its structural integrity, which in most cases, the realized structure is one 
that possesses the lowest free energy [64, 65]. However, although a single structure may 
be the most stable and dominant, multiple structures co-exist within the dynamic cel-
lular environment. RNA populates a heterogeneous ensemble of conformations, and the 
goal of most prediction tools is to differentiate the native structure from its numerous 
subpopulations [66]. Second, across species, coding regions contain many structurally 
conserved elements [59, 67–69], which can be used to infer both function and structure. 
Based on these assumptions, many tools have been established with algorithms designed 
to identify the minimum free energy (MFE) structure with consideration of conserved 
motifs, temperature, ion concentrations, and sequence-based properties.

In silico tools, such as mFold [70] (recently updated and renamed to UNAFold [71]), 
remuRNA [72], Kinefold [73], CoFold [74], and RNAfold [75], are examples of tools that 
predict structures based on algorithms to minimize free energy. These tools require 
input of RNA sequences with recommended length limit of < 1500 nucleotides as longer 
sequences significantly increase folding complexities and software run-time. These 
tools are extensively used to generate predicted mRNA structures due to their reputable 
accuracy and fast computing speed. For example, mFold was used in the CFTR study 
to reveal structural loop elements in the mutated CFTR structure [18]. Likewise, Duan 
and colleagues [11] used mFold to show that one synonymous mutation (c.957C > T) in 
human DRD2 (dopamine receptor D2) led to decreased mRNA stability and decreased 
expression. In a separate study, mFold, Kinefold and NUPACK [76] were used collec-
tively by Simhadri and colleagues to highlight how a F9 (Factor IX) synonymous variant 
(c.459G > A) alters mRNA structure to facilitate changes in protein expression [77].

As applied in these aforementioned studies, prediction tools can be used to simulate 
folding of both the wild type and mutant sequences and to calculate the free energy of 
the best candidate structures. A single synonymous variant can perturb the conforma-
tional ensemble and shift folding dynamics, thereby forming misfolded or non-native 
structures of higher or lower free energy (ΔG). Any observed difference in predicted 
minimum free energies (ΔΔG) between wild type and mutated structures may suggest 
a change in mRNA structure (example workflow is shown in Fig.  1). The significance 
of a change in MFE may vary among RNA structures and can be affected by various 
input parameters. Wayment-Steele and colleagues found that increasing the simulated 
folding temperature can improve the correlation of predicted structures to experimental 
data [78]. In addition, sequence length is another factor that can alter the magnitude of 
MFE differences due to the added complexity of folding larger structures and should be 
a variable closely considered [16]. Due to these potential factors, these tools provide an 
effective method to screen for potential RNA structural changes, but results do require 
further validation through experimental methods.

Additionally, while RNA prediction tools based on MFE are effective at accurately 
rendering RNA structures that are composed of a high number of canonical Watson–
Crick base pairs, RNA folding is dynamic and complex. New insights into the structural 
topology of RNA has revealed special base pairing configurations, such as pseudoknots 
and noncanonical intramolecular base pairing patterns that support specific structural 
contexts (i.e., geometric motifs, higher-order multiplexes) and tertiary interactions [79]. 



Page 6 of 25Lin et al. Genome Biology          (2023) 24:126 

Noncanonical base pairs are base interactions that deviate from the standard Watson–
crick base pairings, such as G-A pairs, and pseudoknots are non-nested structures that 
form from two stem-loops. In consideration of these features, ProbKnot [80], IPKnot 
[81], Knotty [82], and LandscapeFold [83] are dependable tools used for pseudoknot 
predictions and MC-Fold-DP [84] and CycleFold [85] are equipped with special features 
to handle noncanonical base pairs. These are powerful tools that employ sophisticated 
algorithms to include special base pairings and improve prediction performance but 
can only consider small nucleotide sequences due to computation times. Nevertheless, 
shorter sequences can provide significant information about the effects of synonymous 
variants on mRNA structure, in which subtle changes may occur locally.

New machine-learning approaches are able to circumvent computational time issues 
because these techniques are data-driven approaches rather than score-dependent. Two 
ML tools, DMfold [86] and SPOT-RNA [87, 88], have been generated with accuracies 
that supersede existing tools. These multivariate tools are able to consider free energy 
parameters, sequence characteristics, and other properties while having the unique 
advantage of using genetic databases and RNA structure datasets for model training. 
However, because of their novelty, these ML approaches remain relatively enigmatic, 
and there remain concerns of potential issues with overfitting and inaccuracies in pre-
dicting structures that are more dissimilar to structures that appeared in training sets. 
Nevertheless, these ML techniques represent the most promising methods for predict-
ing RNA structures and the performance of these tools will likely continue to improve 
as more publicly available RNA data is collected. Similar to the state of ML RNA predic-
tion tools, computational 3D modeling of complex RNA structures remains a significant 
challenge but has undergone significant improvements in recent years as more RNA 
structures have been revealed experimentally and computationally [89]. Eterna (https://​
etern​agame.​org/), a crowdsourcing initiative, has rapidly accelerated discoveries in the 
RNA field and has stimulated improvements in the design of RNA structures for RNA-
based therapeutics [78, 90]. Current 3D modeling can be separated into 3 approaches: 
(i) comparative modeling, in which RNA structures are predicted based on homologous 
structures (e.g., ModeRNA [91], RNABuilder [92]); (ii) fragment assembly, whereby 
RNA structures are decomposed into fragments and compared to the target sequence 
for assembling a predicted structure (e.g., RNAComposer [93], VfoldLA [94]); and (iii) 
de novo modeling, which relies on coarse grained molecular dynamics and knowledge-
based force-field principles to generate structures (e.g., SimRNA [95], iFoldRNA [96]). 
Many recent reviews and methodology articles provide a thorough overview of the 
applications of RNA 3D modeling tools [89, 97]. For synonymous variant research, 3D 
RNA modeling tools have not yet been implemented, but with rapid advancements in 
this growing field, these tools may be applicable in the near future.

Ultimately, assessing RNA structure with a combination of tools that employ various 
algorithms and parameters is the most optimal approach to evaluate synonymous vari-
ants. Agreement between prediction tools increases confidence in predicted structures, 
while disagreement suggests that the RNA structure is complex. Recently, computational 
tools, such as SSRTool [98], have been generated with the goal to distinguish the most 
likely native structure after assessing predictions from a large class of selected predic-
tion tools. However, when tested against known RNA structures from various different 

https://eternagame.org/
https://eternagame.org/
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species, the tool was unable to guarantee an optimal structure prediction. Therefore, we 
recommend the use of multiple tools to evaluate synonymous variants and to comple-
ment these in silico studies with experimental approaches. A comprehensive list of tools 
used for assessing synonymous variants is shown in Table 1.

In silico tools for determining effects of synonymous variants on RNA splicing
Pre-mRNA splicing is the co-transcriptional process of excising non-coding introns and 
joining protein-coding exons. Splicing is mediated by the spliceosome complex, com-
posed of five small nuclear ribonuclear proteins (snRNPs) and more than 150 proteins, 
and involves recognition of cis-acting elements, including 5′ and 3′ splice sites (donor 
and acceptor sites, respectively), branch point sequences, and polypyrimidine tract 
(PPT) [103]. A majority of the splice sites (> 98%) have invariant GT and AG as the first 
and last two intronic nucleotides, respectively, and less conserved sequences in the 
remaining splice site sequence [104]. Furthermore, there are cis-acting splicing regula-
tory elements (SREs) in both exons and introns that regulate splicing. The SREs are 6 to 
8 nucleotides long and can positively (enhancers) or negatively (suppressors) affect splic-
ing through recruiting trans-acting serine/arginine-rich (SR) proteins or heterogeneous 
nuclear ribonucleoproteins (hnRNPs), respectively.

Synonymous variants can either disrupt native splice sites, create de novo splice sites, 
activate cryptic splice sites, or affect SREs (those located in exons are called exonic splic-
ing enhancers (ESEs) or exonic splicing silencers (ESSs)) and result in variable outcomes, 
including exon skipping and partial exon deletions [105]. Splicing dysregulation is argu-
ably the best studied mechanism by which synonymous variants affect phenotypes and 
thus far has been implicated as the primary underlying mechanism for a majority of dis-
eases caused by these variants [7]. A plethora of in silico tools have been developed for 
predicting the effects of genetic variants on splicing (Table 2).

These tools can be broadly categorized as motif-based or ML- and DL-based algo-
rithms [117]. Splice Site Finder-like (SSF-like, embedded in other platforms referenced 
below), Genscan [106], Genesplicer [108] and MaxEntScan (MES) [107] are examples 
of tools employing motif-based algorithms. Specifically, Spliceview and SSF-like employ 
position weight matrices (PWM) [118] to derive potential splice-site strength estimates 
for a sequence. Genscan uses a maximal dependence decomposition (MDD) model, 
which is a decision tree-based method that attempts to capture dependencies between 
both adjacent and non-adjacent positions. Genesplicer combines MDD with Markov 
models (MM) to capture additional dependencies between neighboring positions. MES 
uses maximum entropy principle (MEP) for modeling short sequence motifs found in 
splice sites while also accounting for higher-order dependencies between adjacent and 
non-adjacent positions. Some tools combine multiple algorithms or tools for their SS 
predictions. For example, Human Splicing Finder (HSF) [119] uses both PWM and algo-
rithms from MES. On the other hand, SPiCE (Splicing Prediction in Consensus Ele-
ments) [120] uses logistic regression to combine MES and SSF-like tool predictions.

Increasingly, tools employing ML-based algorithms are being developed for SS pre-
diction. NetGene2 [109], NNSplice [121], Alternative Splice Site Predictor (ASSP) [122], 
Spliceport [110], SpliceAI [123], MMSplice [111], and SpliceRover [124] are some exam-
ples in this category. Of these, NNSplice, NetGene2, and ASSP employ neural networks 
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algorithms, while Spliceport employs a support vector machine algorithm. Similarly, 
tools based on other ML algorithms like random forest, naïve Bayes, and decision trees 
have been developed. More recently, DL technique-based tools employing deep/convo-
luted neural networks were developed, including SpliceAI, MMSplice, and SpliceRover 
[125]. These tools have exhibited promising results and are touted for freeing algorithms 
from the constraints of human intervention, while enabling the use of novel methods 
and parameters to identify splice sites and classify nucleotide variants [117].

Similar to splice site prediction, a variety of tools for predicting a genetic variant’s 
effect on SREs have been developed. ESEFinder [112], RESCUE-ESE [126], and FAS-
ESS [114] were among the earliest developed SRE prediction tools. ESEFinder employs 
PWMs supported by functional SELEX ((Systematic Evolution of Ligands by EXponen-
tial enrichment) screen data to predict ESEs in the targeted sequence. RESCUE-ESE 
(Relative Enhancer and Silencer Classification by Unanimous Enrichment) employed 
a hybrid computational-experimental approach where putative ESEs were first pre-
dicted computationally and then experimentally verified by minigene assays. FAS-ESS 
employed experimental procedures (similar to functional SELEX) to screen random 
decanucleotide sequences and identify ESSs in the exon sequences. ESRSeq [115] and 
HEXplorer [127] are more recently developed tools for SRE prediction in exons. Of 
these, ESRseq analyzed the effects of all possible (4096) hexamer sequences on splicing 
using a minigene assay and categorized them as either ESEs or ESSs and assigned a score 
depending on the strength of effect. HEXplorer on the other hand employs a RESCUE-
type in silico approach to categorize and assign scores for hexamer sequences. Addition-
ally, tools like EX-SKIP [113] combine predictions of ESE/ESSs from multiple methods, 
including RESUCE-ESE and FAS-ESS and assign a score based on their relative density 
to indicate their ability to induce exon skipping.

A select list of tools performs predictions for both splice sites and SREs. For example, 
SROOGLE [116] provides predictions for both splice sites and SREs along with branch 
point sequences and PPT using 9 different algorithms. HSF provides splice site, SRE and 
BP predictions employing multiple algorithms. Similarly, ExonScan [114] provides splice 
site predictions using maximum entropy model and SRE predictions using RESCUE-
ESE and FAS-ESS approaches.

The above discussed in silico tools were successfully used for the evaluation of splic-
ing effects of genetic variants by multiple studies [12, 128–131]. Zhou et al. employed 
HSF and ESEFinder for the evaluation of naturally occurring synonymous variants in 
the ATP7B Gene [129]. Zhang et al. used SpliceSiteFinder-like, MaxEntScan, NNsplice, 
GeneSplicer, and HSF for the assessment of F9 synonymous variants [130]. Overall, users 
have access to a large variety of tools. A majority of the tools provide scores indicating 
the strength of the splice site or SREs in a sequence of interest. A measure of change in 
score between native and variant sequences generally indicates the effect of the variant 
on splicing. While higher score changes generally indicate greater impact on splicing, 
there is no consensus on a threshold/cut-off score. Several studies were conducted to 
compare the performance of tools [132]; however, they are incomparable as they varied 
in both tools studied and test datasets and consequently differed in their conclusions. 
A recent comparative study with tools based on both motif-based and ML-based algo-
rithms showed variable tool performances depending on the context of the test dataset 
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[117]. Generally, predictions for variants located within consensus splice sites tend to 
be more accurate than for deep exonic variants [12]. For optimal use, the user needs 
to understand the features and limitations of individual tools. For example, the length 
of consensus SSs used in training varies between tools and not all tools were trained to 
identify noncanonical SSs (e.g., GC-AG and AT-AC). The presence and/or lack of tissue-
specific splicing events in the training datasets could also influence predictions [117]. 
The type of input sequence required by tools, ability to perform batch analysis and the 
availability of source code will also influence tool choices. Use of a combination of tools 
predicting both SSs and SREs and employing different algorithms is recommended to 
overcome potential deficiencies of a single tool and is expected to improve predictive 
values [12, 132, 133].

In silico tools for predicting the effect of synonymous variants on miRNA 
binding
miRNAs, short (17–22 nucleotides) single, non-coding RNAs, bind to the complemen-
tary sequences of target proteins and regulate their expression [134]. miRNA genes are 
located either in intergenic regions or within introns of protein coding genes. miRNA 
expression is cell-type and cell-state specific [135], and genetic variants can affect the 
gene regulation network. Numerous studies have demonstrated that single nucleotide 
variants within the miRNA or mRNA untranslated regions (UTR) can affect mRNA-
miRNA interactions [136, 137], dysregulate protein expression by causing the gain or 
loss of miRNA binding sites within the gene’s coding sequence (CDS) [138], and may 
lead to disease pathogenesis [136]. In fact, recent studies estimated that nearly half of 
sSNVs can affect miRNA binding, disturb protein functions, and increase disease risk 
[15]. For example, a synonymous variant (c.313C > T) in IRGM disturbs the miR-196 
binding site and dysregulates IRGM-dependent xenophagy in Crohn’s disease [14], and a 
synonymous variant (c.51C > T) in BCL2L12, identified in melanoma tumors, causes loss 
of the miR-671-5p binding site that stimulates protein expression [139].

The mechanism underlying miRNA association is complex and not fully understood, 
but the main interaction occurs via the 5′ seed region (nucleotides 2–8). Additional pair-
ing at the 3′ end stabilizes the miRNA interaction [134]. Due to a non-perfect comple-
mentarity, miRNA can bind and regulate multiple genes through multiple binding sites 
either in the UTR or CDS regions [140].

As miRNAs regulate gene expression mainly by binding to their target sequence 
within 3′ untranslated region (3’UTR), most in silico tools have predominantly focused 
on miRNA target site predictions within the UTR [141]. Nevertheless, a few tools are 
currently available to identify miRNA target sites within the CDS and to study the effect 
of synonymous variants (Table 3). A large list of miRNA target prediction tools can be 
found on the Tools4miRs platform, which has amassed over 170 methods for broadly 
defined miRNA analysis (https://​tools​4mirs.​org/). Here, we focused on tools that can be 
used to investigate genetic variants within the coding region.

TargetScan predicts biological targets of miRNAs by searching for the presence of 
conserved motifs (mer sites) within the gene that matches the miRNA seed region [142]. 
The online version of the tool is limited to the reference gene and is not specifically 

https://tools4mirs.org/
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designed to predict miRNA binding site within the CDS. To analyze custom sequences, 
TargetScan provides a downloadable version of the code.

Another tool, MinoTar (miRNA ORF Target), predicts miRNA binding sites within the 
CDS by identifying highly conserved regulatory motifs [144]. However, the current ver-
sion of the tool limits the prediction to reference sequences.

miRNA database (miRDB) searches for miRNA target sites through a support vector 
machines (SVMs) algorithm and is trained with high-throughput experimental data-
sets. The database can perform predictions in the CDS but is limited to native gene 
sequences. The tool allows for analyzing any customer mRNA sequence using the 3′ 
UTR region model [145]. In addition, the database was recently updated with cell-spe-
cific miRNA targets [146, 154].

ComiR (Combinatorial miRNA targeting) uses predictions from four common algo-
rithms (PITA [153], miRanda [151], TargetScan [142], miRSVR [155]) and converts 
the results into a single probabilistic score using ensemble learning to predict whether 
a given mRNA is targeted by a set of miRNAs [147, 156]. This tool can accommodate 
custom mRNA sequences. The current version focuses on prediction within the 3′ UTR 
region, but the database may soon be upgraded to include CDS binding sites along with 
miRNA expression data. Preliminary studies have shown that information contained in 
the CDS significantly improves the accuracy of ComiR predictions [148].

DIANA-microT-CDS can identify miRNA targets in the 3′ untranslated region (3′ 
UTR) and in the CDS [149]. This algorithm uses miRNA-recognition elements (MREs) 
for the miRNA:mRNA base pairing. The software provides an automatic pipeline as well 
as plug-ins that allow the user to access the target prediction server and incorporate 
advanced miRNA analysis into custom pipelines.

Paccmit-CDS (Prediction of Accessible and/or Conserved MIcroRNA Targets) 
searches for potential microRNA targets within CDS by identifying conserved comple-
mentary motifs to the microRNA seed region and ranking them with respect to a ran-
dom background that preserves both codon usage and amino acid sequence [150]. The 
tool presented on the website allows for evaluation of reference genes, but the program 
written in C +  + can be used to evaluate the effect of synonymous variants. Paccmit-
CDS, TargetScan, and miRDB prediction tools have been recently used to evaluate for 
the effect of synonymous variants in ADAMTS13 [157].

MiRanda, which is accessible online, allows searches for miRNA binding sites within 
the 3′ UTR region of specific genes, by inputting gene names. Installing the miRanda 
package allows for the detection of potential microRNA target sites in genomic 
sequences and can be used to evaluate the effect of synonymous variants [151, 152].

The online miRNA prediction tool, PITA, can process UTR sequences. While it is not 
designed to study miRNA binding sites within the CDS, it was previously used in con-
cert with miRanda to identify miRNA target sites, encompassing the C51T variant site in 
BCL2L12 [139].

For validation of miRNA binding sites within the protein coding region, these predic-
tion software require input of the gene sequence, which is then aligned with miRNA 
sequences derived from miRbase [158]. By comparing the outcome of the WT sequence, 
which is defined by a list of predicted miRNAs and with associated scores generated by 
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specific prediction tools, with the list of miRNAs predicted to bind the variant sequence, 
the gain or loss of miRNA binding can be determined.

The main limitations of some current prediction algorithms are that they are based on 
conservation and are not fully adapted for processing the CDS. Many tools neglect con-
sideration of cell-type specific miRNA expression levels, do not consider target site avail-
abilities due to protein folding, and limit the analysis to a reference gene sequence. Since 
mRNA-miRNA association is based on non-perfect complementarity, the outcome data 
contains hundreds of predicted miRNAs, and it is advisable to validate miRNA predic-
tions by comparing the output data from three or more prediction tools. As synonymous 
variant prediction outcomes within the CDS have not been extensively validated, and 
variants that have been experimentally assessed do not always support the prediction 
algorithms [159], it is difficult to recommend a specific tool that is best for forming SNV 
miRNA predictions. Nevertheless, many tools have recently evolved to include CDS 
analysis and the development of more robust bioinformatic and experimental methods 
to evaluate miRNA alterations by synonymous variants remains an ongoing pursuit.

In silico tools for predicting pathogenicity of synonymous variants
As more synonymous variants are being implemented in the development of genetic 
therapies and drugs, the creation of more powerful tools to predict functional synony-
mous variants has become even more important. Many discovered synonymous variants 
have been linked to increased risks for developing diseases and cancers [9]. For example, 
synonymous variants have been found to underlie Hemophilia [77, 160] and in cancer, 
about 6–8% of pathogenic single nucleotide substitutions identify as synonymous vari-
ants [161]. As a result, there is growing interest in the development of in silico tools that 
can reliably predict the pathogenicity of synonymous variants.

Currently, methods to predict rare coding variants, mostly targeting pathogenic 
missense variants, have proven to be quite effective, such as REVEL [162] and CADD 
[24]. However, progress towards predicting pathogenic synonymous variants remains 
far behind. While creating pathogenic synonymous variant prediction tools is compli-
cated and challenging, recent progress towards this objective has come on the heels 
of advancements in ML platforms and greater insight on the importance of a variety 
of sequence properties in influencing disease. mRNA metrics and protein-associated 
variables, such as amino acid conservation, have been considered in algorithms to pre-
dict pathogenicity [21, 163]. In addition, generation of robust prediction tools is highly 
dependent on the availability of disease-associated genetic data that can be used to train 
ML systems. Numerous data sets have been curated with information on disease-related 
variants, such as Human Gene mutation database (HGMD) [164] and VariSNP [165], 
and there are numerous resources for curating neutral synonymous variants, including 
the 1000 Genomes Project (1000G) [166, 167]. But, while these are the most extensive 
datasets and have been used to train ML prediction tools, these datasets require fur-
ther improvements. Unfortunately, as many have noted [168], there are inconsistencies 
in characterizations, nomenclature, and disease annotations in these databases, which 
have encouraged many recent efforts to correct these annotation flaws [169]. However, 
these factors have made it exceedingly difficult to generate accurate disease predictions.
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Nevertheless, many ML tools based on supervised algorithms, such as random for-
ests (RFs), deep neural networks, or support vector machine (SVMs), have been gener-
ated with reasonable proficiencies at predicting pathogenic synonymous variants. Some 
examples of such tools include SilVA (Silent Variant Analyzer) [22], DDIG-SN (Detect-
ing Disease-causing Genetic SynoNymous variants) [23], IDSV (Identification of Delete-
rious Synonymous Variants) [163], and TraP (Transcript-inferred Pathogenicity) [170]. 
Each of these tools utilize a different assortment of features to predict pathogenicity of 
synonymous variants, but the most common implemented features include conservation, 
splicing, and RNA folding metrics. Most of these tools require a list of variants, format-
ted as VCF or tag-like files, and will rank synonymous variants based on their predicted 
pathogenicity. While it seems unreasonable to compare the accuracies of prediction tools 
due to the lack of an ideal standardized testing set, Zeng and colleagues found that when 
tested with a mock dataset, SilVA, DDIG-SN, and TraP were highly correlated in their 
predictive capacities but were not effective at large-scale variant predictions [171].

Ultimately, improvements in variant predictors will only occur with enhancements to 
genetic data sets. usDSM (Deleterious Synonymous Mutation Prediction using Under-
sampling Scheme) [172] and synVep (Synonymous Variant Effect Predictor) [21] are 
newer tools that have demonstrated improved proficiencies by implementing under-
sampling methods and positive-unlabeled learning, respectively, to circumvent the lack 
of robust training sets. In addition, concerted efforts have been made to create artificial 
datasets to train prediction models [171]. Alternatively, transitioning from a supervised 
ML system to unsupervised or semi-supervised methodologies may help to overcome the 
scarcity of available data. These methods are advantageous as they eliminate biases by 
removing the need for predefined labels like “pathogenic or benign” in training sets. One 
example of an unsupervised prediction tool is ParsSNP [173], which has outperformed 
existing tools in identifying driver mutations of cancer. However, specific application of 
unsupervised methods for synonymous variant prediction has not been adopted.

Importance of in vitro validation of in silico tool predictions in synonymous 
variant research
While computational tools for evaluating synonymous variants have improved sig-
nificantly in recent years, in silico tools are still fundamentally imperfect systems. 
In many cases, predicted disease variants do not mirror the actual biological out-
comes due to unknown biological complexities or deficiencies in the number of reli-
able and comprehensive genomic data sets. Therefore, it is increasingly important 
that in silico tool predictions be performed by multiple prediction tools with a vari-
ety of algorithms and parameters and validated through in  vitro experiments. Cur-
rently, examples of experimentally corroborated synonymous variants are still quite 
low, which can be partially attributed to the necessity for more sensitive, standardized 
experimental assays. Detected protein or RNA alterations are usually significant, but 
small in magnitude. Many seminal works began as studies that leveraged the power of 
synonymous variant prediction tools to identify potential candidates and followed up 
these findings with experimental confirmation (see Table 4 for examples from highly 
cited studies that employed a combination of in silico and in  vitro experiments to 
effectively investigate sSNV mechanisms). For a thorough review of experimental 
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Table 4  Examples of studies that effectively used prediction tools to study disease-causing 
synonymous variants

Disease association Variant Prediction tool Description Ref

Crohn’s disease IRGM (c.313C > T) SnipMir, RegRNA, and 
Patrocles (miRNA)

Synonymous variant 
predicted to delete a 
miRNA binding site, 
leading to increased 
risk for Crohn’s disease 
(validated to be the 
causal mechanism 
through experiments 
assessing IRGM regula‑
tion)

[175]

Cystic fibrosis ΔF508 CFTR 
(c.1520_1522delTCT)

mFold (mRNA struc‑
ture)

Synonymous site 
within the ΔF508 CFTR 
predicted to alter 
mRNA structure and 
stability and found to 
responsible for altered 
expression of the 
mutant protein

[18, 176]

Hemophilia B FIX [Factor IX] 
(c.459G > A)

mFold, Kinefold, 
NUPACK (mRNA struc‑
ture), RSCU, CAI (codon 
usage indices)

mRNA structure predic‑
tion tools indicated a 
moderate reduction 
in mRNA stability, 
which coincided with 
diminished FIX expres‑
sion through decreased 
translational speed

[77]

Hereditary cardiac 
arrhythmia

hERG (codon-modified) RNAfold (mRNA 
structure)

Codon modified hERG 
was predicted to have 
increased mRNA stabil‑
ity, resulting in altered 
translation of the ion 
channel

[19]

Pain sensitivity COMT (3 haplotypes 
with synonymous 
variations [c.198A > G, 
c.186C > T, c.408C > G])

mFold (mRNA struc‑
ture)

COMT haplotype with 
predicted highest 
mRNA stability cor‑
related with the lowest 
activity and expression 
levels. Other haplo‑
types with different 
thermodynamic sta‑
bilities elicited different 
pain sensitivities

[147, 177]

Phenylketonuria PAH (c.30C > G) ESE Finder 3.0 (splicing) An exonic splicing 
silencer was identified 
through splicing pre‑
dictions and validated 
experimentally to be 
the main mechanism 
underlying the PKA-
causing variant

[178]

Tuberculosis mabA (c.609G > A) GENETYX-MAC (pro‑
moter prediction)

Synonymous variant 
predicted to cause the 
formation of an alterna‑
tive promoter site, 
next to the mutation 
position, which was 
validated and found 
to increase transcrip‑
tion of inhA, leading 
to increased isoniazid 
resistance

[155, 179]
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methods and discussion of studies that have investigated synonymous variants, we 
recommend reviewing Chapter  7 of a recently published book on Single Nucleotide 
Polymorphisms [174]. With the incessant rise in accumulations of genetic data and 
improving landscape of computational tools, the number of functional synonymous 
variants should dramatically increase over the next decade.

Concluding remarks and future perspectives
While overlooked in the past, synonymous variants are now recognized for their numer-
ous functional effects and contribution to diseases. While this change in perspective 
was certainly precipitated by the rapid expansion of genetic testing and improvements 
in sequencing technologies, it must also be ascribed to recent significant advancements 
in bioinformatic AI and ML platforms. As highlighted in this review, in silico tools, 
especially those rooted in machine-learning algorithms, have been used to enhance 
our understanding of mechanisms underlying synonymous variants, while giving rise 
to additional inventive ideas, such as leveraging synonymous variants in genomic engi-
neering strategies (e.g., codon optimization) to develop therapeutics [180]. In addition, 
the identification of recurrent disease mechanisms among synonymous variants, such 
as splicing or disrupted mRNA structure, has facilitated the discovery of new synony-
mous variants in other disease states, such as cancers [159]. The extended application 
of these technologies will be dependent on whether continued progress can be made in 
developing accurate synonymous variant computational predictors as these tools repre-
sent the most efficient means to process large-scale variant datasets. In the short term, 
the shortage of reliable genetic datasets on synonymous variants remains a significant 
obstacle for their rapid improvement, but as sequencing continues to become afford-
able and commonly used, this issue may be resolved naturally over time.

Thus, in the near future, promising improvements in these prediction tools may origi-
nate from enhanced understanding of codon, RNA, and sequence properties that cor-
relate with functional synonymous variants. Future studies will need to address many 
outstanding questions in this field, including determining whether an array of sequence 
features can accurately discriminate functional or pathogenic synonymous variants. In 
addition, it will be important to develop refined models, specifically intended for syn-
onymous variants, as many existing methods rely on adapting generic tools for synony-
mous variant assessment. This is suboptimal, as certain tools may place greater emphasis 
on particular variables and may not be able to sensitively detect functional variants. 
Fortunately, our understanding of biological relationships between codon usage, mRNA 
structure, and other protein sequence features continues to improve, and once intrac-
table questions, such as how synonymous variants can alter the specific activity of pro-
teins, have now been described [181]. The incorporation of these new variables into the 
design of in silico tools and the expanding use of these tools by the broad research com-
munity will only help to expedite novel discoveries in synonymous variant research.
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