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Abstract 

Bulk high-throughput omics data contain signals from a mixture of cell types. Recent 
developments of deconvolution methods facilitate cell type-specific inferences from 
bulk data. Our real data exploration suggests that differential expression or methyla-
tion status is often correlated among cell types. Based on this observation, we develop 
a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell 
type-specific differential analyses of bulk data. Extensive simulation and real data analy-
ses demonstrate that this approach significantly improves the accuracy and power 
in detecting cell type-specific differential signals compared with existing methods, 
especially in low-abundance cell types.

Keywords:  Cell type-specific differential analysis, Cell type hierarchy, Hierarchical 
Bayesian model, Microarray data analysis

Background
The bulk high-throughput omics experiments are often performed on tissue samples, 
which are mixtures of different cell types. Traditional bulk data analyses for differential 
expression (DE) and differential methylation (DM) compare the average signals among 
different groups. However, it has been reported that certain biological and clinical con-
ditions can alter the DNA methylation or gene expression profile in specific cell types. 
For example, Grubman et  al. reported that Alzheimer’s disease (AD) risk gene APOE 
shows cell type-specific different expression patterns: it is upregulated for AD in micro-
glial cells, but downregulated in both oligodendrocyte progenitor cells and astrocytes 
[1]. Gu et al. reported that neuron and glia cells show different DNA methylation pattern 
within SNCA intron 1 in two synucleinopathies—Parkinson’s disease (PD) and dementia 
with Lewy body (DLB) [2]. In PD, decreased DNA methylation within SNCA intron 1 
only appears in neuron cells, while in DLB, it only appears in glia cells. These cell type-
specific changes are important for understanding biological and clinical mechanisms 
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and potentially provide diagnostic biomarkers and therapeutic targets. Thus, research-
ers often have great interest in identifying cell type-specific alterations under various 
conditions.

Experiment procedures such as cell sorting or single-cell approaches can directly 
measure the cell type-specific behaviors. However, the two technologies are laborious 
and expensive, which limits their large-scale application. While the traditional DE/DM 
methods for bulk data only compare the average signals, recent development of compu-
tational methods makes it possible to perform cell type specific analysis from the bulk 
data. The cell type-specific analysis on bulk omics data has been an active research field 
recently. There are several methods developed for signal deconvolution and cell type-
specific inference. For example, csSAM [3] adopts a two-step approach: it first estimates 
pure cell type profiles based on known cell type proportions and then conducts permu-
tation tests to identify cell type-specific DE (csDE). Both CellDMC [4] and TOAST [5] 
use interaction terms between covariates and cell type proportions in a linear model 
to test csDE/csDM. This statistical framework has been shown as a generalization of 
several previous works [6–8]. TCA [9] models the cell type-specific methylation levels 
of each individual and derives a procedure for cell type-specific inference. While Cell-
DMC, TOAST, and TCA mainly focus on continuous methylation or gene expression 
data measured in microarray, CARseq [10] is designed for cell type-specific inference 
for count data from RNA-sequencing by using a negative binomial (NB) distribution. 
Different from previous mentioned methods that require known cell type composition 
as input, HIRE [11] jointly perform composition estimation and csDM inference. Even 
though these methods generally achieve satisfactory performance in detecting differ-
ential signals from abundant cell types, their accuracy and power could be low, espe-
cially in cell types with small proportions. Using the existing methods, the only way to 
improve the results for those minor cell types is to increase sample size, which could be 
infeasible in many settings.

It is known that different cell types in a tissue form a hierarchical structure [12, 13]. 
For example, the major groups of lymphocytes include natural killer cells (NK), T cells, 
and B cells. The T cells can be further divided into many subtypes including CD4+ T 
cells (CD4) and CD8+ T cells (CD8). Due to the similarity among cell types, it is con-
ceivable that similar cell types could exhibit similar DE or DM patterns, e.g., if a gene is 
DE in CD4, it is more likely to be also DE in CD8. Correlations of DE/DM states among 
cell types have been reported in many published works. Mathys et al. [14] reported that 
in the late stage of AD, genes upregulated were common across cell types and primarily 
involved in global stress response. Tserel et al. [15] reported that age-related methylation 
changes (measured by fold change) in CD4+ T cell and CD8+ T cell have a strong cor-
relation and that all top sites with the highest methylation differences between younger 
and older individuals are shared by the two cell types. In a Graves’ disease (GD) study, 
Limbach et  al. [16] reported that a majority of the most significant CpG sites associ-
ated with GD had differential methylation in both CD4+ and CD8+ T cells. Conceptu-
ally, the similarity of DE/DM status among cell types can be exploited to improve the 
csDE/csDM results. In this work, we develop a novel and rigorous statistical method to 
incorporate the cell type hierarchy into the cell type-specific differential analysis in high-
throughput bulk omics data. Our proposed method borrows information across cell 
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types through a Bayesian hierarchical model. A key intuition of the proposed method is 
that the prior probability of one gene being DE in a cell type is impacted by the DE status 
of this gene in other cell types, for example, if gene A shows strong DE in CD4, its prior 
probability of being DE in CD8 will be higher due to the similarity between CD4 and 
CD8. We name the proposed method “Cell type-specific Differential Analysis with tRee” 
(CeDAR) and implement it in Bioconductor package TOAST (https://​www.​bioco​nduct​
or.​org/​packa​ges/​relea​se/​bioc/​html/​TOAST.​html). In the sections below, we first moti-
vate the proposed method by illustrating the DE/DM correlation among cell types in real 
data exploration. We then provide an overview of the proposed method. Following that, 
we comprehensively evaluate the proposed method with both simulated and real data. 
The results demonstrate that incorporating the cell type hierarchy in the csDE/csDM 
framework greatly improves the detection performance, especially in cell types with low 
proportions.

Results
Strong correlations of DE/DM states among cell types are observed in real data

We performed real data analyses to explore whether the DE/DM states are correlated 
among cell types in real data. We obtained two datasets from Gene Expression Omnibus 
(GEO) database, one DNA methylation [17] and one gene expression [18]. Both datasets 
contain samples of purified cells from individuals under different conditions; thus, the 
gold standard results are available. We first called DM and DE for each cell type in these 
two datasets using existing tools. We called DM between males and females in the DNA 
methylation data and called DE for sclerosis patients before versus after first IFN-beta 
treatment. Detailed description for the data and analysis procedures is in the “Methods” 
section. Then, we evaluated the pairwise correlation among cell types in terms of their 
DE/DM status, using both Pearson correlation coefficient (PCC) of log-transformed 
p-values from the DE/DM tests for all features, and the odds ratio (OR) of being DE/DM 
from the cell types. The first metric (PCC) evaluates the correlations at the quantitative 
level that consider the DE/DM strength, while the second metric (OR) evaluates the cor-
relation at the qualitative level since it quantifies the concordance of the binary DE/DM 
status. Higher PCC and OR indicate stronger correlation among cell types.

The pairwise scatterplots for the comparisons are shown in Fig. 1. In the DNA meth-
ylation data (Fig.  1a), the p-values from all cell types are highly correlated (all PCCs 
> 0.83). Besides, the ORs for being DM between any two cell types are all very large. 
These results indicate very strong correlation among cell types in their methylation 
difference between males and females. In gene expression data (Fig.  1b), all PCCs are 
also significantly positive and all ORs are significantly greater than 1. The correlation 
strength appears to be weaker in the gene expression example than in the methylation 
data since the molecular differences between sexes (as considered in the methylation 
data) are likely to be much stronger than the treatment effects (as considered in the gene 
expression data). Additionally, the gene expression dataset shows different levels of cor-
relation among cell types. For example, B cells, CD4, and CD8 are more correlated with 
each other compared to others (PCCs > 0.7), suggesting a cell type hierarchy. Similar 
results are observed by performing the same analyses on three additional real datasets 

https://www.bioconductor.org/packages/release/bioc/html/TOAST.html
https://www.bioconductor.org/packages/release/bioc/html/TOAST.html
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(Additional file 1 Section S5, Figure S1). Overall, these results demonstrate that there are 
strong correlations among cell types in terms of their DE/DM status.

Method overview

CeDAR incorporates the cell type hierarchy in cell type-specific differential analysis in 
bulk data. Briefly speaking, for each feature, we define binary random variables to repre-
sent its underlying DE/DM states in all cell types, each with a prior probability. Given a 
realization of the DE/DM states for all cell types, we model the observed bulk data using 
a linear model framework similar to TOAST and CellDMC, in which the interaction 
terms between the cell type proportions and the covariate of interest capture the cell 
type-specific effects. The unique feature in CeDAR distinguishing it from the existing 
methods is that the interaction terms are only included for cell types deemed DE/DM. In 
contrast, TOAST/CellDMC is the full model which implicitly assumes the feature is DE/
DM in all cell types, since the interactions are included for all cell types. The marginal 
likelihood of the observed data can be calculated by summing over all the underlying 
DE/DM states. Then the posterior probability of a feature being DE/DM in each cell type 
given observed data can be calculated and used to detect csDE/csDM.

The most important part of the proposed method is the specification of the prior prob-
abilities for the DE/DM status for each cell type. If one only considers the marginal prob-
abilities of DE/DM and assumes independence among cell types, the similarities among 
cell types cannot be incorporated. In order to take advantage of the correlations among 
cell types, we make the prior probabilities dependent on the cell type hierarchy. Given a 
hierarchical tree of cell types, we assign priors for the root and all internal nodes, then 
compute the priors for the leaf nodes based on the cell type hierarchy. The specification 
of the prior is graphically illustrated by a toy example in Fig. 2. Assuming there are three 
cell types forming a simple tree with one root node, one internal node, and three leaf 

Fig. 1  Correlations among cell types from cell type-specific differential analysis. a Cell type-specific 
differential methylation analysis and b cell type-specific differential expression analysis. DE/DM tests were 
applied for each feature in each cell type. X-axis and Y-axis represent -log10 transformed p-value from DE/DM 
tests in corresponding cell types. Each point represents a gene or CpG site. Dashed blue lines represent the 
thresholds used to define DEG/DMC in each cell type. Pearson correlation coefficients (PCC) of transformed 
p-values and odds ratio (OR) of differential state are tested for their significance. *** represents p-value < 0.01
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nodes. All nodes have underlying binary states of being DE/DM (state 1) or not (state 0). 
Here we define a non-leaf node as DE/DM if any of its direct children’s node is DE/DM. 
Conversely, a child node can be DE/DM only when its direct parent node is DE/DM. 
The prior probabilities on the non-leaf nodes will implicitly account for the correlations 
among cell types. For example, even though the marginal probabilities of DE/DM for cell 
types 2 and 3 are small (0.06, 0.04), their conditional probabilities when the parent node 
is in state 1 become very high (0.75, 0.5). If a gene shows strong DE in cell type 2, it will 
increase the probability for its parent node (an internal node) to be DE, which subse-
quently increases the prior probability for this gene to be also DE in cell type 3. Thus, the 
correlation between cell types 2 and 3 is passed through their parent node. On the other 
hand, the distance between cell types 1 and 3 is larger, so their influences on each other 
must pass through the root and internal nodes, which is weaker. The details of the data 
model and estimation procedure are in the “Methods” section. It is important to men-
tion that the proposed method allows the cell type hierarchy to be any rooted tree, i.e., it 
does not have to be a bifurcating hierarchical tree. In the sections below, we show results 
from different types of tree structures.

Simulation results

CeDAR method improves accuracy in cell type‑specific differential signal detection

We conducted simulation studies to compare the performance of CeDAR with TOAST, 
TCA, csSAM, and CellDMC in a two-group comparison. Although TCA was originally 
designed for bulk methylation data, the method is also applicable to gene expression 
data [19]. We incorporated two types of tree structures in the CeDAR test: the first is the 
simplest tree structure with only one layer (referred to as “CeDAR-S”), where root node 
is the parent of all leaf nodes. The second is a bifurcating hierarchical tree with multiple 
layers (referred to as “CeDAR-M”). While CeDAR-M captures a more complex correla-
tion structure among cell types, CeDAR-S avoids the potential negative impacts of the 
biases in the specified prior tree structure.

Fig. 2  Illustration of the specification of the prior probabilities for DE/DM under a cell type hierarchy. The cell 
type hierarchy is represented by three cell types and a few features (genes or CpG sites). The three cell types 
form a simple tree (shown in the left). In the array of squares and circles, each column represents a feature. 
Circles represent root or internal nodes, and the squares represent leaf nodes. Colors represent the differential 
states of the node (black: 1; gray: 0). The root node Dg{1, 2, 3}, internal node Dg{2, 3}, and leaf nodes Zg1, Zg2 and 
Zg3 are binary random variables representing the g-th feature differential states. π represents the marginal 
probability for a node to be in state 1. p represents the conditional probability of a node to be in state 1 when 
its parent node is in state 1
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The simulation is constructed based on a dataset (GEO accession number GSE22886 
[20]) from whole blood samples with six cell types: neutrophils, monocytes, CD4, CD8, 
NK, and B cells. We simulated gene expression for six cell types based on parameters 
estimated from the real data to ensure the simulated data has characteristics (pure pro-
files and cell type composition) matching the real data. Note that we conducted simula-
tion based on gene expression microarray data, but the proposed method can also be 
applied to DNA methylation microarray data. We made the six cell types have different 
levels DE state correlation following a hierarchical tree (Fig. 3a). To be specific, we simu-
lated the strongest correlation between cell types 1 and 2 as well as between cell types 
3 and 4, both having ~80% DE genes overlapped. Cell types 5 and 6 are made to have 
slightly weaker correlations with cell type 3 with ~62.5% and ~50% overlapped DE genes, 
respectively. We simulated the weakest correlation between cell types 1/2 and cell types 
3/4/5/6. Between any two of them, only about 12.5% DE genes in one cell type overlap 
with the other. We used the true proportion to conduct data analyses for the results pre-
sented in this subsection and will evaluate the impact of proportion estimation in later 
sections. The accuracy of detecting csDE genes was measured by ROC curve, the area 
under the ROC curve (AUC-ROC), area under the precision-recall curve (AUC-PR), 
and Matthews correlation coefficient (MCC). We also evaluated the type I error controls 
from different methods by examining their false discovery rates (FDR). All methods were 
evaluated at different sample sizes (50, 100, 200 per group). The results were summa-
rized from fifty simulations. Detailed simulation procedure is in the “Methods” section.

The simulation result shows that by considering correlation of DE states among the 
cell types, both CeDAR methods improve the accuracy of csDE genes detection in all 
six cell types compared to the other methods (Fig. 3c and Additional file 1: Table S1). 
However, the amounts of improvement vary with respect to different factors, such as cell 
type proportion and sample size. The improvement in cell types with smaller propor-
tions is greater than in cell types with larger proportions. For example, the improvement 

Fig. 3  Simulation results for comparing different methods in cell type-specific differential expression. The 
simulation is based on a two-group comparison, with 100 samples in each group. Data were generated as 
a mixture of six common blood immune cell types (1: neutrophils, 2: monocytes, 3: CD4, 4: CD8, 5: B, 6: NK 
cells). a Cell type hierarchy used in simulation. b Mean proportion of each cell type. c ROC curves for csDE 
detection in six cell types for six methods (TOAST, TCA, csSAM, CellDMC, CeDAR-S, and CeDAR-M). Reported 
ROC curves are averaged from 50 simulations. d Observed FDR for csDE detection from different methods. DE 
genes are defined with rules: estimated FDR < 0.05 (TOAST, TCA, csSAM, and CellDMC); posterior probability 
of DE > 0.95 (CeDAR-S, CeDAR-M). Observed FDR from 50 simulations are summarized by box plot
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in cell type 1 (mean proportion 0.63) is much smaller than the other five cell types (larg-
est mean proportion 0.11). Meanwhile, improvement in cell types with similar propor-
tion could be different. Among the six cell types, cell type 2 and cell type 3 have similar 
mean proportion (0.10 vs. 0.11), but the accuracy improvement in cell type 2 is greater. 
A potential explanation is that cell type 2 is clustered with cell type 1 (with large propor-
tion), while cell type 3 is clustered with cell types 4–6 (with smaller proportions). Intui-
tively, the cell type with small proportion could “borrow” more information from cell 
types with larger proportion, since larger proportion often leads to more accurate result.

Sample size is another important factor affecting the performance of various methods 
in detecting csDE genes, especially in cell types with small proportion [4, 5, 10]. When 
sample size is small (e.g., 50), both TOAST and TCA have poor performances in cell 
types of small proportions. However, the improvement of CeDAR methods is more sig-
nificant compared to scenarios with larger sample size (Additional file 1: Table S1). For 
example, in cell type 2, the AUC-ROC difference between CeDAR-S and TOAST is 0.145 
when sample size is 200, while it is 0.235 when the sample size is 50. Additionally, when 
sample size becomes large (e.g., 200), CeDAR-M has higher AUC-ROC than CeDAR-S 
in cell types with smaller proportions, such as cell type 2 (AUC-ROC: 0.940 vs. 0.916). 
This is because larger sample size would lead to more accurate multiple layer tree struc-
ture estimation, which helps cell types with smaller proportions to correctly “borrow” 
information from their closely correlated cell types with larger proportions.

We also investigated the FDR control of the four methods at a given cutoff. While 
TOAST, TCA, csSAM, and CellDMC use estimated FDR [21] 0.05 as cutoff, CeDAR 
methods use posterior probability of DE 0.95 as cutoff [22]. In general, all methods have 
better FDR control for cell types with larger proportions (Fig.  3d). For example, the 
median of observed FDR in cell type 1 is much closer to 0.05 and the interquartile range 
(IQR) is much smaller than cell type 6 for all four methods. In cell types with smaller 
proportion, TOAST, TCA, csSAM, and CellDMC have slightly better performance in 
controlling type I error than CeDAR. This indicates that the information borrowing 
across rare cell types tends to mildly inflate the false positives. But overall, all methods 
do not work well for cell types with small proportions, and the only solution for that is 
to increase the sample size. Such problem will be alleviated with larger sample size. For 
example, the observed FDR in cell type 6 from CeDAR-M decreases from 0.247 to 0.065 
when sample size increases from 50 to 200 (Additional file 1: Table S1).

Evaluating the robustness of CeDAR

Robustness to different cell type correlation patterns  Due to the complexity of bio-
logical system, cell types may show different correlation patterns in their DE/DM sta-
tus under different conditions. For example, some cell types may not show correlation 
with each other at all. To evaluate the robustness of CeDAR, we evaluated its perfor-
mance under different cell type hierarchies. To simplify the simulation but still capture 
the influences of cell type hierarchy, we simulated data for four cell types (neutrophils, 
monocytes, CD4, and CD8) with different mean proportions (0.6, 0.1, 0.25, 0.05). We 
evaluated CeDAR methods with six different cell type hierarchies representing various 
correlation relationships (Fig.  4a–f). For hierarchies showing cell type correlation, we 



Page 8 of 26Chen et al. Genome Biology           (2023) 24:37 

evaluated the performance of six methods under two different correlation levels (strong: 
~90% DE genes overlapped between two cell types; weak: ~ 50%). Sample size was set as 
200 per group.

The simulation results indicate that when all cell types are independent, CeDAR meth-
ods have similar accuracy as TOAST, TCA, and CellDMC and greater accuracy than 
csSAM in all four cell types (Fig.  4a). When cell types are strongly correlated, both 
CeDAR methods have greater improvements over the other methods in cell types with 

Fig. 4  ROC curves under different DE patterns (with strong correlation). The simulation is conducted for 
a two-group comparison with four cell types (1: neutrophils, 2: monocytes, 3: CD4, 4: CD8 cells) under 
six different DE patterns (a all cell types are independent; b cell types are correlated under the root, but 
independent conditional on the root (a single layer tree structure); c only cell types 3 and 4 are correlated; 
d only cell types 1 and 2 are correlated; e cell types 1 and 2 are correlated, and cell types 3 and 4 are 
correlated, but cell types 1/2 and 3/4 are independent; f all cell types are correlated under a multiple-layer 
tree structure). Methods under comparison include TOAST, TCA, csSAM, CellDMC, CeDAR-S, and CeDAR-M. 
Reported ROC curves are average over 50 simulations
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smaller proportions (e.g., cell type 2 in Fig. 4b, d, e; cell type 4 in Fig. 4b, c, e). However, 
such improvement is not as significant in cell type 1 under all scenarios. This is because 
cell type 1 has large proportion (mean 0.63) so the data likelihood plays a greater role 
than prior information; thus, borrowing information from other cell types does not 
much impact on the result. Additionally, CeDAR-M provides greater performance 
improvement than CeDAR-S when the cell type hierarchy is more complex than a one-
layer tree structure (e.g., cell type 2 in Fig. 4d, e; cell type 4 in Fig. 4c, e). When correla-
tion is weaker, CeDAR-M has similar performance as CeDAR-S, but the improvement 
over existing methods (TOAST, TCA, csSAM, and CellDMC) is smaller (Additional 
file 1: Figure S3, Table S3). The FDR control result is similar to the simulation result with 
six cell types in previous section regardless of different cell type hierarchies (Additional 
file 1: Figure S2, Figure S4, Table S2, Table S3).

Robustness to cell type hierarchy estimation  In many cases, the cell type hierarchy and/
or the prior probabilities of nodes are unknown and need to be estimated from data. We 
conducted additional simulations to evaluate the impacts of potential estimation biases 
on CeDAR. We used the same simulation setting as the first simulation result section 
(six cell types, 100 samples per group) and compared the performance of csDE detection 
with different combinations of inputs: true tree and true prior probability, true tree and 
estimated prior probability, estimated tree and estimated prior probability. The result 
shows that using estimated tree structure and prior probabilities of nodes have very sim-
ilar accuracies as the other two types of inputs in most cases (Additional file 1: Figure S5, 
Table S4). The only exception is cell type 2, where the performance is slightly worse by 
using estimated tree and probability. On the other hand, the observed FDRs from using 
estimated prior probability as input are closer to the nominal value (0.05) than using true 
prior portability. Further investigation suggests that the difference in FDR between using 
true and estimated prior probabilities is associated with data noise. When data noise is 
large, CeDAR with estimated prior probability has smaller FDR; otherwise, it has larger 
FDR (Table S5, Table S6). More details are provided in Additional file 1 Section S6.

We further evaluated CeDAR’s performance with mis-specified tree structures, which 
will happen when the tree estimation is inaccurate. We provided mis-specified tree 
structures to CeDAR and compared the results with CeDAR using the true tree. The 
results show that CeDAR is robust to mis-specified tree structures and that the major 
performance decreasing appears in low abundant cell types when they are mistakenly 
clustered with other cell types. Detailed procedures and discussions are provided in 
Additional file 1 Section S7 and Figure S6, Figure S7, Table S7. Overall, CeDAR is very 
robust to potential biases brought by the cell type hierarchy estimation.

Robustness to cell type proportion estimation  Although we assumed accurate propor-
tion estimation in previous simulations, the estimation accuracy varies by the data qual-
ity and the choice of deconvolution methods. We evaluated the performance of the six 
methods under the same simulation scenario using estimated proportions from a refer-
ence-based deconvolution (RB) method lsfit [23] (Additional file 1: Figure S8, Table S8). 
As expected, using true proportion leads to better results for all methods, especially in 
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low abundant cell types (cell type 3-6). However, these results show that using the esti-
mated proportions, CeDAR methods still have much higher accuracies than the other 
four methods in all cell types. Another observation is that the observed FDRs from all 
methods are inflated using estimated proportions. We took a deeper examination of the 
results and found that the estimated proportions are more variable across individuals 
compared to the true proportions. Such higher variability makes all methods more sen-
sitive (since proportions are used in the linear model as covariates), but also produces 
more false positives. The obvious solution to this problem is to have better proportion 
estimation, or to use a more stringent cutoff in calling csDE/csDM. Overall, these results 
show that CeDAR still greatly outperforms other methods using estimated cell type 
proportions.

Computation performance

We benchmarked the computation performance of CeDAR and other methods under 
the simulation scenario in the first simulation result section (12,402 genes), but vary-
ing the cell type number (4, 6, and 8) and sample size (50, 100, and 200). All simulations 
were performed on a PC running Linux with 2.80 GHz CPU and 8G RAM. TOAST is 
the fastest and CellDMC is the second fastest method. For example, they take 0.409 and 
24.466 s respectively for 6 cell types and 100 samples on average. With default permuta-
tion number of 200, csSAM is slower than CeDAR-M with four cell types (sample sizes 
50, 100, 200) and six cell types (sample sizes 50, 100), while it is faster with six cell types 
(sample sizes 200). TCA is the slowest in all scenarios. Overall, even though with K cell 
types, CeDAR needs to fit 2K linear regression models, its computation performance is 
still very good due to efficient implementation. For example, it takes about 36.759 s for 6 
cell types and 100 samples per group. Computation time for all scenarios is in Additional 
file 1: Table S9.

Real data analysis

Cell type‑specific differential methylation in brain

We first evaluated CeDAR on a human brain DNA methylation dataset (GEO accession 
number GSE41826 [24]) including both pure (glia and neuron) and bulk samples from 5 
males and 5 females. The methylation level is represented as beta values in this study and 
all following DNA methylation analyses. We applied CeDAR-S, TOAST, TCA, csSAM, 
and CellDMC on the bulk data to call glia and neuron-specific differentially methylated 
CpGs (DMCs) comparing male vs female and used the DMCs identified from the pure 
cell type as the gold standard to benchmark the results. The gold standard cell type-spe-
cific DMCs were detected using minfi [25–31]. To obtain an accurate gold standard and 
avoid ambiguity in DM calling, we defined sites with FDR < 0.01 as DM and FDR > 0.8 as 
non-DM. Among all 480,492 CpGs, there were 8475 and 8587 true DM sites identified in 
glia and neuron respectively. The two cell types share 7622 common true DM sites, indi-
cating a strong correlation between cell types. The true DM and non-DM sites are then 
used to evaluate the csDM called from bulk samples. The estimated mixture proportions 
(by RB deconvolution) and the whole-tissue DNA methylation data were used as inputs 
for TOAST, TCA, csSAM, CellDMC, and CeDAR-S. Accuracy was measured by true 
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discovery rate (TDR) in top ranked sites. The TDR curves in Fig. 5 show that CeDAR-S 
has significantly higher accuracy among the top CpG sites than the other methods in 
both glia and neuron. For example, in glia, the difference of TDR between CeDAR-S and 
TOAST among top-ranked 5000 sites is more than 30%.

Cell type‑specific differential methylation in whole blood

We further evaluated CeDAR on another set of human blood DNA methylation data 
(GEO accession number GSE166844 [17]), which contains the profiles of five pure cell 
types (CD4, CD8, B, monocytes, and granulocytes) and the whole blood samples from 
30 individuals (18 females vs. 12 males). We performed cell type-specific differential 
methylation analyses in the bulk data for male-female comparison. Since there are more 
cell types in this dataset, we can create a hierarchical tree on the cell types, which allows 
us to compare CeDAR-M and CeDAR-S. We again defined the gold standard csDM 
using the pure cell type methylation between males and females by FDR < 0.01; non-
DM by FDR > 0.8. There were 27,219 (CD4), 11,155 (CD8), 10,482 (B), 11,325 (mono-
cytes), and 13,938 (granulocytes) DM sites identified. The number of overlapped true 
DM sites among cell types is shown in Additional file 1: Figure S9. Again, there are sig-
nificant overlaps of DMCs in different cell types. The TDR curves for top-ranked csDM 
sites detected from different methods are shown in Fig. 6. Both CeDAR-M and CeDAR-
S have higher accuracies among the top CpG sites than the other four methods in all 
five cell types. For granulocytes (with the largest proportion), all methods have per-
fect accuracies in top 2000 ranked sites. However, the TDRs of TOAST, TCA, csSAM, 
and CellDMC in top 5000 sites drop to 90%, while the TDRs of two CeDAR methods 
are still close to 1, indicating a performance improvement. In cell types with relative 
smaller proportions (CD8, CD4, monocytes, and B cells), all methods have worse per-
formance, but CeDAR methods still have much higher TDR than the other methods and 

Fig. 5  Accuracy of detecting csDM in human brain methylation data. The human brain DNA methylation 
dataset (GEO accession number: GSE41826) contains both bulk samples from postmortem frontal cortex 
and matched cell type samples of neuron and glia purified by fluorescence-activated cell sorting (FACS). The 
csDM sites associated with sex were identified between five healthy male and five healthy female samples 
with TOAST, TCA, csSAM, CellDMC, and CeDAR-S. The results are evaluated by the true discovery rate (TDR) 
curves, which show the accuracy among different numbers of top-ranked csDM sites from each method.
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the performance improvement is even greater. Additionally, for monocytes and B cells, 
CeDAR-M method has higher accuracy than CeDAR-S, since both have small propor-
tions and are clustered together. This suggests that incorporating a detailed tree struc-
ture makes information sharing more efficient.

Cell type‑specific differential methylation in rheumatoid arthritis study

Previous two real datasets provide pure cell type data to serve as gold standard. How-
ever, the analyses were performed on a rather simple setting: detecting csDM between 
males and females without other covariates. To fully evaluate CeDAR performance in a 
more complex experimental design, we analyzed another dataset that provides periph-
eral blood leukocytes (PBL) DNA methylation from 332 normal individuals and 354 
rheumatoid arthritis (RA) patients (GEO accession number GSE42861 [32]). After pre-
processing, we performed cell type-specific analyses by comparing different disease sta-
tuses (RA vs. control), treating age as a cell type-specific confounder and smoking status 
and sex as main-effect confounders. This design contains different types of variables 
(categorical disease status and continuous age) with potential cell type-specific effects, 
and other covariates without cell type-specific effects. This analysis showcases the flex-
ibility of CeDAR. All data analysis settings are the same for the six methods except the 
threshold to call DMC. For TOAST, TCA, csSAM, and CellDMC, sites with FDR <0.05 
were reported as csDMCs; for CeDAR-S and CeDAR-M, sites with posterior probability 
of DM > 0.95 were reported as csDMCs.

B cell plays an important role in RA [33–35]. From purified B cells, Julia et al. identi-
fied ten RA-related DMCs validated in two independent EWAS cohorts (UK and Spain) 

Fig. 6  Accuracy of detecting csDM in human whole blood methylation data. The human blood DNA 
methylation dataset (GEO accession number: GSE166844) contains both bulk samples from whole blood and 
pure cell type samples of granulocytes, CD8, CD4, monocytes, and B cells derived by FACS. The csDM sites 
associated with sex were identified between eighteen females and twelve males samples using TOAST, TCA, 
csSAM, CellDMC, CeDAR-S, and CeDAR-M. The results are evaluated by TDR curves. The estimated proportions 
and estimated tree structure of cell types are shown in the last panel
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[36]. We examined whether the six methods could detect those ten DMCs in B cells from 
the PBL DNA methylation bulk data. As can be seen from Fig. 7a, TCA and csSAM did 
not report any site out of the ten in B cells; TOAST, CellDMC, and CeDAR-S identified 
seven of them; and CeDAR-M identified eight sites. CD4 is another cell type reported 
to be related to RA [37, 38]. However, there is no experimentally validated DMCs in 
CD4. To investigate whether the csDMCs detected for CD4 from CeDAR make biologi-
cal and clinical sense, we performed a series of analyses to evaluate the results. First, 
Fig. 7b shows a Venn diagram for the overlaps of the reported csDMCs in CD4 by the six 
methods. We see that CeDAR-M detected much more csDMCs in CD4 that include all 
csDMCs from CeDAR-S, and a large proportion of csDMCs from other four methods. 
Furthermore, we performed an enrichment analysis for the csDMCs uniquely identi-
fied by CeDAR-M, but not by TOAST, TCA, csSAM, and CellDMC, using missMethyl 
[39]. There are six KEGG pathways [40–42] significantly enriched (two with adjusted 
p-value < 0.1 and four with adjusted p-value < 0.2). The top one, Phospholipase D signal-
ing pathway, has been reported to play a pivotal role in RA. Previous studies showed that 
abnormal upregulation of a gene in Phospholipase D signaling pathway, Phospholipase 
D1 (PLD1), may contribute to the pathogenesis of IL-1β-induced chronic arthritis [43]. 
Additionally, genetic and pharmacological inhibition of PLD1 can cause suppression of 
collagen-induced arthritis symptom, such as induction of the inflammatory response, 
bone destruction, and osteoclastogenesis [44]. The other five pathways are focal adhe-
sion, Wnt signaling pathway, EGFR tyrosine kinase inhibitor resistance, Sphingolipid 
signaling pathway, and regulation of actin cytoskeleton, which are also reported being 
related with RA disease [45–49]. We further investigated whether these six enriched 

Fig. 7  Cell type-specific DMC result for PBL DNA methylation data between RA and normal individuals. 
a Examination of six methods in identifying csDMCs of B cells from Liu et. al [32]. The ten csDMCs were 
identified and validated in two independent cohorts [36]. b Venn diagram showing overlap of reported 
csDMCs in CD4 cell type from six methods. c Top six KEGG pathways enriched by CeDAR-M uniquely 
identified csDMCs in CD4, but not TCA and TOAST
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KEGG pathways can be also identified by other competing methods (Table 1). We found 
that among the six pathways, Sphingolipid signaling pathway is uniquely identified by 
CeDAR. TOAST reports the remaining five other pathways, while TCA, CellDMC, and 
csSAM report fewer pathways. This result indicates that CeDAR can find unique csD-
MCs, leading to pathways and biological interpretations related to target phenotype that 
other methods cannot provide.

Other real data results

In additional to the above results, we analyzed several other real datasets: (1) detecting 
Down syndrome (DS)-associated csDM sites from frontal cortex gray matter samples 
(GSE74886 [50]); (2) detecting systemic lupus erythematosus (SLE)-associated csDM 
sites from whole blood samples (GSE118114 [51]); (3) detecting smoking-associated 
csDM sites from whole blood samples in two independent studies separately (GSE42861 
and GSE402079 [52]). All the three results demonstrate that CeDAR methods can 
achieve much more accurate results than other methods. The details of the analysis pro-
cedure and results are provided in the Additional file 1 Section S8 and Figure S10 – S12.

Taken together from the real data analysis results, we conclude that the proposed 
methods are more accurate and sensitive compared to the existing methods. Particu-
larly, CeDAR-M demonstrates better results compared to CeDAR-S and the results from 
CeDAR-M can potentially provide more biologically plausible target for future studies.

Discussion
In this work, we developed a novel statistical model called “CeDAR” that incorporates 
the cell type hierarchy in the cell type-specific differential analysis. The model is inspired 
by real data observation that cell types show strong correlation in their DE/DM states. 
CeDAR is based on a Bayesian hierarchical model incorporating the cell type hierarchy 
in the construction of prior probabilities for DE/DM. We derived procedures for param-
eter estimation and used the posterior probabilities for determining features’ differential 
states. Extensive simulation studies and real data analyses demonstrate that CeDAR sig-
nificantly improves the sensitivity and accuracy in identifying csDE/csDM compared to 
existing methods, especially for cell types with low proportions.

We showed that the performance improvement of CeDAR is robust to the specifica-
tion of cell type hierarchy, for example, when the true structure is not bifurcating or just 

Table 1  Identification of CeDAR-enriched pathways by TOAST, TCA, CellDMC, and csSAM

There are six enriched KEGG pathways (with adjusted p-value < 0.2) based on CeDAR uniquely identified csDMCs. We check 
whether they can be identified by performing the same enrichment analysis on csDMCs identified by TOAST, TCA, CellDMC, 
and csSAM. In the table, “Yes” means the pathway is enriched by csDMCs reported by corresponding method, while “No” 
means it is not.

Pathways reported in Fig. 7c CeDAR TOAST TCA​ CellDMC csSAM

Phospholipase D signaling pathway Yes Yes Yes Yes No

Wnt signaling pathway Yes Yes No Yes No

Focal adhesion Yes Yes Yes Yes No

EGFR tyrosine kinase inhibitor resistance Yes Yes No No No

Sphingolipid signaling pathway Yes No No No No

Regulation of actin cytoskeleton Yes Yes No Yes No
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has a single layer. Even when the cell types are completely independent, CeDAR is not 
worse than other methods. When the correlation between cell types is strong, CeDAR-
M is recommended, since it can capture a complex cell type hierarchy; when the cor-
relation is weak or sample size is small, CeDAR-S is preferred, because it can capture 
a certain level correlation without the need for the complex tree structure estimation. 
We also showed that the biases in the cell type hierarchy and cell type proportion esti-
mation may impact the results, but the improvements over other methods are still sig-
nificant. On the other hand, accurate hierarchy and proportion estimation will lead to 
better results. With the increasing availability of single-cell genomics data, we envision 
that such estimation will become more accurate for many biological systems, which will 
greatly benefit cell type-specific analyses in bulk data.

In this work, we implicitly assumed that the correlations among cell types are consist-
ent for all features. However, in the real world, cell types may show different correlation 
patterns in DE/DM states among different feature sets corresponding to different bio-
logical processes. Thus, a more sophisticated method is to assume cell types have dif-
ferent correlations in different feature sets, which will be our future research direction. 
Additionally, CeDAR method is currently designed for continuous data, such as gene 
expression or DNA methylation microarray data. However, the general framework of 
borrowing information from cell types can be applied to other data types, such as the 
count data from sequencing. This is another promising future direction for us to explore.

Conclusion
Cell type-specific differential analysis plays an important role in uncovering biological 
mechanism and finding biomarkers in biological or clinical studies. While single-cell 
sequencing or cell sorting techniques can be too expensive to be applied in large-scale 
studies, computational deconvolution from bulk data is a promising method for such 
analysis. In this work, we developed a novel statistical method named CeDAR to incor-
porate cell type hierarchy in the cell type-specific differential analysis. Both simulation 
and real data analysis demonstrate that CeDAR significantly improves csDE/csDM 
detection accuracy and power, especially in low-abundance cell types. It is also robust to 
various correlation patterns of DE/DM status among cell types. We expect that CeDAR 
will better exploit the bulk omics data and extract more meaningful information.

Methods
The CeDAR method

Data model

Suppose the data was generated from a bulk high-throughput experiment, which con-
tains measurement of G features (genes, CpG sites, etc.) in N samples. Let Ygi represent 
the observed measurement of gth feature in ith sample. In each sample, the measurement 
of each feature is a mixed signal from K different cell types. Let θi = (θi1, …, θiK)T repre-
sent the cell composition of the ith sample. There are several methods for estimating K 
and θi in both DNA methylation and gene expression data [53–55]. Here we assume both 
K and θi are known. We assume there are Q confounders to be adjusted in the study. 
Let Ci = (Ci1, …, CiQ)T represent the confounders of ith sample. Then C = (C1, …, CN)Q × N 
represents the confounders of all samples. Let A = (A1, …, AN) represent the factor to be 
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tested for cell type-specific effects across all N samples. Ai is a scaler if a single continuous 
or binary factor is involved; if the factor is a categorical variable with multiple levels, it 
will be coded as a vector of dummy variables.

Now consider the csDE/csDM status for a particular covariate of interest. For the sim-
plicity of notation, we will omit the subscript for covariate. The model described below 
will be applied to all covariates of interest. Define Zgk as a binary random variable to rep-
resent the DE/DM state of the gth feature in kth cell type. When Zgk = 1, the gth feature 
in kth cell type is DE/DM associated with the factor of interest, and Zgk = 0 otherwise. 
Note that since Zg = (Zg1, …, ZgK) takes value in discrete space {0, 1}K, there are 2K combi-
nations of DE/DM states for K cell types. Let Xgik represent the unknown pure profile of 
feature g in cell type k for sample i. We assume that given all DE/DM state of feature g in 
cell type k, it satisfies E

[

Xgik |Zgk

]

= µgk + CT
i βgk + ZgkA

T
i δgk . Here μgk is the baseline 

profile of feature g for cell type k; βgk = (βgk1, …, βgkQ)T are coefficients associated with 
confounders, and δgk are coefficients associated with the factors of interest. Specifically, 
for any confounder without cell type-specific effect (Cq), its corresponding coefficients in 
different cell types are the same (βg1q = βg2q = … = βgKq). It is important to note here that 
the factors of interest only impact on Xgik when Zgk = 1 (the cell type is DE/DM). This is a 
major modeling difference from all other linear model-based cell type-specific methods 
(TOAST, CellDMC, TCA, etc.), which would always include the impact of A. For the 
observed bulk data, since they are mixtures of cell type-specific signals, the observed 
measurement Ygi is a weighted average of Xgik’s: E[Ygi; θi] = ∑kθikE[Xgik]. Thus, given the 
DE/DM state in K cell types Zg, Ygi satisfies the following linear form:

Since the interactions between mixing proportion and factor of interest are only 
allowed for cell types showing DE/DM state (e.g., cell type k with Zgk = 1), the linear 
model used in existing methods such as TOAST and CellDMC is a special case in which 
all cell types are assumed to be DE/DM a priori (the full model).

Given the data model, we can obtain the observed data likelihood and derive the pos-
terior probability for DE/DM calling. Denote Yg = (Yg1, …, YgN), the goal of csDE/csDM 
calling is to compute P(Zgk = 1|Yg). Of course, such posterior probability relies on the 
prior. In the next subsection, we provide a detailed explanation on how to construct pri-
ors based on cell type hierarchy to achieve information sharing.

Prior probabilities for the DE/DM states

As discussed before, a major methodological contribution of this work is the specifi-
cation of csDE/csDM priors based on the cell type hierarchy. This plays a major role 
in capturing the similarity among cell types and improving the DE/DM calling result. 
For each feature, we define a list of binary random variables for the underlying DE/DM 
states for all nodes: Z for leaf nodes and D for non-leaf nodes. We assume these binary 
random variables are independent and identically distributed for all genes. We further 
assume that the cell type hierarchy is known at this step. The estimation of cell type hier-
archy will be discussed in the later section.

(1)E Ygi| Zg =

K

k=1

θik µgk + CT
i βgk + ZgkA

T
i δgk
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The correlation in the hidden DE/DM states among cell types is captured by the joint 
probability of Zg and Dg. For g = 1, …, G, and k = 1, …, K, the DE/DM state of the leaf nodes 
is represented by binary random variables Zg1, …, ZgK, with Zgk ∼ Bernoulli(πk). Zgk = 1 
means that the gth feature in kth cell type is DE/DM, and Zgk = 0 otherwise. The states of all 
non-leaf nodes are also represented by binary random variables. Given a hierarchical tree 
of the cell types, the state for the nth node at lth level (l = 1, …, L; n = 1, …, nl) of the tree 
is denoted by binary random variable Dg�l,n

 , where Φl, n is a set of cell types represented 
by corresponding descendant leaf nodes. Specifically, the root node is defined as the first 
node at level 0, denoted as Dg�0,1 . We assume Dg�l,n

∼ Bernoulli
(

π�l,n

)

 . To capture the 
tree structure, we define that for any non-root node (internal or leaf): if its parent node has 
state 0, it must have state 0; if the parent node has state 1, its state follows a Bernoulli distri-
bution. Thus, the conditional distribution for the states of the leaf nodes can be expressed 
as the following, where Dg�l,n

 is the parent node of Zgk:

Here, pk =
πk

π�l,n
 . Distributions for the non-leaf internal nodes can be expressed in a simi-

lar form, that is, the state of a child internal node condition on the state of its parent follows 
a Bernoulli distribution. Finally, we assume that the sibling nodes are mutually independent 
if their parent node has state 1.

The specification of the prior probabilities captures the similarity among cell types 
according to the cell type hierarchy. Using the structure in Fig. 2 as an example, there are 
three leaf nodes with underlying states represented by Zg1, Zg2, Zg3, and two non-leaf nodes 
represented by Dg{1, 2, 3}, Dg{2, 3}. The marginal prior probabilities of a randomly picked fea-
ture being DE/DM in cell types 2 and 3 are P(Zg2 = 1) = P(Zg2 = 1| Dg{2, 3} = 1) × P(Dg{2, 3} = 1
| Dg{1, 2, 3} = 1) × P(Dg{1, 2, 3} = 1) = p2 × p{2, 3} × π{1, 2, 3} = 0.06 and P(Zg3 = 1) = P(Zg3 = 1| Dg{2, 3} = 
1) × P(Dg{2, 3} = 1| Dg{1, 2, 3} = 1) × P(Dg{1, 2, 3} = 1) = p3 × p{2, 3} × π{1, 2, 3} = 0.04, respectively. The 
marginal joint probability of a randomly picked feature being DE/DM in both cell type 2 
and cell type 3 is P(Zg2 = Zg3 = 1) = p2 × p3 × p{2, 3} × π{1, 2, 3} = 0.03. It is much larger than P(
Zg2 = 1) × P(Zg3 = 1) = 0.0024, which is the probability assuming cell types 2 and 3 are inde-
pendent. If the root node always has state 1, i.e., P(Dg{1, 2, 3} = 1) = 1, then cell type 1 will be 
independent of cell types 2 and 3. Furthermore, if P(Dg{1, 2, 3} = 1) = P(Dg{2, 3} = 1) = 1, then 
the three cell types are mutually independent. Importantly, such cell type hierarchy is used 
merely as a statistical way to capture DE/DM state correlations among cell types. It does 
not necessarily represent the cell type lineage tree during differentiation or development.

We use Parent() to represent the parent node of a specific node. Then, a prior joint prob-
ability of Zg = (Zg1, …, ZgK) and Dg =

(

Dg�0,1 , . . . ,Dg�L,nL

)

 has the following form:

(2)Zgk | Dg�l,n
∼ Bernoulli

(

pkDg�l,n

)

(3)
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Likelihood and posterior probability

Given the data model and the prior probabilities, we are now in position to derive the pos-
terior probability for DE/DM calling. Denote Yg = (Yg1, …, YgN), the probability of Yg given Zg 
is:

The joint probability of Yg, Zg, Dg can be derived as the following, noting that 
P(Yg| Zg, Dg) = P(Yg| Zg)

Then, we can have the marginal probability for the observed data P(Yg) by summing over 
all combinations of (Zg, Dg):

Similarly, the joint probability of Zgk = 1 and Yg is:

Based on these, we have the posterior probability of Zgk = 1 conditional on Yg as:

The joint prior P(Zg, Dg) derived from Eq. (3) can be plugged into Eq. (5) to obtain 
P(Yg, Zg, Dg), and then the posterior probabilities can be calculated for csDE/csDM calling. 
For all above, we have not made any distribution assumption on the data. For microarray 
data, we use normal distributions for the observed data. The same principles apply for other 
data types with different distribution assumptions.

Parameter estimation

To derive the posterior probability of Zgk (Eq. 8), we need to estimate the cell type hierarchy 
capturing cells correlation in DE/DM state, the prior probabilities of all nodes in the tree, 
and the marginal likelihood given different combinations of DE/DM states.

Estimation of the cell type hierarchy

The tree structure describing cell type hierarchy could be estimated by hierarchical cluster-
ing of cell types, in which the similarity between cell types is defined based on the Pearson 
correlation of p-values with the following form:

(4)P
(

Y g |Zg

)

=
∏N

i=1
P
(

Ygi|Zg

)

(5)P
(

Y g ,Zg ,Dg

)

= P
(

Y g |Zg

)

× P
(
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)
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(
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P
(
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)

)
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pvalk are p-values generated by TOAST for testing differential signal in kth cell type of 
features satisfying {feature g : for 1 ≤ g ≤ G, ∃k ∈ {1, …, K} s. t. pvalgk (or fdrgk) < threshold}. 
This step is designed to reduce noise signal from non-DE/non-DM features. The thresh-
old could be arbitrarily defined by users. Users could even define their own rule to select 
features for estimating the tree structure. Cell types with higher correlations should be 
more similar.

We want to emphasize that the cell type hierarchy does not have to be a bifurcating 
tree. In our software implementation, a bifurcating tree will be estimated from the data 
by default, but users have the option to specify a tree structure according to their prior 
biological knowledge. In addition, we also have option for using a simplified cell type 
hierarchy, in which all cell types are assumed to be independent under the root node. 
We call this the “single-layer” model, where the correlations among cell types are only 
captured at the root level.

Estimation of the prior probabilities

Based on the p-values provided by TOAST, the prior probability for an internal node 
Dg�l,n

 to be DE/DM ( π�l,n
 ) is estimated as the proportion of features deemed significant 

in any cell type belonging to set Φl, n among all G features.

Then the conditional probability of non-root internal node Dg�l,n
 conditional on its 

parent node Dg�l′ ,n′
 equals to one ( p�l,n

 ) is simply estimated by plugging in correspond-
ing estimates of marginal probabilities:

Prior probabilities of leaf node Zgk can be estimated in a same way, since we can treat it 
like an internal node, whose set only contains a single cell type k:

Computation of data likelihood

For K cell types, Zg have 2K possible combinations. So, totally there are 2K different linear 
models to fit. Under each combination of Zg, μgk, βgk and δgk (for k = 1, …, K) are esti-
mated by least square estimators of corresponding linear model (Eq. 1). By assuming the 
observed bulk signal follows a normal distribution, posterior probability of Zgk (Eq. 8) 
can be computed by plugging in the least square estimates. In this work, computation 
of data likelihood is based on normal distribution assumption, which is often used for 
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microarray data. Specifically, for DNA methylation data, we used beta value for analysis. 
Even though the beta values for all CpG sites follow a bimodal distribution at around 
0 and 1, they can be well approximated by normal distributions for one CpG site cross 
samples [4, 56]. The same framework could be extended to count data by assuming a 
negative binomial distribution, which would be our future research direction.

Differential signal detection

A feature would be reported showing differential signal in certain cell type if its corre-
sponding posterior probability of DE/DM (Eq. 8) is greater than a user-defined thresh-
old. Higher posterior probability of DE/DM suggests more convincible cell type-specific 
DE/DM. Besides, the estimated posterior probability of non-DE/non-DM can be viewed 
as estimated local FDR. The global FDR for a list of features can be derived by averaging 
their estimated local FDRs.

Cell type correlation calculation from real data

We obtained two datasets from the GEO database. The first data set (GEO accession 
number GSE166844 [17]) measures DNA methylation profile on Infinium Methyla-
tionEPIC microarray for several purified blood cell types, including CD4 T cells, CD8 
T cells, B cells, monocytes, and granulocytes, from 30 individuals (18 females vs. 12 
males). The second dataset (GSE60424 [18]) provides gene expression from RNA-seq for 
six immune cell types (CD4 T cells, CD8 T cells, B cells, NK cells, monocytes, and neu-
trophils) of sclerosis patients before and 24 hours after the first treatment with IFN-beta. 
In the DNA methylation data (GSE166844), sites with detection p-value greater than or 
equal to 0.01 in any sample were removed from the processed data set provided on GEO 
website. We used minfi [25–31, 57] to call DM for male vs. female comparison. CpG 
sites with q-value less than 0.05 are deemed differentially methylated sites. For the gene 
expression data, we used edgeR [58–60] to call DE for before vs after first IFN-beta treat-
ment. DE genes are defined as genes with false discovery rate (FDR) less than 0.05.

For both data sets, Pearson correlation coefficient depicting cell type correlation in 
DE/DM state was calculated based on negative log-transformed (base 10) p-values of 
two cell types and a t-test was applied to test whether the correlation estimate is statisti-
cally significant different from zero. Odds ratio of DE/DM in two cell types was calcu-
lated based on DMC defined above. Each count of the 2 × 2 contingency table was added 
one to avoid infinite OR value. Fisher’s exact test was used to test whether the estimated 
odds ratio is statistically significantly different from one.

Simulation

Data simulation

We first estimated cell type-specific mean μgk and variance σ 2
gk for gene g = 1, …, G 

(G = 12,402) in cell type k = 1, …, K (K = 6) (neutrophils, monocytes, CD8 cells, CD4 
cells, B cells, and NK cells) from log expression values of microarray gene expression 
data GSE22886 [20]. We defined 10% DE genes between case and control groups in each 
cell type. Each DE gene has equal probability to be up- or downregulated. To maintain 
the cell type hierarchy, the DE states of genes were generated based on a pre-defined tree 
structure (Fig.  1a). The prior probability of each node on the tree is π{1, 2, 3, 4, 5, 6} = 0.4, 
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p{1, 2} = 0.3125, p1 = p2 = 0.8, p{3, 4, 5, 6} = 0.5, p{3, 4, 5} = 0.8, p6 = 0.5, p{3, 4} = 0.78125, 
p5 = 0.625, p3 = p4 = 0.8. For root node, among G = 12,402 genes, we used Bernoulli dis-
tribution with π{1, 2, 3, 4, 5, 6} = 0.4 to generate DE state for each feature. Then for one of its 
child nodes containing cell types 1 and 2, among features with generated potential DE 
state 1, we used Bernoulli distribution with p{1, 2} = 0.3125 to generate DE state. In this 
way, we can derive DE state of each cell type (each leaf node) and make sure they share 
different correlation strengths between cell types. For any non-DE gene g in case and 
control groups, its expression in cell type k of sample i, denoted by Xgik, follows a log-
normal distribution

For any DE gene g in cell type k of sample i in the case group, the pure expression fol-
lows a log-normal distribution

where lfc is the log2 fold change. For upregulated genes, the log2 fold change (lfcgk) is 
randomly drawn from normal distribution N(1,0.22), while for downregulated genes, it is 
from N(−1,0.22),.

In the simulations setting with six cell types, the mixture proportion of each sample i, 
θi, was generated from a Dirichlet distribution with parameters estimated from the real 
cell type proportion of six cell types (neutrophils, monocytes, CD8 cell, CD4 cell, B cell, 
and NK cell) [61]: 27.94, 4.64, 2.47, 4.87, 2.30, 2.21. In the simulation setting for evaluat-
ing the impact of different cell type hierarchy, the four cell types selected were neutro-
phils, monocytes, CD8 cell, and CD4 cells, and the corresponding Dirichlet parameter 
was 27.94, 4.64, 2.47, and 9.38. We assumed there is no cell type proportion difference 
between the case and control groups.

Finally, we simulated s cases and s controls (s = 50, 100, 200 for different simulations). 
The simulated measurement for gene g of sample i, Ygi, is a linear combination of simu-
lated cell type-specific expression Xgi = (Xgi1, …, XgiK) weighted by the mixture propor-
tion θi, and added by a random noise ϵgi:

We assumed the random noises are mutually independent for each gene and each 
sample. To reflect the mean-variance dependence of gene expression, we assumed the 
variance of the random noise is positively correlated with gene expression:

where ηg = 0.1×max

(

∑
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Xgiθ

T
i

s ,
∑
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Xgiθ

T
i

s

)

.

Cell type proportion estimation

In the second simulation results section, we evaluated robustness of CeDAR to esti-
mated proportions. We estimated the cell type proportion for each sample from the 
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mixture profiles by using RB method lsfit from the R package CellMix [62]. The esti-
mated cell type-specific mean from GSE22886, which was used for generating pure cell 
type expression, was used as a reference profile. Reported marker genes for the six blood 
cell types [53] were used for deconvolution. Proportions of samples in cases and controls 
were estimated separately.

Evaluation of CeDAR method

After deriving the simulated bulk data and corresponding proportion, we compared 
CeDAR method with TOAST and TCA. We used ROC to evaluate the accuracy of pro-
posed method and calculated observed FDR at a given cutoff to evaluate type I error 
control. For the detail of evaluation method used in simulation, please see Additional 
file 1: Section S1.

Real data analysis

We downloaded three DNA methylation datasets (GSE41826, GSE166844, GSE42861) 
from GEO database. The methylation level is measured with beta value. R package minfi 
[25–31] was used to pre-process raw data and call gold standard csDMCs. For datasets 
with pure cell type samples, we defined gold standard of cell type-specific DM state by 
setting sites with FDR smaller than 0.01 as true DM, with FDR greater than 0.8 as non-
DM. For detecting cell type-specific effects in bulk data, we first used EpiDISH [4, 53, 
63–66] to estimate cell type compositions. The DNA methylation reference is mean 
profile of each cell type for GSE41826 and GSE166844; for GSE42861, which does not 
have pure cell type samples, DNAm reference consists of 333 immune cell type-specific 
DMCs [63, 64]. More details are provided in Additional file 1: Section S2-S4.
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